

COPYRIGHT
The LINGO software and its related documentation are copyrighted. You may not copy the LINGO

software or related documentation except in the manner authorized in the related documentation or

with the written permission of LINDO Systems Inc.

TRADEMARKS
LINGO is a trademark, and LINDO is a registered trademark, of LINDO Systems Inc. Other product

and company names mentioned herein are the property of their respective owners.

DISCLAIMER
LINDO Systems, Inc. warrants that on the date of receipt of your payment, the disk enclosed in the

disk envelope contains an accurate reproduction of the LINGO software and that the copy of the

related documentation is accurately reproduced. Due to the inherent complexity of computer programs

and computer models, the LINGO software may not be completely free of errors. You are advised to

verify your answers before basing decisions on them. NEITHER LINDO SYSTEMS, INC. NOR

ANYONE ELSE ASSOCIATED IN THE CREATION, PRODUCTION, OR DISTRIBUTION OF

THE LINGO SOFTWARE MAKES ANY OTHER EXPRESSED WARRANTIES REGARDING

THE DISKS OR DOCUMENTATION AND MAKES NO WARRANTIES AT ALL, EITHER

EXPRESSED OR IMPLIED, REGARDING THE LINGO SOFTWARE, INCLUDING THE

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

OR OTHERWISE. Further, LINDO Systems, Inc. reserves the right to revise this software and related

documentation and make changes to the content hereof without obligation to notify any person of such

revisions or changes.

Copyright © 2013 by LINDO Systems Inc. All rights reserved.

Published by

1415 North Dayton Street

Chicago, Illinois 60642

Technical Support: (312) 988-9421

E-mail: tech@lindo.com

WWW: http://www.lindo.com

iii

Contents
Contents .. iii

Preface ... vii

New Features .. xi

for LINGO 14.0 .. xi

1 Getting Started with LINGO .. 1
What is LINGO? ... 1
Installing LINGO ... 1
Modeling from the Command-Line ... 22
Examining the Solution ... 25
Using the Modeling Language .. 26
Additional Modeling Language Features .. 38
Indicating Convexity and Concavity ... 42
Maximum Problem Dimensions .. 43
How to Contact LINDO Systems .. 44

2 Using Sets .. 45
Why Use Sets? ... 45
What Are Sets? .. 45
The Sets Section of a Model .. 46
The DATA Section .. 53
Set Looping Functions .. 54
Set-Based Modeling Examples .. 60
Summary .. 80

3 Using Variable Domain Functions ... 81
Integer Variables .. 81
Free Variables ...100
Bounded Variables ..105
SOS Variables ...106
Cardinality ...110
Semicontinuous Variables ...110

4 Data, Init and Calc Sections ..115
The DATA Section of a Model ...115
The INIT Section of a Model ..119
The CALC Section of a Model ...120
Summary ...123

5 Windows Commands ...125
Accessing Windows Commands ...125

iv CONTENTS

Windows Commands In Brief ..126
Windows Commands In Depth ..129
1. File Menu...129
2. Edit Menu ..147
3. LINGO Menu ...160
4. Window Menu ..273
5. Help Menu ...277

6 Command-Line Commands ...283
The Commands In Brief ..283
The Commands In Depth ..285

7 LINGO’s Operators and Functions..379
Standard Operators ...379
Mathematical Functions ..383
Financial Functions ...386
Probability Functions ...386
Variable Domain Functions ...389
Set Handling Functions ...390
Set Looping Functions ...395
Interface Functions ..397
Distributions...398
Report Functions ...404
Date, Time and Calendar Functions ..415
Miscellaneous Functions ...418

8 Interfacing with External Files ...421
Cut and Paste Transfers ...421
Text File Interface Functions ...423
LINGO Command Scripts ..431
Specifying Files in the Command-line ...434
RunLingo ...436
Redirecting Input and Output ..439
Managing LINGO Files ..439

9 Interfacing With Spreadsheets ..441
Importing Data from Spreadsheets..441
Exporting Solutions to Spreadsheets ..446
OLE Automation Links from Excel ...454
Embedding LINGO Models in Excel ..458
Embedding Excel Sheets in LINGO ..464
Summary ...468

10 Interfacing with Databases ..469
ODBC Data Sources ...470
Importing Data from Databases with @ODBC ..477

CONTENTS v

Importing Data with ODBC in a PERT Model ..479
Exporting Data with @ODBC ..481
Exporting Data with ODBC in a PERT Model ..484

11 Interfacing with Other Applications ..489
The LINGO Dynamic Link Library..489
User Defined Functions ...533

12 Developing More Advanced Models ...539
Production Management Models ...540
Logistics Models ..556
Financial Models ...563
Queuing Models ..580
Marketing Models ..589

13 Programming LINGO ..597
Programming Features ..597
Programming Example: Binary Search ...628
Programming Example: Markowitz Efficient Frontier ...632
Programming Example: Cutting Stock...639
Programming Example: Accessing Excel ..646
Summary ...652

14 Stochastic Programming ...653
Multistage Decision Making Under Uncertainty ...653
Recourse Models ..655
Scenario Tree ..657
Monte Carlo Sampling ...659
Setting up SP Models ..660
Language Features for SP Models ..661
Declaring Distributions ..663
Gas Buying Example ...670
Stock Option Example ...681
Investing Under Uncertainty Example ...691
Chance-Constrained Programs (CCPs) ..698

15 On Mathematical Modeling ..711
Solvers Used Internally by LINGO...711
Type of Constraints ...712
Local Optima vs. Global Optima ..714
Smooth vs. Nonsmooth Functions...719
Guidelines for Nonlinear Modeling ..720

vi CONTENTS

Appendix A: Additional Examples of LINGO Modeling ..723

Appendix B: Error Messages ...817

Appendix C: Bibliography and Suggested Reading ...867

Index ..869

vii

Preface
LINGO is a comprehensive tool designed to make building and solving mathematical optimization

models easier and more efficient. LINGO provides a completely integrated package that includes a

powerful language for expressing optimization models, a full-featured environment for building and

editing problems, and a set of fast built-in solvers capable of efficiently solving most classes of

optimization models. LINGO's primary features include:

Algebraic Modeling Language

LINGO supports a powerful, set-based modeling language that allows users to express math

programming models efficiently and compactly. Multiple models may be solved iteratively using

LINGO's internal scripting capabilities.

Convenient Data Options

LINGO takes the time and hassle out of managing your data. It allows you to build models that

pull information directly from databases and spreadsheets. Similarly, LINGO can output solution

information right into a database or spreadsheet making it easier for you to generate reports in the

application of your choice. Complete separation of model and data enhance model maintenance

and scalability.

Model Interactively or Create Turnkey Applications

You can build and solve models within LINGO, or you can call LINGO directly from an

application you have written. For developing models interactively, LINGO provides a complete

modeling environment to build, solve, and analyze your models. For building turn-key solutions,

LINGO comes with callable DLL and OLE interfaces that can be called from user written

applications. LINGO can also be called directly from an Excel macro or database application.

LINGO currently includes programming examples for C/C++, FORTRAN, Java, C#.NET,

VB.NET, ASP.NET, Visual Basic, Delphi, and Excel.

Extensive Documentation and Help
LINGO provides all of the tools you will need to get up and running quickly. You get the LINGO

Users Manual (in printed form and available via the online Help), which fully describes the

commands and features of the program. Also included with Super versions and larger is a copy of

Optimization Modeling with LINGO, a comprehensive modeling text discussing all major classes

of linear, integer and nonlinear optimization problems. LINGO also comes with dozens of real-

world based examples for you to modify and expand.

Powerful Solvers and Tools

LINGO is available with a comprehensive set of fast, built-in solvers for linear, nonlinear (convex

& nonconvex), quadratic, quadratically constrained, and integer optimization. You never have to

specify or load a separate solver, because LINGO reads your formulation and automatically

selects the appropriate one. A general description of the solvers and tools available in LINGO

follows:

viii PREFACE

General Nonlinear Solver

LINGO provides both general nonlinear and nonlinear/integer capabilities. The nonlinear license

option is required in order to use the nonlinear capabilities with LINDO API.

Global Solver

The global solver combines a series of range bounding (e.g., interval analysis and convex

analysis) and range reduction techniques (e.g., linear programming and constraint propagation)

within a branch-and-bound framework to find proven global solutions to nonconvex nonlinear

programs. Traditional nonlinear solvers can get stuck at suboptimal, local solutions. This is no

longer the case when using the global solver.

Multistart Solver

The multistart solver intelligently generates a sequence of candidate starting points in the solution

space of NLP and mixed integer NLPs. A traditional NLP solver is called with each starting point

to find a local optimum. For non-convex NLP models, the quality of the best solution found by the

multistart solver tends to be superior to that of a single solution from a traditional nonlinear solver.

A user adjustable parameter controls the maximum number of multistarts to be performed.

Barrier Solver

The barrier solver is an alternative way for solving linear, quadratic and conic problems. LINGO's

state-of-the-art implementation of the barrier method offers great speed advantages for large-scale,

sparse models.

Simplex Solvers

LINGO offers two advanced implementations of the primal and dual simplex methods as the

primary means for solving linear programming problems. Its flexible design allows the users to

fine tune each method by altering several of the algorithmic parameters.

Mixed Integer Solver

The mixed integer solver’s capabilities of LINGO extend to linear, quadratic, and general

nonlinear integer models. It contains several advanced solution techniques such as cut generation,

tree reordering to reduce tree growth dynamically, and advanced heuristic and presolve strategies.

Stochastic Solver

The stochastic programming solver supports decision making under uncertainty through

multistage stochastic models with recourse. The user describes the uncertainty by identifying the

distribution functions, either built-in or user-defined, describing each random variable. The

stochastic solver will optimize the model to minimize the cost of the initial stage plus the expected

cost of future recourse actions over the planning horizon. Advanced sampling modes are also

available for approximating continuous distributions. LINGO's stochastic solver also supports

chance-constrained models, where one or more sets of constraints are allowed to be violated

according to a specified probability.

PREFACE ix

Model and Solution Analysis Tools

LINGO includes a comprehensive set of analysis tools for debugging infeasible linear, integer and

nonlinear programs, using advanced techniques to isolate the source of infeasibilities to the

smallest subset of the original constraints. It also has tools to perform sensitivity analysis to

determine the sensitivity of the optimal basis to changes in certain data components (e.g. objective

vector and right-hand-size values).

Quadratic Recognition Tools

The QP recognition tool is a useful algebraic pre-processor that automatically determines if an

arbitrary NLP is actually a convex, quadratic model. QP models may then be passed to the faster

quadratic solver, which is available as part of the barrier solver option. When the barrier solver

option is combined with the global option, LINGO will automatically recognize conic models, in

addition to convex quadratic models.

Linearization Tools

Linearization is a comprehensive reformulation tool that automatically converts many non-smooth

functions and operators (e.g., max and absolute value) to a series of linear, mathematically

equivalent expressions. Many non-smooth models may be entirely linearized. This allows the

linear solver to quickly find a global solution to what would have otherwise been an intractable

nonlinear problem.

xi

New Features

 for LINGO 14.0

LINDO Systems is proud to introduce LINGO 14.0. The new features in LINGO 14.0 include the

following:

Multithread Support:

 LINGO 14.0 includes multi-cpu optimization extensions to its solvers to

take advantage of computers with multicore processors. The multicore

extensions are of two types: concurrent and parallel. Concurrent

algorithms run two or more different serial algorithms on multiple copies of

the same model, using a separate thread for each algorithm, terminating as

soon as the winner thread finishes. Parallel algorithms, on the other hand,

parallelize computationally intensive portions of the serial algorithm to

distribute the workload across multiple threads. Solvers with multicore

extensions include Barrier, Global, Integer, Linear, Multistart and

Stochastic.

 In addition to the solvers, LINGO's model generator has also been extended

for multicore support. Model generation times for large models can be

reduced up to as much as 50% when compared to previous releases.

Branch-and-Price Solver:
A new Branch-and-Price solver with multicore support has been added for improved

performance on problems with block structures. Detection of decomposition structures

has also been improved in support of the Branch-and-Price solver.

MIP Solver Improvements:

 The solution finding heuristics have been improved significantly. Simple rounding

and the feasibility pump now use bound propagation to improve the current path to

a new feasible MIP solution.

 New polishing heuristic to improve the best MIP solution using a pool of previous

obtained MIP solutions and the current relaxation. This leads to better MIP

solutions faster on many problems.

 Multithreading can lead to speed improvements from 1.5 to 3.0 times on difficult

problems using 4 threads rather than 1. For easy MIP problems, e.g., < 600

seconds, multithreading may give not much speedup.

xii PREFACE

Multistart Solver Improvements:

 The Multistart solver has been improved significantly, achieving speed factors up to

2X compared to the previous version. The likelihood of getting the global optimum

has also improved by 10-15% over a wide range of nonconvex models.

 Multithreading often leads to speed improvements from 2.0 to 3.0 times when using

4 threads. Speed improvements tend to improve as the model size and the number of

multistarts increase.

 Global Solver Improvements:

A parallel algorithm has been added for exploiting multicore machines.

Permuted Matrix Displays:
You may now choose to have a model's underlying matrix displayed in block-

triangular format, where the rows and columns may be automatically permuted

to place the matrix into mostly block-triangular form. If a matrix has good

block-triangular structure, then the model is likely to perform well when solved

with the Branch-and-Price solver.

New Chart Type for Displaying Networks:
The Network Chart Type can display charts of networks. Multiple networks can

be displayed on a single chart.

Dynamically Add Members to Derived Sets:
The @INSERT function has been added, which allows the dynamic addition of

set members to derived sets.

Procedure Capability:
LINGO now supports callable procedures. Callable procedures are similar to

Calc sections, however, unlike Calc sections, procedures may be executed

multiple times. Procedures may also be used to generate points for charting

routines.

Beta-Binomial Distribution:
The Beta-Binomial and Symmetric Stable distributions have been added to the

list of supported distributions. Stochastic programming models may also specify

random variables as having either a Beta-binomial or Symmetric Stable

distribution. The Beta-Binomial is useful in Bayesian analysis involving the

Binonial distribution, e.g., in designing sampling plans for new drug trials. The

Symmetric Stable is sometimes used to model the movement of prices in

financial markets.

 Date and Time Functions:

A number of new functions have been added to convert dates to and from

standard time, where standard time is defined as the number of hours since 1 Jan

2000. These functions are helpful when you need to perform date arithmetic in

your models. Among other things, these functions are useful for answering

PREFACE xiii

questions of the form, “What date and time will it be 23.5 days from 12:30pm

tomorrow?”.

 Numeric Integration:

The @INTEGRAL function has been added to perform numeric integration.

We hope you enjoy this new release of LINGO. Many of the new features in

this release are due to suggestions from our users. If there are any features you'd

like to see in the next release of LINGO, please let us know. Feel free to reach

us at:

LINDO Systems Inc.

1415 N. Dayton St.

Chicago, Illinois 60642

(312) 988-7422

info@lindo.com

http://www.lindo.com

May 2013

mailto:info@lindo.com
http://www.lindo.com/

1

1 Getting Started with
LINGO

What is LINGO?
LINGO is a simple tool for utilizing the power of linear and nonlinear optimization to formulate large

problems concisely, solve them, and analyze the solution. Optimization helps you find the answer that

yields the best result; attains the highest profit, output, or happiness; or achieves the lowest cost, waste,

or discomfort. Often these problems involve making the most efficient use of your resources—

including money, time, machinery, staff, inventory, and more. Optimization problems are often

classified as linear or nonlinear, depending on whether the relationships in the problem are linear with

respect to the variables.

If you are a new user, it is recommended you go through the first seven chapters to familiarize yourself

with LINGO. Then, you may want to see Chapter 15, On Mathematical Modeling, for more

information on the difference between linear and nonlinear models and how to develop large models. It

may also be helpful to view some sample models in Chapter 12, Developing More Advanced Models,

or Appendix A, Additional Examples of LINGO Modeling, to see if a particular template example is

similar to a problem you have. For users of previous versions of LINGO, the new features are

summarized in the Preface at the beginning of the manual.

Installing LINGO
This section discusses how to install LINGO on the Windows platform. To install LINGO on

platforms other than Windows, refer to the installation instructions included with your software.

Installing the LINGO software is straightforward. To setup LINGO for Windows, place your CD in the

appropriate drive and run the installation program SETUP contained in the LINGO folder. The LINGO

installation program will open and guide you through the steps required to install LINGO on your hard

drive.

Note: If there is a previous version of LINGO installed on your machine, then you may need to

uninstall it before you can install the new copy of LINGO. To uninstall the existing copy of

LINGO, click on the Windows Start button, select the Settings command, select Control

Panel, then double click on the Add or Remove Programs icon. You should then be able to

select LINGO and have the old version removed from your system.

2 CHAPTER 1

Most copies of LINGO come with their licenses preinstalled. However, some versions of LINGO

require you to input a license key. If your version of LINGO requires a license key, you will be

presented with the following dialog box when you start LINGO:

Your license key may have been included in an email sent to you when you ordered your software.

The license key is a string of letters, symbols and numbers, separated into groups of four by hyphens

(e.g., r82m-XCW2-dZu?-%72S-fD?S-Wp@). Carefully enter the license key into the edit field,

including hyphens. License keys are case sensitive, so you must be sure to preserve the case of the

individual letters when entering your key. Click the OK button and, assuming the key was entered

correctly, LINGO will then start. In the future, you will be able to run LINGO directly without

entering the key.

Note: If you received your license key by email, then you have the option of cutting-and-pasting it

into the license key dialog box. Cut the key from the email that contains it with the Ctrl+C

key, then select the key field in LINGO dialog box and paste the key with the Ctrl+V key.

If you don’t have a key, you can choose to run LINGO in demo mode by clicking the Demo button. In

demo mode, LINGO has all the functionality of a standard version of LINGO with the one exception

that the maximum problem size is restricted. Demo licenses expire after 30 days.

GETTING STARTED 3

Entering a Model in Windows

Starting LINGO
This section illustrates how to input and solve a small model in Windows. The text of the model’s

equations is platform independent and will be identical on all platforms. However, keep in mind that

the technique for entering a model is slightly different on non-Windows platforms. For instructions on

entering a model on platforms other than Windows, please refer to the Modeling from the

Command-Line section below.

When you start LINGO for Windows, your screen should resemble the following:

The outer window, labeled LINGO, is the main frame window. All other windows will be contained

within this window. The top of the frame window also contains all the command menus and the

command toolbar. See Chapter 5, Windows Commands, for details on the toolbar and menu

commands. The lower edge of the main frame window contains a status bar that provides various

pieces of information regarding LINGO's current state. Both the toolbar and the status bar can be

suppressed through the use of the LINGO|Options command.

The smaller child window labeled LINGO Model LINGO1 is a new, blank model window. In the

next section, we will be entering a sample model directly into this window.

4 CHAPTER 1

Developing a LINGO Model in Windows

The Problem
For our sample model, we will create a small product-mix example. Let’s imagine that the

CompuQuick Corporation produces two models of computers—Standard and Turbo. CompuQuick can

sell every Standard unit it produces for a profit contribution of $100, and each Turbo unit for a

contribution of $150. At the CompuQuick factory, the Standard computer production line can produce,

at most, 100 computers per day. At the same time, the Turbo computer production line can turn out

120 computers per day. Furthermore, CompuQuick has a limited supply of daily labor. In particular,

there is a total of 160 hours of labor available each day. Standard computers require 1 hour of labor,

while Turbo computers are relatively more labor intense requiring 2 hours of labor. The problem for

CompuQuick is to determine the mix of Standard and Turbo computers to produce each day to

maximize total profit without exceeding line and labor capacity limits.

In general, an optimization model will consist of the following three items:

 Objective Function - The objective function is a formula that expresses exactly

what it is you want to optimize. In business oriented models, this will usually be

a profit function you wish to maximize, or a cost function you want to minimize.

Models may have, at most, one objective function. In the case of our

CompuQuick example, the objective function will compute the company’s profit

as a function of the output of Standards and Turbos.

 Variables - Variables are the quantities you have under your control. You must

decide what the best values of the variables are. For this reason, variables are

sometimes also called decision variables. The goal of optimization is to find the

values of a model’s variables that generate the best value for the objective

function, subject to any limiting conditions placed on the variables. We will

have two variables in our exampleone corresponding to the number of

Standards to produce and the other corresponding to the number of Turbos to

produce.

 Constraints - Almost without exception, there will be some limit on the values

the variables in a model can assume—at least one resource will be limited (e.g.,

time, raw materials, your department’s budget, etc.). These limits are expressed

in terms of formulas that are a function of the model’s variables. These formulas

are referred to as constraints because they constrain the values the variables can

take. In our CompuQuick example, we will have one constraint for each

production line and one constraint on the total labor used.

GETTING STARTED 5

Entering the Model
We will now construct the objective function for our example. We will let the variables STANDARD

and TURBO denote the number of Standard and Turbo computers to produce, respectively.

CompuQuick’s objective is to maximize total profit. Total profit is calculated as the sum of the profit

contribution of the Standard computer ($100) multiplied by the total Standard computers produced

(STANDARD) and the profit contribution of the Turbo computer ($150) multiplied by the total Turbo

computers produced (TURBO). Finally, we tell LINGO we want to maximize an objective function by

preceding it with “MAX =”. Therefore, our objective function is written on the first line of our model

window as:

MAX = 100 * STANDARD + 150 * TURBO;

Note: Each mathematical expression in LINGO is terminated with a semicolon. These semicolons

are required. Your model will not solve without them. For more information on the syntax of

LINGO, see below.

Next, we must input our constraints on line capacity and labor supply. The number of Standard and

Turbo computers produced must be constrained to the production line limits of 100 and 120,

respectively. Do this by entering the following two constraints just below the objective function:

STANDARD <= 100;

TURBO <= 120;

In words, the first constraint says the number of Standard computers produced daily (STANDARD)

must be less-than-or-equal-to (<=) the production line capacity of 100. Likewise, the second constraint

says the number of Turbo computers produced daily (TURBO) must be less-than-or-equal-to (<=) its

line capacity of 120.

Note: Since most computers do not have less-than-or-equal-to keys (), LINGO has adopted the

convention of using the two character symbol <= to denote . As an alternative, you may

simply enter < to signify less-than-or-equal-to. In a similar manner, >= or > are used to

signify greater-than-or-equal-to ().

The final constraint on the amount of labor used can be expressed as:

STANDARD + 2 * TURBO <= 160;

Specifically, the total number of labor hours used (STANDARD + 2 * TURBO) must be

less-than-or-equal-to (<=) the amount of labor hours available of 160.

6 CHAPTER 1

After entering the above and entering comments to improve the readability of the model, your model

window should look like this:

General LINGO Syntax
An expression may be broken up into as many lines as you want, but the expression must be

terminated with a semicolon. As an example, we could have used two lines rather than just one to

contain the objective function:

MAX = 100 * STANDARD

 + 150 * TURBO;

We have also entered some comments to improve the readability of our model. Comments begin with

an exclamation point (!) and end with a semicolon (;). All text between an exclamation point and

terminating semicolon is ignored by LINGO. Comments can occupy more than one line and can share

lines with other LINGO expressions. For example:

X = 1.5 * Y + Z / 2 * Y; !This is a comment;

X = 1.5 * !This is a comment in the middle

 of a constraint; Y + Z / 2 * Y;

You may have noticed we used all uppercase letters for our variable names. This is not a requirement.

LINGO does not distinguish between uppercase and lowercase in variable names. Thus, the following

variable names would all be considered equivalent:

TURBO

Turbo

turbo

When constructing variable names in LINGO, all names must begin with an alphabetic character

(A-Z). Subsequent characters may be either alphabetic, numeric (0-9), or the underscore (_). Names

may be up to 64 characters in length.

A final feature you will notice is that LINGO’s editor is “syntax aware.” In other words, when it

encounters LINGO keywords it displays them in blue, comments are displayed in green, and all

remaining text is displayed in black. Matching parentheses are also highlighted in red when you

GETTING STARTED 7

place the cursor immediately following a parenthesis. You should find this feature useful in tracking

down syntax errors in your models.

Solving the Model

Syntax Errors
Your model has now been entered and it is ready to be solved. To begin solving the model, select the

Solve command from the LINGO menu, or press the Solve button () on the toolbar at the top of the

main frame window. LINGO will begin compiling the model. During this step, LINGO will determine

whether the model conforms to all syntax requirements. If the LINGO model doesn’t pass these tests,

you will be informed by an error message. In this model, for instance, if you forget to use the

multiplication sign, you will get an error like the following:

LINGO lets you know there is a syntax error in your model, lists the line of the model it is in, and

points to the place in the line where it occurred. For more information on error codes, see Appendix B,

Error Messages.

Solver Status Window
If there are no formulation errors during the compilation phase, LINGO will invoke the appropriate

internal solver to begin searching for the optimal solution to your model. When the solver starts, it

displays a solver status window on your screen resembling the following:

8 CHAPTER 1

The solver status window is useful for monitoring the progress of the solver and the dimensions of

your model. The various fields are described in more detail below.

The solver status window also provides you with an Interrupt Solver button. Interrupting the solver

causes LINGO to halt the solver on the next iteration. In most cases, LINGO will be able to restore and

report the best solution found so far. The one exception is in the case of linear programming models

(i.e., linear models without integer variables). If a linear programming model is interrupted, the

solution returned will be meaningless and should be ignored. This should not be a problem because

linear programs generally solve quickly, thus minimizing the need to interrupt.

Note: You must be careful how you interpret solutions after interrupting the solver. These solutions

1) will definitely not be optimal, 2) may not be feasible to all the constraints, and 3) are

worthless if the model is a linear program.

Next to the Interrupt Solver button is another button labeled Close. Hitting the Close button will close

the solver status window. This window can be reopened at any time by selecting the Window|Status

Window command.

GETTING STARTED 9

At the bottom of the solver status window, you will find a field titled: Update Interval. LINGO will

update the solver status window every n seconds, where n is the value contained in the Update Interval

field. You may set this interval to any value you desire. However, setting it to 0 will result in longer

solution times—LINGO will spend more time updating the solver status window than solving your

model. On larger models, LINGO may not always be able to update the solver status window on a

regular interval. So, don't be concerned if you sometimes must wait longer than the indicated interval.

Variables Box
The Variables box shows the total number of variables in the model. The Variables box also displays

the number of the total variables that are nonlinear. A variable is considered to be nonlinear if it enters

into any nonlinear relationship in any constraint in the model. For instance, the constraint:

X + Y = 100;

would be considered linear because the graph of this function would be a straight line. On the other

hand, the nonlinear function:

X * Y = 100;

is quadratic and has a curved line as its graph. If we were to solve a model containing this particular

nonlinear constraint, the nonlinear variable count would be at least 2 to represent the fact that the two

variables X and Y appear nonlinearly in this constraint.

As another example, consider the constraint:

X * X + Y = 100;

In this case, X appears nonlinearly while Y appears as a linear variable. This constraint would not cause

Y to be counted as one of the nonlinear variables. See On Mathematical Modeling for more

information on the difference between linear and nonlinear equations.

The Variables box in the solver status window also gives you a count of the total number of integer

variables in the model. In general, the more nonlinear and integer variables your model has, the more

difficult it will be to solve to optimality in a reasonable amount of time. Pure linear models without

integer variables will tend to solve the fastest. For more details on the use of integer variables, refer to

Using Variable Domain Functions.

The variable counts do not include any variables LINGO determines are fixed in value. For instance,

consider the following constraints:

X = 1;

X + Y = 3;

From the first constraint, LINGO determines X is fixed at the value of 1. Using this information in

constraint 2, LINGO determines Y is fixed at a value of 2. X and Y will then be substituted out of the

model and they will not contribute to the total variable count.

10 CHAPTER 1

Constraints Box
The Constraints box shows the total constraints in the expanded model and the number of these

constraints that are nonlinear. A constraint is considered nonlinear if one or more variables appear

nonlinearly in the constraint.

LINGO searches your model for fixed constraints. A constraint is considered fixed if all the variables

in the constraint are fixed. Fixed constraints are substituted out of the model and do not add to the total

constraint count.

Nonzeroes Box
The Nonzeros box shows the total nonzero coefficients in the model and the number of these that

appear on nonlinear variables. In a given constraint, only a small subset of the total variables typically

appears. The implied coefficient on all the non-appearing variables is zero, while the coefficients on

the variables that do appear will be nonzero. Thus, you can view the total nonzero coefficient count as

a tally of the total number of times variables appear in all the constraints. The nonlinear nonzero

coefficient count can be viewed as the number of times variables appear nonlinearly in all the

constraints.

Generator Memory Used Box
The Generator Memory Used box lists the amount of memory LINGO’s model generator is currently

using from its memory allotment. You may change the size of the generator’s memory allotment using

the LINGO|Options command.

Elapsed Runtime Box
The Elapsed Runtime box shows the total time used so far to generate and solve the model. This is an

elapsed time figure and may be affected by the number of other applications running on your system.

GETTING STARTED 11

Solver Status Box
The Solver Status box shows the current status of the solver. A description of the fields appear in the

table below followed by a more in depth explanation:

Field Description

Model

Class

Displays the model’s

classification. Possible classes

are "LP", "QP", "CONE",

"NLP", "MILP", "MIQP",

"MICONE", "MINLP"

"PILP", "PIQP", "PICONE", and

"PINLP".

State Gives the Status of the current

solution. Possible states are

"Global Optimum", "Local

Optimum", "Feasible",

"Infeasible", "Unbounded",

"Interrupted", and

"Undetermined".

Objective Current value of the objective

function.

Infeasibility Amount constraints are violated

by.

Iterations Number of solver iterations.

Model Class Field
The Model Class field summarizes the properties of your model. The various classes you will

encounter are listed below:

Abbreviation Class Description

LP Linear Program All expressions are linear and

the model contains no integer

restrictions on the variables.

QP Quadratic Program All expressions are linear or

quadratic, and there are no integer

restrictions.

CONE Conic Program The model is a conic (second-

order cone) program and all

variables are continuous.

NLP Nonlinear Program At least one of the relationships

in the model is nonlinear with

respect to the variables.

12 CHAPTER 1

MILP Mixed Integer Linear Program All expressions are linear, and a

subset of the variables is

restricted to integer values.

MIQP Mixed Integer Quadratic

Program

All expressions are either linear

or quadratic, and a subset of the

variables has integer

restrictions.

MICONE Mixed Integer Conic Program The model is a conic (second-

order cone) program, and a

subset of the variables is

restricted to integer values.

MINLP Integer Nonlinear Program At least one of the expressions

in the model is nonlinear, and a

subset of the variables has

integer restrictions. In general,

this class of model will be very

difficult to solve for all but the

smallest cases.

PILP Pure Integer Linear Program All expressions are linear, and

all variables are restricted to

integer values.

PIQP Pure Integer Quadratic

Program

All expressions are linear or

quadratic, and all variables are

restricted to integer values.

PICONE Pure Integer Conic (Second-

Order Cone) Program

The model is a conic (second-

order cone) program, and all the

variables are restricted to

integer values.

PINLP Pure Integer Nonlinear

Program

At least one of the expressions

in the model is nonlinear, and

all variables have integer

restrictions. In general, this

class of model will be very

difficult to solve for all but the

smallest cases.

Note: Certain model classes may not be available on your installation of LINGO: nonlinear models

require the nonlinear option, quadratic models require the barrier option and conic models

require the barrier, global and conic options.

GETTING STARTED 13

State Field
When LINGO begins solving your model, the initial state of the current solution will be

"Undetermined". This is because the solver has not yet had a chance to generate a solution to your

model.

Once the solver begins iterating, the state will progress to "Infeasible". In the infeasible state, LINGO

has generated tentative solutions, but none that satisfy all the constraints in the model.

Assuming a feasible solution exists, the solver will then progress to the "Feasible" state. In the feasible

state, LINGO has found a solution that satisfies all the constraints in your model, but the solver is not

yet satisfied it has found the best solution to your model.

Once the solver can no longer find better solutions to your model, it will terminate in either the

"Global Optimum" or "Local Optimum" state. If your model does not have any nonlinear constraints,

then any locally optimal solution will also be a global optimum. Thus, all optimized linear models will

terminate in the global optimum state. If, on the other hand, your model has one or more nonlinear

constraints, then any locally optimal solution may not be the best solution to your model. There may

be another "peak" that is better than the current one, but the solver's local search procedure is unable to

"see" the better peak. Thus, on nonlinear models, LINGO can terminate only in the local optimum

state. LINGO may, in fact, have a globally optimal solution, but, given the nature of nonlinear

problems, LINGO is unable to claim it as such. Given this fact, it is always preferred to formulate a

model using only linear constraints whenever possible. For more details on the concept of global vs.

local optimal points, refer to On Mathematical Modeling.

Note: LINGO’s optional global solver may be used to find globally optimal solutions to nonlinear

models. For more information on the global solver, refer to the Nonlinear Solver Tab help

topic.

Note: If a model terminates in the "Unbounded" state, it means LINGO can improve the objective

function without bound. In real life, this would correspond to a situation where you can

generate infinite profits. Because such a situation is rare, if not impossible, you have most

likely omitted or misspecified some constraints in your model.

Finally, the "Interrupted" state will occur when you prematurely interrupt LINGO's solver before it has

found the final solution to your model. The mechanics of interrupting the solver are discussed in more

detail above.

Objective Field
The Objective field gives the objective value for the current solution. If your model does not have an

objective function, then "N/A" will appear in this field.

14 CHAPTER 1

Infeasibility Field
The Infeasibility field lists the amount that all the constraints in the model are violated by. Keep in

mind that this figure does not track the amount of any violations on variable bounds. Thus, it is

possible for the Infeasibility field to be zero while the current solution is infeasible due to violated

variable bounds. The LINGO solver may also internally scale a model such that the units of the

Infeasibility field no longer correspond to the unscaled version of the model. To determine whether

LINGO has found a feasible solution, you should refer to the State field discussed above.

Iterations Field
The Iterations field displays a count of the number of iterations completed thus far by LINGO's solver.

The fundamental operation performed by LINGO's solver is called an iteration. An iteration involves

finding a variable, currently at a zero value, which would be attractive to introduce into the solution at

a nonzero value. This variable is then introduced into the solution at successively larger values until

either a constraint is about to be driven infeasible or another variable is driven to zero. At this point,

the iteration process begins anew. In general, as a model becomes larger, it will require more iterations

to solve and each iteration will require more time to complete.

Extended Solver Status Box
The Extended Solver Status box shows status information pertaining to several of the specialized

solvers in LINGO. These solvers are:

 BNP Solver

 Branch-and-Bound Solver

 Global Solver, and

 Multistart Solver.

The fields in this box will be updated only when one of these three specialized solvers is running. The

fields appearing in the Extended Solver Status box are:

Field Description

Solver Type The type of specialized solver in use, and will be either "B-

and-B", "Global", "Multistart", or "BNP".

Best Obj The objective value of the best solution found so far.

Obj Bound The theoretical bound on the objective.

Steps The number of steps taken by the extended solver.

Active The number of active subproblems remaining to be

analyzed.

GETTING STARTED 15

Solver Type Field
This field displays either "BNP", "B-and-B", "Global", or "Multistart", depending on the specialized

solver in use.

LINGO employs a strategy called branch-and-bound to solve models with integer restrictions. Branch-

and-bound is a systematic method for implicitly enumerating all possible combinations of the integer

variables. Refer to Hillier and Lieberman (1995) for more information on the branch-and-bound

algorithm.

In addition to the branch-and-bound solver, there are three other specialized solvers that may be

invoked, which are: the global solver, the multistart solver, and the BNP Solver.

Many nonlinear models are non-convex and/or non-smooth. For more information see the Chapter 15,

On Mathematical Modeling. Nonlinear solvers that rely on local search procedures (as does LINGO’s

default nonlinear solver) will tend to do poorly on these types of models. Typically, they will converge

to a local, sub-optimal point that may be quite distant from the true, globally optimal point. The

multistart solver and the global solver are specialized solvers that attempt to find the globally optimal

solution to non-convex models. You can read more about these solvers in the Nonlinear Solver Tab

section in Chapter 5.

The BNP solver is a mixed integer programming solver for solving linear models with block structure.

Based on the decomposition structure, the solver divides the original problem into several subproblems

and solves them (almost) independently, exploiting parallel processing if multiple cores are available.

You can read more about the BNP solver in the BNP Solver section in Chapter 5.

Best Obj and Obj Bound Fields
The Best Obj field displays the best feasible objective value found so far. Obj Bound displays the

bound on the objective. This bound is a limit on how far the solver will be able to improve the

objective. At some point, these two values may become very close. Given that the best objective value

can never exceed the bound, the fact that these two values are close indicates that LINGO's current

best solution is either the optimal solution, or very close to it. At such a point, the user may choose to

interrupt the solver and go with the current best solution in the interest of saving on additional

computation time.

16 CHAPTER 1

Steps Field
The information displayed in the Steps field depends on the particular solver that is running. The table

below explains:

Solver Steps Field Interpretation

BNP Number of branches in the branch-and-bound tree.

Branch-and-

Bound

Number of branches in the branch-and-bound tree.

Global Number of subproblem boxes generated.

Multistart Number of solver restarts.

Active Field
This field pertains to the BNP, branch–and–bound and global solvers. It lists the number of open

subproblems remaining to be evaluated. The solver must run until this valve goes to zero.

The Solution Report
When LINGO is done solving the CompuQuick model, there will be a new window created on your

screen titled Solution Report containing the details of the solution to your model. The solution report

should appear as follows:

GETTING STARTED 17

This solution tells us CompuQuick should build 100 Standards and 30 Turbos each day for a total daily

profit of $14,500. Refer to the Examining the Solution section below for additional details on the

various fields in this report.

18 CHAPTER 1

Printing Your Work in Windows
In Windows versions of LINGO, use the Print command in the File menu to print the active

(frontmost) window, or click on the Print button (). You may print any window, including model

and report windows. If you wish to print just a portion of a window, use the Cut and Paste commands

in the Edit menu to put the desired text in a new window before printing. You can also access the Cut

command by clicking on the Cut button (). Likewise, the Paste command can be accessed through

the Paste button (). To create a new window, use the File|New command, or click the New button

().

Saving Your Work in Windows
To save your model to a disk file, use the File|Save command or press the Save button () in the

toolbar. Unless you specify otherwise, LINGO will automatically append a .LG4 extension to your file

name.

Opening a Sample Model
LINGO is shipped with a directory containing many sample models. These models are drawn from a

wide array of application areas. For a complete listing of these models, see Additional Examples of

LINGO Modeling. The sample model directory is titled Samples and is stored directly off the main

LINGO directory.

../../../../../Lindo_Systems/STUMU/Manuals/LINGO/Lingo_10_Manual/LINGO10%20HELP%20CHM/lingo4/a_additional_examples_of_lingo_modeling.htm

GETTING STARTED 19

To open a sample model in LINGO, follow these steps:

1. Pull down the File menu and select the Open command. You should see the following dialog

box:

2. Double-click on the folder titled Samples, at which point you should see:

20 CHAPTER 1

3. To read in a small transportation model, type Tran in the File Name field in the above dialog

box and press the Open button. You should now have the model in an open window in

LINGO as follows:

For details on developing a transportation model in LINGO see The Problem in Words in Getting

Started with LINGO.

GETTING STARTED 21

You may now solve the model using the LINGO|Solve command or by pressing the button on the

toolbar. The optimal objective value for this model is 161. When solved, you should see the following

solver status window:

Note the objective field has a value of 161 as expected. For an interpretation of the other fields in this

window, see Solver Status Window in Getting Started with LINGO.

22 CHAPTER 1

Behind the solver status window, you will find the solution report for the model. This report contains

summary information about the model as well as values for all the variables. This report’s header is

reproduced below:

For information on interpreting the fields in the solution report, see Sample Solution Report in Getting

Started with LINGO.

Modeling from the Command-Line

Starting LINGO
If you are running LINGO on a platform other than a Windows based PC, then you will interface with

LINGO through the means of a command-line prompt. All instructions are issued to LINGO in the

form of text command strings.

GETTING STARTED 23

When you start a command-line version of LINGO, you will see a colon command prompt as follows:

LINGO

Copyright (C) LINDO Systems Inc. Licensed material, all

rights reserved. Copying except as authorized in license

agreement is prohibited.

:

The colon character (:) at the bottom of the screen is LINGO’s prompt for input. When you see the

colon prompt, LINGO is expecting a command. When you see the question mark prompt, you have

already initiated a command and LINGO is asking you to supply additional information related to this

command such as a number or a name. If you wish to “back out” of a command you have already

started, you may enter a blank line in response to the question mark prompt and LINGO will return

you to the command level colon prompt. All available commands are listed in Chapter 6,

Command-line Commands.

Entering the Model
When you enter a model in the command-line interface, you must first specify to LINGO that you are

ready to begin entering the LINGO statements. This is done by entering the MODEL: command at the

colon prompt. LINGO will then give you a question mark prompt and you begin entering the model

line by line.

As an example, we will use the CompuQuick model discussed in the previous section. After entering

the CompuQuick model, your screen should resemble the following (Note that user input is in bold.):

LINGO

: MODEL:

? MAX = 100 * STANDARD + 150 * TURBO;

? STANDARD <= 100;

? TURBO <= 120;

? STANDARD + 2 * TURBO <= 160;

? END

:

The END command tells LINGO you are finished inputting the model. Once you enter the END

command and return to the colon prompt, the model is in memory and ready to be solved.

Solving the Model
To begin solving the model, type the GO command at the colon prompt and press the enter key.

LINGO will begin compiling the model. This means LINGO will determine whether the model

conforms to all syntax requirements. If the LINGO model doesn’t pass these tests, you will be

informed by an error message. For more information on error codes, see Appendix B, Error Messages.

If there are no formulation errors during the compilation phase, LINGO will invoke the appropriate

internal solver to begin searching for the optimal solution to your model. When LINGO is done

solving the CompuQuick model, it will send the following solution report to your screen:

24 CHAPTER 1

 : GO
 Global optimal solution found.

 Objective value: 14500.00

 Infeasibilities: 0.000000

 Total solver iterations: 0

 Model Class: LP

 Total variables: 2

 Nonlinear variables: 0

 Integer variables: 0

 Total constraints: 4

 Nonlinear constraints: 0

 Total nonzeros: 6

 Nonlinear nonzeros: 0

 Variable Value Reduced Cost

 STANDARD 100.0000 0.000000

 TURBO 30.00000 0.000000

 Row Slack or Surplus Dual Price

 1 14500.00 1.000000

 2 0.000000 25.00000

 3 90.00000 0.000000

 4 0.000000 75.00000

This solution tells us that CompuQuick should build 100 Standards and 30 Turbos each day to give

them a total daily profit of $14,500. Refer to the Examining the Solution section below for additional

details on the various fields in this report.

Printing and Saving Your Work
For command-line (non-Windows) versions of LINGO, the DIVERT file command may be used to

send all LINGO reports to a file rather than to the screen. You may then route this file to a printer or

load it into a word processing program for printing.

For example, to create a text file for printing that contains a copy of your model and solution, issue the

commands:

DIVERT MYFILE !Opens an output file called MYFILE;

LOOK ALL !Sends formulation to the file;

GO !Sends solution to the file;

RVRT !Closes down output file;

GETTING STARTED 25

To save your model to disk, issue the SAVE command followed by the name of a file to store your

model under. For example, the command:

SAVE MYFILE.LNG

saves a copy of the current model to the file titled MYFILE.LNG. The model may be retrieved for use

later with the TAKE command.

Please refer to Chapter 6, Command-line Commands, for more detailed information on these and other

commands.

Running LINGO on a Macintosh Computer
At present, LINDO Systems does not offer a native Macintosh version of LINGO. However, you

should have no problems running LINGO on a Mac through the use of a Windows emulator. One

simple and inexpensive emulator that works well with LINGO is Crossover for Codeweavers. A copy

of Crossover can be obtained at the following link: http://www.codeweavers.com/products/crossover/

Examining the Solution
First, the solution report us that LINGO took 0 iterations to solve the model (the preprocessor was able

to deduce the optimal solution without having to iterate). Second, the maximum profit attainable is

$14,500. Third, the quantities of each computer to produce, STANDARD and TURBO, are 100 and 30,

respectively. What’s interesting to note is we make less of the relatively more “profitable” Turbo

computer due to its more intensive use of our limited supply of labor. The Reduced Costs, Slack or

Surplus, and Dual Price columns are explained in other sections.

Reduced Cost
In a LINGO solution report, you’ll find a reduced cost figure for each variable. There are two valid,

equivalent interpretations of a reduced cost.

First, you may interpret a variable’s reduced cost as the amount that the objective coefficient of the

variable would have to improve before it would become profitable to give the variable in question a

positive value in the optimal solution. For example, if a variable had a reduced cost of 10, the objective

coefficient of that variable would have to increase by 10 units in a maximization problem and/or

decrease by 10 units in a minimization problem for the variable to become an attractive alternative to

enter into the solution. A variable in the optimal solution, as in the case of STANDARD or TURBO,

automatically has a reduced cost of zero.

Second, the reduced cost of a variable may be interpreted as the amount of penalty you would have to

pay to introduce one unit of that variable into the solution. Again, if you have a variable with a reduced

cost of 10, you would have to pay a penalty of 10 units to introduce the variable into the solution. In

other words, the objective value would fall by 10 units in a maximization model or increase by 10

units in a minimization model.

Reduced costs are valid only over a range of values for the variable in questions. For more information

on determining the valid range of a reduced cost, see the LINGO|Range command in Chapter 5,

Windows Commands.

26 CHAPTER 1

Slack or Surplus
The Slack or Surplus column in a LINGO solution report tells you how close you are to satisfying a

constraint as an equality. This quantity, on less-than-or-equal-to () constraints, is generally referred to

as slack. On greater-than-or-equal-to () constraints, this quantity is called a surplus.

If a constraint is exactly satisfied as an equality, the slack or surplus value will be zero. If a constraint

is violated, as in an infeasible solution, the slack or surplus value will be negative. Knowing this can

help you find the violated constraints in an infeasible model—a model for which there doesn't exist a

set of variable values that simultaneously satisfies all constraints. Nonbinding constraints, will have

positive, nonzero values in this column.

In our CompuQuick example, note that row 3 (TURBO <= 120) has a slack of 90. Because the optimal

value of TURBO is 30, this row is 90 units from being satisfied as an equality.

Dual Price
The LINGO solution report also gives a dual price figure for each constraint. You can interpret the

dual price as the amount that the objective would improve as the right-hand side, or constant term, of

the constraint is increased by one unit. For example, in the CompuQuick solution, the dual price of 75

on row 4 means adding one more unit of labor would cause the objective to improve by 75, to a value

of 14,575.

Notice that “improve” is a relative term. In a maximization problem, improve means the objective

value would increase. However, in a minimization problem, the objective value would decrease if you

were to increase the right-hand side of a constraint with a positive dual price.

Dual prices are sometimes called shadow prices, because they tell you how much you should be

willing to pay for additional units of a resource. Based on our analysis, CompuQuick should be willing

to pay up to 75 dollars for each additional unit of labor.

As with reduced costs, dual prices are valid only over a range of values. Refer to the LINGO|Range

command in Chapter 5, Windows Commands, for more information on determining the valid range of a

dual price.

Using the Modeling Language
One of LINGO’s most powerful features is its mathematical modeling language. LINGO’s modeling

language lets you express your problem in a natural manner that is very similar to standard

mathematical notation. Rather than entering each term of each constraint explicitly, you can express a

whole series of similar constraints in a single compact statement. This leads to models that are much

easier to maintain and scale up.

Another convenient feature of LINGO’s modeling language is the data section. The data section

allows you to isolate your model’s data from the formulation. In fact, LINGO can even read data from

a separate spreadsheet, database, or text file. With data independent of the model, it’s much easier to

make changes, and there’s less chance of error when you do.

GETTING STARTED 27

The simple CompuQuick model discussed above uses scalar variables. Each variable is explicitly listed

by name (e.g., STANDARD and TURBO) and each constraint is explicitly stated

(e.g., TURBO <=120). In larger models, you’ll encounter the need to work with a group of several

very similar constraints and variables. Using the scalar modeling approach we have illustrated to this

point, you would need to undertake the repetitive task of typing in each term of each constraint.

Fortunately, LINGO’s ability to handle sets of objects allows you to perform such operations much

more efficiently.

The section below is an example of how to use sets to solve a shipping problem. After reviewing this

example, it should become clear that coupling the power of sets with LINGO’s modeling language

allows you to build large models in a fraction of the time required in a scalar oriented approach to

modeling (See Chapter 2, Using Sets, for a detailed description of sets).

Developing a Set-Based Transportation Model

The Problem
For our example, suppose that the Wireless Widget (WW) Company has six warehouses supplying

eight vendors with their widgets. Each warehouse has a supply of widgets that cannot be exceeded, and

each vendor has a demand for widgets that must be satisfied. WW wants to determine how many

widgets to ship from each warehouse to each vendor so as to minimize the total shipping cost. This is a

classic optimization problem referred to as the transportation problem.

The following diagram illustrates the problem:

Wireless Widget’s Shipping Network

Since each warehouse can ship to each vendor, there are a total of 48 possible shipping paths, or arcs.

We will need a variable for each arc to represent the amount shipped on the arc.

28 CHAPTER 1

The following data is available:

Warehouse Widgets On Hand

1 60

2 55

3 51

4 43

5 41

6 52

Widget Capacity Data

Vendor Widget Demand

1 35

2 37

3 22

4 32

5 41

6 32

7 43

8 38

Vendor Widget Demand

 V1 V2 V3 V4 V5 V6 V7 V8

Wh1 6 2 6 7 4 2 5 9

Wh2 4 9 5 3 8 5 8 2

Wh3 5 2 1 9 7 4 3 3

Wh4 7 6 7 3 9 2 7 1

Wh5 2 3 9 5 7 2 6 5

Wh6 5 5 2 2 8 1 4 3

Shipping Cost per Widget ($)

The Objective Function
Our first pass at formulating the model will be to construct the objective function. As mentioned, WW

wants to minimize total shipping costs. We will let the VOLUME_I_J variable denote the number of

widgets shipped from warehouse I to vendor J. Then, if we were to explicitly write out our objective

function using scalar variables, we would have:

 MIN = 6 * VOLUME_1_1 + 2 * VOLUME_1_2 +

 6 * VOLUME_1_3 + 7 * VOLUME_1_4 +

 4 * VOLUME_1_5 +

 .

 .

 .

 8 * VOLUME_6_5 + VOLUME_6_6 + 4 * VOLUME_6_7 +

 3 * VOLUME_6_8;

GETTING STARTED 29

For brevity, we included only 9 of the 48 terms in the objective. As one can see, entering such a

lengthy formula would be tedious and prone to errors. Extrapolate to the more realistic case where

vendors could number in the thousands, and it becomes apparent that scalar based modeling is

problematic at best.

If you are familiar with mathematical notation, you could express this long equation in a much more

compact manner as follows:

Minimize
ij
COST

ij
 VOLUME

ij

In a similar manner, LINGO’s modeling language allows you to express the objective function in a

form that is short, easy to type, and easy to understand. The equivalent LINGO statement is:

MIN = @SUM(LINKS(I,J): COST(I,J) * VOLUME(I,J));

In words, this says to minimize the sum of the shipping COST per widget times the VOLUME of

widgets shipped for all LINKS between the warehouses and vendors. The following table compares the

mathematical notation to the LINGO syntax for our objective function:

Math Notation LINGO Syntax

Minimize MIN =

ij @SUM(LINKS(I, J):

COSTij COST(I, J)

 *

VOLUMEij VOLUME(I,J));

The Constraints
With the objective function in place, the next step is to formulate the constraints. There are two sets of

constraints in this model. The first set guarantees that each vendor receives the number of widgets

required. We will refer to this first set of constraints as being the demand constraints. The second set of

constraints, called the capacity constraints, ensures no warehouse ships out more widgets than it has on

hand.

Starting with the demand constraint for Vendor 1, we need to sum up the shipments from all the

warehouses to Vendor 1 and set them equal to Vendor 1’s demand of 35 widgets. Thus, if we were

using scalar-based notation, we would need to construct the following:

VOLUME_1_1 + VOLUME_2_1 + VOLUME_3_1 +

VOLUME_4_1 + VOLUME_5_1 + VOLUME_6_1 = 35;

You would then need to type seven additional demand constraints, in a similar form, to cover all eight

vendors. Again, as one can see, this would be a tedious and error prone process. However, as with our

objective function, we can use LINGO’s set-based modeling language to simplify our task.

Using mathematical notation, all eight demand constraints can be expressed in the single statement:

i
VOLUME

ij
 = DEMAND

j
, for all j in VENDORS

30 CHAPTER 1

The corresponding LINGO modeling statement appears as follows:

@FOR(VENDORS(J):

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

This LINGO statement replaces all eight demand constraints. In words, this says for all VENDORS, the

sum of the VOLUME shipped from each of the WAREHOUSES to that vendor must equal the

corresponding DEMAND of the vendor. Notice how closely this statement resembles the mathematical

notation above as the following table shows:

Math Notation LINGO Syntax

For all j in VENDORS @FOR(VENDORS(J):

i @SUM(WAREHOUSES(I):

VOLUMEij VOLUME(I, J))

= =

DEMANDj DEMAND(J));

Now, we will move on to constructing the capacity constraints. In standard mathematical notation, the

six capacity constraints would be expressed as:

j
VOLUME

ij
 <= CAP

i
, for all i in WAREHOUSES

The equivalent LINGO statement for all capacity constraints would be:

@FOR(WAREHOUSES(I):

 @SUM(VENDORS(J): VOLUME(I, J))<=

 CAPACITY(I));

In words, this says, for each member of the set WAREHOUSES, the sum of the VOLUME shipped to

each of the VENDORS from that warehouse must be less-than-or-equal-to the CAPACITY of the

warehouse.

Putting together everything we’ve done so far yields the following complete LINGO model:

MODEL:

 MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

 @FOR(WAREHOUSES(I):

 @SUM(VENDORS(J): VOLUME(I, J)) <=

 CAPACITY(I));

END

Model: WIDGETS

However, we still need to define sets of objects used in the model (vendors, warehouses and shipping

arcs) as well as the data. We will do this in two additional model sections called the sets section and

the data section.

GETTING STARTED 31

Defining the Sets
Whenever you are modeling some situation in real life, you will typically find there are one or more

sets of related objects. Examples would be such things as factories, customers, vehicles, and

employees. Usually, if a constraint applies to one member of a set, then it will apply equally to each

other member of the set. This simple concept is at the core of the LINGO modeling language. LINGO

allows you to define the sets of related objects in the sets section. The sets section begins with the

keyword SETS: on a line by itself and ends with ENDSETS on a line by itself. Once your set members

are defined, LINGO has a group of set looping functions (e.g., @FOR), which apply operations to all

members of a set using a single statement. See Chapter 2, Using Sets for more information.

In the case of our Wireless Widget model, we have constructed the following three sets:

 warehouses,

 vendors, and

 shipping arcs from each warehouse to customer.

The three sets are defined in the model's sets section as follows:

SETS:

 WAREHOUSES: CAPACITY;

 VENDORS: DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

The second line says that the set WAREHOUSES has an attribute called CAPACITY. The following

line declares the vendor set and that it has an attribute called DEMAND.

The final set, titled LINKS, represents the links in the shipping network. Each link has a COST and a

VOLUME attribute associated with it. The syntax used to define this set differs from the previous two.

By specifying:

LINKS(WAREHOUSES, VENDORS)

we are telling LINGO that the LINKS set is derived from the WAREHOUSES and VENDORS sets. In

this case, LINGO generates each ordered (warehouse, vendor) pair. Each of these 48 ordered pairs

becomes a member in the LINKS set. To help clarify this, we list selected members from the LINKS set

in the following table.

Member Index Shipping Arc

1 WH1V1

2 WH1V2

3 WH1V3

… …

47 WH6V7

48 WH6V8

A nice feature of LINGO is that it will automatically generate the members of the LINKS set-based on

the members of the WAREHOUSES and VENDORS sets, thereby saving us considerable work.

32 CHAPTER 1

Inputting the Data
LINGO allows the user to isolate data within the data section of the model. In our Wireless Widget

example, we have the following data section:

DATA:

 !set members;

 WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WH6;

 VENDORS = V1 V2 V3 V4 V5 V6 V7 V8;

 !attribute values;

 CAPACITY = 60 55 51 43 41 52;

 DEMAND = 35 37 22 32 41 32 43 38;

 COST = 6 2 6 7 4 2 5 9

 4 9 5 3 8 5 8 2

 5 2 1 9 7 4 3 3

 7 6 7 3 9 2 7 1

 2 3 9 5 7 2 6 5

 5 5 2 2 8 1 4 3;

ENDDATA

The data section begins with the keyword DATA: on a line by itself and ends with ENDDATA on a line

by itself.

Next, we input the list of warehouses and vendors. Had we preferred, we could have also used the

following shorthand notation to the same end:

!set members;

 WAREHOUSES = WH1..WH6;

 VENDORS = V1..V8;

LINGO interprets the double-dots to mean that it should internally generate the six warehouses and

eight vendors.

Both the CAPACITY attribute of the set WAREHOUSES and DEMAND attribute of the set VENDORS

are initialized in a straightforward manner. The COST attribute of the two-dimensional set LINKS is a

little bit trickier, however. When LINGO is initializing a multidimensional array in a data section, it

increments the outer index the fastest. Thus, in this particular example, COST(WH1, V1) is initialized

first, followed by COST(WH1, V2) through COST (WH1, V8). Then, the next one to be initialized with

be COST(WH2, V1), and so on.

In this particular example, we have isolated all the model’s data within a single data section. Given

that the data is the most likely feature to change from one run of a model to the next, isolating data, as

we have done here, makes modifications considerably easier. Contrast this to how difficult it would be

to track down and change the data in a large, scalar model where data is spread throughout all the

constraints of the model.

In order to facilitate data management further, LINGO has the ability to import data from external

sources. More specifically, a LINGO model can import data from external text files, establish real-time

OLE links to Excel, and/or create ODBC links to databases.

GETTING STARTED 33

Putting together the data section, the sets section, the objective, and the constraints, the completed

model is as follows:

MODEL:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

 WAREHOUSES: CAPACITY;

 VENDORS: DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

! Here is the data;

DATA:

 !set members;

 WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WH6;

 VENDORS = V1 V2 V3 V4 V5 V6 V7 V8;

 !attribute values;

 CAPACITY = 60 55 51 43 41 52;

 DEMAND = 35 37 22 32 41 32 43 38;

 COST = 6 2 6 7 4 2 5 9

 4 9 5 3 8 5 8 2

 5 2 1 9 7 4 3 3

 7 6 7 3 9 2 7 1

 2 3 9 5 7 2 6 5

 5 5 2 2 8 1 4 3;

ENDDATA

! The objective;

 MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I):

 @SUM(VENDORS(J): VOLUME(I, J)) <=

 CAPACITY(I));

END

Model: WIDGETS

Note that we have again added comments to improve the readability of the model. The model

is named WIDGETS, and can be found in the SAMPLES subdirectory off the main LINGO

directory.

34 CHAPTER 1

Solving theTransportation Model
Now, let’s solve the model to determine the optimal shipping volume for each warehouse to vendor

link. In LINGO for Windows, choose Solve from the LINGO menu or press the Solve button (). On

other platforms, enter the GO command at the command-line prompt. LINGO will respond by solving

the model and returning a somewhat lengthy solution report containing the values for all the variables,

constraints, and data in the model. Most of this information is not of immediate interest. What we

would really like to know is the amount of widgets being shipped from the warehouses to the vendors.

Note: Anytime you find the amount of LINGO’s output overwhelming, you can choose Options…

from the LINGO menu, select the Interface tab, and set the Output Level option to Terse.

LINGO will then display only the solutions status, objective value and number of iterations in

the solution window. In non-Windows versions of LINGO, enter the TERSE command

before giving the GO command.

Note: To obtain a report containing only the nonzero values for VOLUME, we select the Solution

command from the LINGO menu. We are then presented with the following dialog box:

Press down on the arrow button in the Attribute or Row Name field and select VOLUME from the list

of names in the drop-down box. To suppress the printing of variables with zero value, click on the

Nonzero Vars and Binding Rows Only checkbox. Once you have done this, the dialog box should

resemble:

GETTING STARTED 35

Now, click the OK button and you will be presented with the following report that contains the

nonzero VOLUME variables:

If you are running LINGO on a platform other than Windows, you can generate the same report by

issuing the NONZERO VOLUME command.

LINGO can also display various forms of charts depicting your solution. Suppose you would like to

display a pie chart of VOLUME. You may do this by first clicking on the Chart button in the Type of

Output box, which will enable the Chart Properties box, where you select a chart type of Pie:

36 CHAPTER 1

Clicking OK will cause LINGO to open a new window with the requested pie chart:

GETTING STARTED 37

Summary
This section has begun to demonstrate the virtues of LINGO’s set-based modeling language. By

moving to a set-based approach to modeling, you will find that your models become easier to build,

easier to understand, and easier to maintain. Set-based modeling takes a little more work to become

comfortable with, but the benefits should substantially outweigh the extra effort involved in the

learning process. We will delve further into the concepts of set-based modeling in the following

chapter, Using Sets.

38 CHAPTER 1

Additional Modeling Language Features

Constraint Names
LINGO gives you the ability to name the constraints in your model. This is a good practice for two

reasons. First, the constraint names are used in solution reports making them easier to interpret.

Secondly, many of LINGO’s error messages refer to a given constraint by name. If you don’t name

your constraints, tracking down the source of these errors may, at best, be difficult.

Note: LINGO does not require you to name your constraints. However, if you do not name your

constraints, LINGO defaults to using a name that corresponds to the internal index of the

constraint. This internal index may have little to do with the order in which you defined the

constraint, thus making the job of interpreting solution reports and error messages difficult.

Therefore, it is strongly recommended that you always use constraint names in your models.

Naming a constraint is quite simple. All you need do is insert a name in square brackets at the very

start of the constraint. The name must obey the standard requirements for a LINGO name. More

specifically, all names must begin with an alphabetic character (A-Z). Subsequent characters may be

either alphabetic, numeric (0-9), or the underscore (_). Names may be up to 64 characters in length.

Some examples of constraint names follow:

Example 1: [OBJECTIVE] MIN = X;

assigns the name OBJECTIVE to the model’s objective row,

Example 2: @FOR(LINKS(I, J): [DEMAND_ROW]

 @SUM(SOURCES(I): SHIP(I, J)) >=

 DEMAND(J));

assigns the name DEMAND_ROW to the demand constraints in a transportation model.

GETTING STARTED 39

To further illustrate the use of row names, we have updated the WIDGETS model from the previous

section to include constraint names (shown in bold):

MODEL:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

 WAREHOUSES: CAPACITY;

 VENDORS: DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

DATA:

 !set members;

 WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WH6;

 VENDORS = V1 V2 V3 V4 V5 V6 V7 V8;

 !attribute values;

 CAPACITY = 60 55 51 43 41 52;

 DEMAND = 35 37 22 32 41 32 43 38;

 COST = 6 2 6 7 4 2 5 9

 4 9 5 3 8 5 8 2

 5 2 1 9 7 4 3 3

 7 6 7 3 9 2 7 1

 2 3 9 5 7 2 6 5

 5 5 2 2 8 1 4 3;

ENDDATA

! The objective;

 [OBJECTIVE] MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J): [DEMAND_ROW]

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I): [CAPACITY_ROW]

 @SUM(VENDORS(J): VOLUME(I, J)) <=

 CAPACITY(I));

END

WIDGETS with Constraint Names

40 CHAPTER 1

The row section of the solution report is now considerably easier to interpret:

 Row Slack or Surplus Dual Price

 OBJECTIVE 664.0000 1.000000

 DEMAND_ROW(V1) 0.0000000 -4.000000

 DEMAND_ROW(V2) 0.0000000 -5.000000

 DEMAND_ROW(V3) 0.0000000 -4.000000

 DEMAND_ROW(V4) 0.0000000 -3.000000

 DEMAND_ROW(V5) 0.0000000 -7.000000

 DEMAND_ROW(V6) 0.0000000 -3.000000

 DEMAND_ROW(V7) 0.0000000 -6.000000

 DEMAND_ROW(V8) 0.0000000 -2.000000

CAPACITY_ROW(WH1) 0.0000000 3.000000

CAPACITY_ROW(WH2) 22.00000 0.000000

CAPACITY_ROW(WH3) 0.0000000 3.000000

CAPACITY_ROW(WH4) 0.0000000 1.000000

CAPACITY_ROW(WH5) 0.0000000 2.000000

CAPACITY_ROW(WH6) 0.0000000 2.000000

Row Report for WIDGETS with Constraint Names

Note that each row now has a name rather than a simple index number. Furthermore, if the constraint

is generated over a set using the @FOR function, LINGO qualifies the constraint name by appending

the corresponding set member name in parentheses.

GETTING STARTED 41

Model Title
You can insert a title for a model anywhere you would normally enter a constraint. If a title is

included, it will be printed at the top of solution reports. The title is also used as a default argument in

the @ODBC function (see Chapter 10, Interfacing with Databases).

The model’s title must begin with the keyword TITLE and end with a semicolon. All text between

TITLE and the semicolon will be taken as the title of the model.

In the following, we have added a title to the beginning of the WIDGETS model:

MODEL:

TITLE Widgets;

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

 WAREHOUSES: CAPACITY;

 .

 .

 .

Excerpt from WIDGETS Model with a Title

Note that when we display the solution report, the title is now displayed along the top:

 Model Title: Widgets

 Variable Value Reduced Cost

 CAPACITY(WH1) 60.00000 0.0000000

 CAPACITY(WH2) 55.00000 0.0000000

 CAPACITY(WH3) 51.00000 0.0000000

 CAPACITY(WH4) 43.00000 0.0000000

 .

 .

 .

Excerpt from Solution Report to WIDGETS Model with a Title

42 CHAPTER 1

Indicating Convexity and Concavity
LINGO's global solver can exploit the fact that a constraint is either convex or concave to improve

performance. In many cases, the global solver can automatically identify a constraint as either convex

or concave. In other cases, though, the global solver can't make this determination. If you know a

constraint is convex or concave then you can flag it as such. In order to do this, replace the standard

equality and inequality operators (=, <= and >=) with either: =C=, <C= and >C=. The interpretations

of these operators are:

Operator Interpretation

<C= The constraint F(X) <= b is convex.

>C= The constraint F(X) >= b is concave.

=C= The function F(X) of the constraint F(X) = b is a convex function.

As an example, consider the nonlinear model:

MODEL:

 MAX= 5 * W1 - 3 * X1 - 4 * Y1

 + 5 * W2 - 3 * X2 - 4 * Y2

 + 5 * W3 - 3 * X3 - 4 * Y3;

 - W1 <= 1;

 W1 <= 1;

 X1 + Y1 >= 1;

 [NLROW1] W1 ^ 3 - X1 * Y1 <C= 0;

 - W2 <= 1;

 W2 <= 1;

 X2 + Y2 >= 1;

 [NLROW2] W2 ^ 3 - X2 * Y2 <C= 0;

 - W3 <= 1;

 W3 <= 1;

 X3 + Y3 >= 1;

 [NLROW3] W3 ^ 3 - X3 * Y3 <C= 0;

Model: CONVEX

The three nonlinear rows in this model: NLROW1, NLROW2 and NLROW3, are convex, and we have

marked them as such using the convexity inequality operator (<C=). This will allow the global solver

to exploit the convexity of these rows and solve the model almost instantly. The global solver would

run considerably longer on this model if we were to remove the convexity operators, reverting back to

the standard inequality operator <=.

Note: If you have a constraint for which F(x) is only quasi-convex or quasi-concave, you may still

apply the convexity markers to the same advantage. A convex objective, Min = F(x), can be

identified by rewriting it: Min = z; z>C = F(x);

GETTING STARTED 43

Maximum Problem Dimensions
Some versions of LINGO limit one or more of the following model properties: total variables, integer

variables, nonlinear variables, global variables, and constraints. The total variable limit is on the total

number of optimizable variables in your model (i.e., variables LINGO was unable to determine as

being fixed at a particular value). The integer variable limit applies to the total number of optimizable

variables restricted to being integers with either the @BIN or @GIN functions. The nonlinear variable

limit applies to the number of optimizable variables that appear nonlinearly in the model’s constraints.

As an example, in the expression: X + Y, both X and Y appear linearly. However, in the expression:

X ^ 2 + Y, X appears nonlinearly while Y appears linearly. Thus, X would count against the nonlinear

variable limit. In some cases, nonlinear variables are allowed only if you have purchased the nonlinear

option for your LINGO software. The global variable limit applies to the total number of nonlinear

variables when using the global solver. The constraint limit refers to the number of formulas in the

model that contain one or more optimizable variables. Keep in mind that a single @FOR function may

generate many constraints.

The maximum sized problem your LINGO can handle depends on the version you have. The current

limits for the various versions are:

Version

Total

Variables

Integer

Variables

Nonlinear

 Variables

Global

Variables

Constraints

Demo/Web 300 30 30 5 150

Solver Suite 500 50 50 5 250

Super 2,000 200 200 10 1,000

Hyper 8,000 800 800 20 4,000

Industrial 32,000 3,200 3,200 50 16,000

Extended Unlimited Unlimited Unlimited Unlimited Unlimited

You can also determine the limits of your version by selecting the About LINGO command from the

Help menu in Windows, or by typing HELP at the command-line prompt on other platforms. If you

determine you need a larger version of LINGO, upgrades are available from LINDO Systems. Please

feel free to contact us for pricing and availability.

Note 1: The limits of different LINGO versions are subject to change. Check our website,

http://www.lindo.com, for the most current sizes.

Note 2: In some versions of LINGO, the Nonlinear Variable limit will be 0 if you have not purchased

the nonlinear option for your copy of LINGO. Similarly, the global variable limit will be o if

the global solver option is not enabled.

44 CHAPTER 1

Note 3: LINGO has two other implicit limits not given by the table above—memory and time. Large

models may require more memory to solve than is available on your system, or they may

require more time to solve than one would normally be willing to wait. So, when building

large models, be aware that just because your model falls within LINGO’s limits there is no

guarantee it will be solvable in a reasonable amount of time on a particular machine.

How to Contact LINDO Systems
LINDO Systems can be reached at the following address and telephone numbers:

LINDO Systems, Inc.

1415 North Dayton Street

Chicago, IL 60642

Tel: 312-988-7422

Fax: 312-988-9065

e-mail: info@lindo.com

web: http://www.lindo.com

For sales and product information, please contact us at:

Tel: 1-800-441-2378 or 312-988-7422

e-mail: sales@lindo.com

For technical support, we prefer you send your model and questions by electronic mail to

tech@lindo.com. You may also speak to our technical support staff at 312-988-9421. Our technical

support staff can help you with questions regarding the installation and operation of LINGO. If you

have simple modeling questions, we can generally help get you pointed in the right direction. If you

have extensive modeling questions, we can recommend third party consultants well versed in the

specifics of LINGO and mathematical modeling in general, who can assist you in your modeling

efforts.

45

2 Using Sets
As we mentioned in the previous chapter, whenever you are modeling situations in real life there will

typically be one or more groups of related objects. Examples of such objects might include factories,

customers, vehicles, or employees. LINGO allows you to group these related objects together into sets.

Once the objects in your model are grouped into sets, you can make use of set-based functions to

unleash the full power of the LINGO modeling language.

Having given you a brief introduction into the use of sets in Chapter 1, Getting Started with LINGO,

we will now go into greater depth as to how you construct sets and initialize set attributes with data.

This will then give us the ability to begin constructing some interesting and useful examples. Once

you’ve read this chapter, you should have a basic understanding of how to go about applying set-based

modeling techniques to your own models.

Why Use Sets?
Sets are the foundation of LINGO’s modeling language—the fundamental building block of the

program’s most powerful capabilities. With an understanding of sets, you can write a series of similar

constraints in a single statement and express long, complex formulas concisely. This allows you to

express your largest models very quickly and easily. In larger models, you’ll encounter the need to

express a group of several very similar calculations or constraints. Fortunately, LINGO’s ability to

handle sets of information allows you to perform such operations efficiently.

For example, preparing a warehouse-shipping model for 100 warehouses would be tedious if you had

to write each constraint explicitly (e.g., “Warehouse 1 must ship no more than its present inventory,

Warehouse 2 must ship no more than its present inventory, Warehouse 3 must ship no more than its

present inventory…”, and so on). LINGO allows you to express formulas in the form easiest for you to

read and understand (e.g., “Each warehouse must ship no more than its present inventory”).

What Are Sets?
Sets are simply groups of related objects. A set might be a list of products, trucks, or employees. Each

member in the set may have one or more characteristics associated with it. We call these

characteristics attributes. Attribute values can be known in advance or unknowns that LINGO solves

for. For example, each product in a set of products might have a price attribute; each truck in a set of

trucks might have a hauling capacity attribute; and each employee in a set of employees might have a

salary attribute, as well as a birth date attribute.

46 CHAPTER 2

Types of Sets
LINGO recognizes two kinds of sets: primitive and derived.

A primitive set is a set composed only of objects that can’t be further reduced. In the Wireless Widgets

example (page 27), the WAREHOUSES set, which is composed of six warehouses, is a primitive set.

Likewise, the set composed of eight vendors is a primitive set.

A derived set is defined using one or more other sets. In other words, a derived set derives its members

from other preexisting sets. Again, using the Wireless Widgets example, the set composed of the links

between the six warehouses and eight vendors (LINKS) is a derived set. It derives its members from

the unique pairs of members of the WAREHOUSES and VENDORS sets. Although the LINKS set is

derived solely from primitive sets, it is also possible to build derived sets from other derived sets as

well. See the section below, Defining Derived Sets, for more information.

The Sets Section of a Model
Sets are defined in an optional section of a LINGO model called the sets section. Before you use sets

in a LINGO model, you have to define them in the sets section of the model. The sets section begins

with the keyword SETS: (including the colon), and ends with the keyword ENDSETS. A model may

have no sets section, a single sets section, or multiple sets sections. A sets section may appear

anywhere in a model. The only restriction is you must define a set and its attributes before they are

referenced in the model’s constraints.

Defining Primitive Sets
To define a primitive set in a sets section, you specify:

 the name of the set,

 optionally, its members (objects contained in the set), and

 optionally, any attributes the members of the set may have.

A primitive set definition has the following syntax:

setname [/ member_list /] [: attribute_list];

Note: The use of square brackets indicates an item is optional. In this particular case, a primitive

set’s attribute_list and member_list are both optional.

The setname is a name you choose to designate the set. It should be a descriptive name that is easy to

remember. The set name must conform to standard LINGO naming conventions. In other words, the

name must begin with an alphabetic character, which may be followed by up to 31 alphanumeric

characters or the underscore (_). LINGO does not distinguish between upper and lowercase characters

in names.

A member_list is a list of the members that constitute the set. If the set members are included in the set

definition, they may be listed either explicitly or implicitly. If set members are not included in the set

USING SETS 47

definition, then they may be defined subsequently in a data section of the model. For details on

defining set members in a data section, refer to Introduction to the Data Section.

When listing members explicitly, you enter a unique name for each member, optionally separated by

commas. As with set names, member names must also conform to standard naming conventions. In the

Wireless Widgets model, we could have used an explicit member list to define the set WAREHOUSES

in the sets section as follows:

WAREHOUSES / WH1 WH2 WH3 WH4 WH5 WH6/: CAPACITY;

When using implicit set member lists, you do not have to list a name for each set member. Use the

following syntax when using an implicit set member list:

setname / member1..memberN / [: attribute_list];

where member1 is the name of the first member in the set and memberN is the name of the last

member. LINGO automatically generates all the intermediate member names between member1 and

memberN. While this can be a very compact and convenient method for building a primitive set, there

is one catch in that only certain formats of names are accepted for the initial and terminal member

names. The following table details the available options:

Implicit Member List

Format

Example Set Members

1..n 1..5 1, 2, 3, 4, 5

stringM..stringN TRUCKS3..TRUCKS204 TRUCKS3, TRUCKS4, …,

TRUCKS204

dayM..dayN MON..FRI MON, TUE, WED, THU,

FRI

monthM..monthN OCT..JAN OCT, NOV, DEC, JAN

monthYearM..monthYearN OCT2001..JAN2002 OCT2001, NOV2001,

DEC2001, JAN2002

When using the 1..n format, n may be any positive integer value, and the initial member must always

be a 1.

The stringM..stringN format allows you to use any string to start both the initial and terminal member

names as long as the string conforms to standard LINGO naming conventions. M and N must be

nonnegative and integer, such that M ≤ N.

The dayM..dayN format allows you to choose the initial and terminal member names for the names of

the days of the week. All names are abbreviated to three characters. Thus, the available options are:

Mon, Tue, Wed, Thu, Fri, Sat, and Sun.

The monthM..monthN format allows you to select from the months of the year, where all names are

abbreviated to three characters. The available options are: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,

Oct, Nov, and Dec.

The monthYearM..monthYearN option allows you to specify a month and a four digit year.

48 CHAPTER 2

As further illustration, in the Wireless Widgets example, we could have also defined the

WAREHOUSES set as:

WAREHOUSES / 1..6/: CAPACITY;

As an alternative, when using this 1..n form of implicit definition, you may also place the length of the

set in a data section, and then reference this length in a subsequent sets section as we do here:

DATA:

 NUMBER_OF_WH = 6;

ENDDATA

SETS:

 WAREHOUSES / 1..NUMBER_OF_WH/: CAPACITY;

ENDSETS

Set members may have one or more attributes specified in the attribute_list of the set definition. An

attribute is simply some property each member of the set displays. For instance, in the WAREHOUSES

set above, there is a single attribute titled CAPACITY, which is used to represent the shipping capacity

of the WAREHOUSES. Attribute names must follow standard naming conventions and be separated by

commas.

For illustration, suppose our warehouses had additional attributes related to their location and the

number of loading docks. These additional attributes could be added to the attribute list of the set

declaration as follows:

WAREHOUSES / 1..6/: CAPACITY, LOCATION, DOCKS;

In addition to listing a primitive set's members in a model's sets section, primitive set members may

also be listed in a model's data section. Some users may prefer this alternative approach in that a set's

members are actually input data for the model. Therefore, listing set members in a model's data

section, along with all other data, is a more natural approach that makes a model more readable. All

the various techniques listed above for enumerating a primitive set's members are also valid in a data

section. Some examples of defining primitive set members in a data section follow:

SETS:

 WAREHOUSES: CAPACITY;

ENDSETS

DATA:

 WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WH6;

ENDDATA

Example 1: Listing a Primitive Set in a Data Section

SETS:

 WAREHOUSES: CAPACITY;

ENDSETS

DATA:

 NUMBER_OF_WH = 6;

 WAREHOUSES = 1..NUMBER_OF_WH;

ENDDATA

Example 2: Listing a Primitive Set in a Data Section

USING SETS 49

Defining Derived Sets
To define a derived set, you specify:

 the name of the set,

 its parent sets,

 optionally, its members, and

 optionally, any attributes the set members may have.

A derived set definition has the following syntax:

setname(parent_set_list) [/ member_list /] [: attribute_list];

The setname is a standard LINGO name you choose to name the set.

The parent_set_list is a list of previously defined sets, separated by commas. Without specifying a

member_list element, LINGO constructs all combinations of members from each parent set to create

the members of the new derived set. As an example, consider the following sets section:

SETS:

 PRODUCT / A B/;

 MACHINE / M N/;

 WEEK / 1..2/;

 ALLOWED(PRODUCT, MACHINE, WEEK);

ENDSETS

Sets PRODUCT, MACHINE, and WEEK are primitive sets, while ALLOWED is derived from parent

sets, PRODUCT, MACHINE, and WEEK. Taking all the combinations of members from the three

parent sets, we come up with the following members in the ALLOWED set:

Index Member

1 (A,M,1)

2 (A,M,2)

3 (A,N,1)

4 (A,N,2)

5 (B,M,1)

6 (B,M,2)

7 (B,N,1)

8 (B,N,2)

ALLOWED Set Membership

The member_list is optional, and is used when you want to limit the set to being some subset of the full

set of combinations derived from the parent sets. The member_list may alternatively be specified in a

model’s data section (for details on this see Introduction to the Data Section in Chapter 4, Data and

Init Sections).

If the member_list is omitted, the derived set will consist of all combinations of the members from the

parent sets. When a set does not have a member_list and, therefore, contains all possible combinations

of members, it is referred to as being a dense set. When a set includes a member_list that limits it to

being a subset of its dense form, we say the set is sparse.

50 CHAPTER 2

A derived set’s member_list may be constructed using either:

 an explicit member list, or

 a membership filter.

When using the explicit member list method to specify a derived set’s member_list, you must

explicitly list all the members you want to include in the set. Each listed member must be a member of

the dense set formed from all possible combinations of the parent sets. Returning to our small example

above, if we had used an explicit member list in the definition of the derived set, ALLOWED, as

follows:

ALLOWED(PRODUCT, MACHINE, WEEK)

 / A M 1, A N 2, B N 1/;

then ALLOWED would not have had the full complement of eight members. Instead, ALLOWED

would have consisted of the three member sparse set: (A,M,1), (A,N,2), and (B,N,1). Note that the

commas in the list of set members are optional and were added only for readability purposes.

If you have a large, sparse set, explicitly listing all members can become cumbersome. Fortunately, in

many sparse sets, the members all satisfy some condition that differentiates them from the

nonmembers. If you could just specify this condition, you could save yourself a lot of effort. This is

exactly how the membership filter method works. Using the membership filter method of defining a

derived set’s member_list involves specifying a logical condition that each potential set member must

satisfy for inclusion in the final set. You can look at the logical condition as a filter to keep out

potential members that don’t satisfy some criteria.

As an example of a membership filter, suppose you have already defined a set called TRUCKS, and

each truck has an attribute called CAPACITY. You would like to derive a subset from TRUCKS that

contains only those trucks capable of hauling big loads. You could use an explicit member list, and

explicitly enter each truck that can carry heavy loads. However, why do all that work when you could

use a membership filter as follows:

HEAVY_DUTY(TRUCKS)|CAPACITY(&1) #GT# 50000:

We have named the set HEAVY_DUTY and have derived it from the parent set, TRUCKS. The vertical

bar character (|) is used to mark the beginning of a membership filter. The membership filter allows

only those trucks that have a hauling capacity (CAPACITY(&1)) greater than (#GT#) 50,000 into the

HEAVY_DUTY set. The &1 symbol in the filter is known as a set index placeholder. When building a

derived set that uses a membership filter, LINGO generates all the combinations of parent set

members. Each combination is then “plugged” into the membership condition to see if it passes the

test. The first primitive parent set’s member is plugged into &1, the second into &2, and so on. In this

example, we have only one parent set (TRUCKS), so &2 would not have made sense. The symbol

#GT# is a logical operator and means “greater than”.

USING SETS 51

The logical operators recognized by LINGO are:

#EQ# equal

#NE# not equal

#GE# greater-than-or-equal-to

#GT# greater than

#LT# less than

#LE# less-than-or-equal-to

In addition to listing a derived set's members in a model's sets section, derived set members may also

be listed in a model's data section. Some users may prefer this alternative approach in that a set's

members are actually input data for the model. Therefore, listing set members in a model's data

section, along with all other data, is a more natural approach that makes a model more readable. All

the various techniques listed above for enumerating a primitive set's members are also valid in a data

section, with the exception of the membership filter method. An example of defining derived set

members in a data section follow:

SETS:

 PRODUCT;

 MACHINE;

 WEEK;

 ALLOWED(PRODUCT, MACHINE, WEEK);

ENDSETS

DATA:

 PRODUCT = P1..P3;

 MACHINE = M1..M3;

 WEEK = W1..W4;

 ALLOWED =

 P1 M1 W1

 P2 M1 W3

 P3 M1 W2

 P3 M3 W4

 ;

ENDDATA

Inputting a Derived Set in a Data Section

Summary
In summary, keep in mind that LINGO recognizes two types of sets—primitive and derived.

Primitive sets are the fundamental objects in a model and can't be broken down into smaller

components. Primitive sets can be defined using either an explicit or implicit list. When using an

explicit list, you enter each member individually in the set member list. With an implicit list, you enter

the initial and terminal set members and LINGO generates all the intermediate members.

Derived sets, on the other hand, are created from other component sets. These component sets are

referred to as the parents of the derived set, and may be either primitive or derived. A derived set can

be either sparse or dense. Dense sets contain all combinations of the parent set members (sometimes

this is also referred to as the Cartesian product or cross of the parent sets). Sparse sets contain only a

subset of the cross of the parent sets, and may be defined by two methodsexplicit listing or

52 CHAPTER 2

membership filter. The explicit listing method involves listing the members of the sparse set. The

membership filter method allows you to specify the sparse set members compactly through the use of a

logical condition that all members must satisfy. The relationships amongst the various set types are

illustrated in the graph below.Derived sets, on the other hand, are created from other component sets.

These component sets are referred to as the parents of the derived set, and may be either primitive or

derived. A derived set can be either sparse or dense. Dense sets contain all combinations of the parent

set members (sometimes this is also referred to as the Cartesian product or cross of the parent sets).

Sparse sets contain only a subset of the cross of the parent sets and may be defined by two

methodsexplicit listing or membership filter. The explicit listing method involves listing the

members of the sparse set. The membership filter method allows you to specify the sparse set members

compactly through the use of a logical condition all members must satisfy. The relationships amongst

the various set types are illustrated in the graph below:

 LINGO Set Types

At this point, you are probably thinking that set definition is, at best, somewhat complicated. We will

be presenting you with plenty more examples in subsequent sections that should help to illustrate the

concepts introduced in this section, and demonstrate that set definition is nowhere near as difficult as it

may seem. For now, however, we will turn our attention to how data is input into a model. Then, we

will examine a group of functions that are designed to operate on set members. Once we have

accomplished this, we will be able to bring together all we have learned in order to begin building

some interesting and relevant examples of set-based modeling.

USING SETS 53

The DATA Section
Typically, you will want to initialize the members of certain sets and assign values to certain set

attributes. For this purpose, LINGO uses a second optional section called the data section. The data

section allows you to isolate data from the equations of your model. This is a useful practice in that it

leads to easier model maintenance and facilitates scaling up a model to larger dimensions.

Similar to the sets section, the data section begins with the keyword DATA: (including the colon) and

ends with the keyword ENDDATA. In the data section, you can have statements to initialize the sets

and/or attributes you defined in a sets section. These expressions have the syntax:

object_list = value_list;

The object_list contains the names of a set and/or attributes you want to initialize, optionally separated

by commas. If there is more than one attribute name on in the object list, then all attributes must be

defined on the same set. Furthermore, if a set name appears in the object list, then it must be the parent

set of any attributes also in the object list. The value_list contains the values to assign to the objects in

the object list, optionally separated by commas. For example, consider the following model:

MODEL:

SETS:

 SET1: X, Y;

ENDSETS

DATA:

 SET1 = A B C;

 X = 1 2 3;

 Y = 4 5 6;

ENDDATA

END

We have two attributes, X and Y, defined on the set SET1. The three values of X are set to 1, 2, and 3,

while Y is set to 4, 5, and 6. We could have also used the following compound data statement to the

same end:

MODEL:

SETS:

 SET1: X, Y;

ENDSETS

DATA:

 SET1 X Y = A 1 4

 B 2 5

 C 3 6;

ENDDATA

END

An important fact to remember is that when LINGO reads a compound data statement's value list, it

assigns the first n values in the list to the first position of each of the n objects in the object list, the

second n values to the second position of each of the n objects, and so on. In other words, LINGO is

expecting the input data in column format rather than row format, which mirrors the flat file approach

used in relational databases.

54 CHAPTER 2

This section has served to give you a brief introduction into the use of the data section. In Data and

Init Sections, you will learn more about the capabilities of the data section. You will learn data does

not have to actually reside in the data section as shown in examples here. In fact, your data section can

have OLE links to Excel, ODBC links to databases, and connections to text based data files.

Set Looping Functions
We have mentioned the power of set-based modeling comes from the ability to apply an operation to

all members of a set using a single statement. The functions in LINGO that allow you to do this are

called set looping functions. If your models don’t make use of one or more set looping function, then

you are missing out on the power of set-based modeling and, even worse, you’re probably working too

hard!

Set looping functions allow you to iterate through all the members of a set to perform some operation.

There are currently four set looping functions in LINGO. The names of the functions and their uses

are:

Function Use

@FOR The most powerful of the set looping

functions, @FOR is used to generate

constraints over members of a set.

@SUM Probably the most frequently used set

looping function, @SUM computes the sum

of an expression over all members of a set.

@MIN Computes the minimum of an expression

over all members of a set.

@MAX Computes the maximum of an expression

over all members of a set.

@PROD Computes the product of an expression over

all members of a set.

The syntax for a set looping function is:

@function(setname [(set_index_list) [|conditional_qualifier]] : expression_list);

where @function corresponds to one of the four set looping functions listed in the table above. setname

is the name of the set you want to loop over.

set_index_list is optional. It is used to create a list of indices. Each index corresponds to one of the

parent, primitive sets that form the set specified by setname. As LINGO loops through the members of

the set setname, it will set the values of the indices in the set_index_list to correspond to the current

member of the set setname.

The conditional_qualifier is optional, and may be used to limit the scope of the set looping function.

When LINGO is looping over each member of setname, it evaluates the conditional_qualifier. If the

conditional_qualifier evaluates to true, then the @function is performed for the set member.

Otherwise, it is skipped.

USING SETS 55

The expression_list is a list of expressions that are to be applied to each member of the set setname.

When using the @FOR function, the expression list may contain multiple expressions, separated by

semicolons. These expressions will be added as constraints to the model. When using the remaining set

looping functions (@SUM, @MAX, @MIN and @PROD), the expression list must contain one

expression only. If the set_index_list is omitted, all attributes referenced in the expression_list must be

defined on the set setname.

The following examples should help to illustrate the use of set looping functions.

@SUM Set Looping Function
In this example, we will construct several summation expressions using the @SUM function in order

to illustrate the features of set looping functions in general, and the @SUM function in particular.

Consider the model:

MODEL:

SETS:

 VENDORS: DEMAND;

ENDSETS

DATA:

 VENDORS, DEMAND = V1,5 V2,1 V3,3 V4,4 V5,6;

ENDDATA

END

Each vendor of the VENDORS set has a corresponding DEMAND. We could sum up the values of the

DEMAND attribute by adding the following expression after the ENDDATA statement:

TOTAL_DEMAND = @SUM(VENDORS(J): DEMAND(J));

LINGO evaluates the @SUM function by first initializing an internal accumulator to zero. LINGO then

begins looping over the members in the VENDORS set. The set index variable, J, is set to the first

member of VENDORS (i.e., V1) and DEMAND (V1) is then added to the accumulator. This process

continues until all DEMAND values have been added to the accumulator. The value of the sum is then

stored in the TOTAL_DEMAND variable.

Since all the attributes in our expression list (in this case, only DEMAND appears in the expression

list) are defined on the index set (VENDORS), we could have alternatively written our sum as:

TOTAL_DEMAND = @SUM(VENDORS: DEMAND);

In this case, we have dropped the superfluous index set list and the index on DEMAND. When an

expression uses this shorthand, we say the index list is implied. Implied index lists are not allowed

when attributes in the expression list have different parent sets.

56 CHAPTER 2

Next, suppose we want to sum the first three elements of the attribute DEMAND. We can use a

conditional qualifier on the set index to accomplish this as follows:

DEMAND_3 = @SUM(VENDORS(J)|J #LE# 3: DEMAND(J));

The #LE# symbol is called a logical operator (see p. 381 for more details). This operator compares the

operand on the left (J) with the one on the right (3), and returns true if the left operand is

less-than-or-equal-to the one on the right. Otherwise, it returns false. Therefore, when LINGO

computes the sum this time, it plugs the set index variable, J, into the conditional qualifier J #LE# 3. If

the conditional qualifier evaluates to true, DEMAND(J) will be added to the sum. The end result is

LINGO sums up the first three terms in DEMAND, omitting the fourth and fifth terms, for a total sum

of 9.

Note: Before leaving this example, one subtle aspect to note in this last sum expression is the value

that the set index J is returning. Note, we are comparing the set index variable to the quantity

3 in the conditional qualifier J #LE# 3. In order for this to be meaningful, J must represent a

numeric value. Because a set index is used to loop over set members, one might imagine a set

index is merely a placeholder for the current set member. In a sense, this is true, but what set

indices really return is the index of the current set member in its parent primitive set. The

index returned is one-based. In other words, the value 1 is returned when indexing the first set

member, 2 when indexing the second, and so on. Given that set indices return a numeric

value, they may be used in arithmetic expressions along with other variables in your model.

@MIN and @MAX Set Looping Functions
The @MIN and @MAX functions are used to find the minimum and maximum of an expression over

members of a set.

Again, consider the model:

MODEL:

SETS:

 VENDORS: DEMAND;

ENDSETS

DATA:

 VENDORS, DEMAND = V1,5 V2,1 V3,3 V4,4 V5,6;

ENDDATA

END

To find the minimum and maximum DEMAND, all one need do is add the two expressions:

MIN_DEMAND = @MIN(VENDORS(J): DEMAND(J));

MAX_DEMAND = @MAX(VENDORS(J): DEMAND(J));

USING SETS 57

The resulting model with the new statements in bold would then be as follows:

MODEL:

SETS:

 VENDORS: DEMAND;

ENDSETS

DATA:

 VENDORS, DEMAND = V1,5 V2,1 V3,3 V4,4 V5,6;

ENDDATA

 MIN_DEMAND = @MIN(VENDORS(J): DEMAND(J));

 MAX_DEMAND = @MAX(VENDORS(J): DEMAND(J));

END

As with the @SUM example, we can use an implied index list since the attributes are defined on the

index set. Using implied indexing, we can recast our expressions as:

MIN_DEMAND = @MIN(VENDORS: DEMAND);

MAX_DEMAND = @MAX(VENDORS: DEMAND);

In either case, when we solve this model, LINGO returns the expected minimum and maximum

DEMAND of:

Variable Value

MIN_DEMAND 1.000000

MAX_DEMAND 6.000000

For illustration purposes, suppose we had just wanted to compute the minimum and maximum values

of the first three elements of DEMAND. As with the @SUM example, all we need do is add the

conditional qualifier J #LE# 3. We then have:

MIN_DEMAND3 =

 @MIN(VENDORS(J) | J #LE# 3: DEMAND(J));

MAX_DEMAND3 =

 @MAX(VENDORS(J) | J #LE# 3: DEMAND(J));

with solution:

Variable Value

MIN_DEMAND3 1.000000

MAX_DEMAND3 5.000000

@FOR Set Looping Function
The @FOR function is used to generate constraints across members of a set. Whereas scalar based

modeling languages require you to explicitly enter each constraint, the @FOR function allows you to

enter a constraint just once, and LINGO does the work of generating an occurrence of the constraint

for each set member. Thus, the @FOR statement provides the set-based modeler with a very powerful

tool.

To illustrate the use of @FOR, consider the following set definition:

SETS:

 TRUCKS / MAC, PETERBILT, FORD, DODGE/: HAUL;

ENDSETS

58 CHAPTER 2

Specifically, we have a primitive set of four trucks with a single HAUL attribute. If HAUL is used to

denote the amount a truck hauls, then we can use the @FOR function to limit the amount hauled by

each truck to 2,500 pounds with the following expression:

@FOR(TRUCKS(T): HAUL(T) <= 2500);

In this case, it might be instructive to view the constraints LINGO generates from our expression. You

can do this by using the LINGO|Generate|Display model command under Windows, or by using the

GENERATE command on other platforms. Running this command, we find LINGO generates the

following four constraints:

HAUL(MAC) <= 2500

HAUL(PETERBILT) <= 2500

HAUL(FORD) <= 2500

HAUL(DODGE) <= 2500

In other words, as we anticipated, LINGO generated one constraint for each truck in the set limiting it

to a load of 2,500 pounds.

Here is a model that uses an @FOR statement (listed in bold) to compute the reciprocal of any five

numbers placed into the VALUE attribute:

MODEL:

SETS:

 NUMBERS /1..5/: VALUE, RECIPROCAL;

ENDSETS

DATA:

 VALUE = 3 4 2 7 10;

ENDDATA

 @FOR(NUMBERS(I):

 RECIPROCAL(I) = 1 / VALUE(I)

);

END

Solving this model gives the following values for the reciprocals:

 Variable Value

RECIPROCAL(1) 0.3333333

RECIPROCAL(2) 0.2500000

RECIPROCAL(3) 0.5000000

RECIPROCAL(4) 0.1428571

RECIPROCAL(5) 0.1000000

Since the reciprocal of zero is not defined, we could put a conditional qualifier on our @FOR

statement that causes us to skip the reciprocal computation whenever a zero is encountered. The

following @FOR statement accomplishes this:

@FOR(NUMBERS(I)| VALUE(I) #NE# 0:

 RECIPROCAL(I) = 1 / VALUE(I)

);

USING SETS 59

The conditional qualifier (listed in bold) tests to determine if the value is not equal (#NE#) to zero. If

so, the computation proceeds.

This was just a brief introduction to the use of the @FOR statement. There will be many additional

examples in the sections to follow.

@PROD Set Looping Function
The @PROD function is used to find the product of an expression across members of a set. As an

example, consider the model:

MODEL:

SETS:

 COMPONENTS: P;

ENDSETS

DATA:

 P = .95 .99 .98;

ENDDATA

 P_FAIL = 1 - @PROD(COMPONENTS(I): P(I));

END

Here we have a system of three components arranged in a series. The probability that each component

functions successfully (.95, .99, and .98) is loaded into attribute P in the model’s data section. We

then compute the probability that the entire system will fail, P_FAIL, by taking the product of the

component probabilities and subtracting it from 1:

P_FAIL = 1 - @PROD(COMPONENTS(I): P(I));

As an aside, an interesting feature to note about this model is that we never initialized the

COMPONENTS set. When LINGO sees that an attribute of an undefined primitive set being

initialized to n values in a data section, it automatically initializes the parent primitive set to contain

the members: 1, 2, …, n. So, in this example, LINGO automatically assigned the member 1, 2 and 3 to

the COMPONENTS set.

Nested Set Looping Functions
The simple models shown in the last section use @FOR to loop over a single set. In larger models,

you’ll encounter the need to loop over a set within another set looping function. When one set looping

function is used within the scope of another, we call it nesting.

An example of a nested set looping function can be found in the Wireless Widgets shipping model

(p.27). If you remember, WW’s vendors had a demand for widgets that had to be met. The LINGO

statement that enforces this condition is:

! The demand constraints;

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

60 CHAPTER 2

Specifically, for each vendor, we sum up the shipments going from all the warehouses to that vendor

and set the quantity equal to the vendor’s demand. In this case, we have nested an @SUM function

within an @FOR function.

@SUM, @MAX, and @MIN can be nested within any set looping function. @FOR functions, on the

other hand, may only be nested within other @FOR functions.

Summary
This section demonstrated that set looping functions can be very powerful and can simplify the

modeler's task. If you aren't making use of sets and set looping functions, you will have a considerably

more difficult time building your models. Furthermore, the difficulty will grow dramatically as the

sizes of your models grow.

We now know how to create sets, how to initialize sets and attributes using the data section, and how

to work with sets using set looping functions. At this point, we now have the ability to start

constructing some meaningful example models.

Set-Based Modeling Examples
Recall from the earlier discussion in this chapter, there are four types of sets that can be created in

LINGO. These set types are:

1. primitive,

2. dense derived,

3. sparse derived - explicit list, and

4. sparse derived - membership filter.

If you would like to review the four set types, refer to the sections What are Sets? and The Sets Section

of a Model at the beginning of this chapter. The remainder of this section will help develop your

talents for set-based modeling by building and discussing four models, each introducing one of the set

types listed above.

Primitive Set Example
The following staff scheduling model illustrates the use of a primitive set. In a staff scheduling model,

there is demand for staffing over a time horizon. The goal is to come up with a work schedule that

meets staffing demands at minimal cost.

The model used in this example may be found in the SAMPLES subdirectory off the main LINGO

directory under the name STAFFDEM.

The Staff Scheduling Problem
Suppose you run the popular Pluto Dogs hot dog stand that is open seven days a week. You hire

employees to work a five-day workweek with two consecutive days off. Each employee receives the

same weekly salary. Some days of the week are busier than others and, based on past experience, you

know how many workers are required on a given day of the week. In particular, your forecast calls for

USING SETS 61

these staffing requirements:

Day Mon Tue Wed Thu Fri Sat Sun

Staff Req'd 20 16 13 16 19 14 12

You need to determine how many employees to start on each day of the week in order to minimize the

total number of employees, while still meeting or exceeding staffing requirements each day of the

week.

The Formulation
The first question to consider when building a set-based model is, "What are the relevant sets and their

attributes?". In this model, we have a single primitive set, the days of the week. If we call this set

DAYS, we can begin by writing our sets section as:

SETS:

 DAYS;

ENDSETS

Next, we can add a data section to initialize the set members of the DAYS set:

SETS:

 DAYS;

ENDSETS

DATA:

 DAYS = MON TUE WED THU FRI SAT SUN;

ENDDATA

Alternatively, we could use LINGO’s implicit set definition capability and express this equivalently as:

SETS:

 DAYS;

ENDSETS

DATA:

 DAYS = MON..SUN;

ENDDATA

We will be concerned with two attributes of the DAYS set. The first is the number of staff required on

each day, and the second is the number of staff to start on each day. If we call these attributes

REQUIRED and START, then we may add them to the sets section to get:

SETS:

 DAYS: REQUIRED, START;

ENDSETS

After defining the sets and attributes, it is useful to determine which of the attributes are data, and

which are decision variables. In this model, the REQUIRED attribute is given to us and is, therefore,

data. The START attribute is something we need to determine and constitutes the decision variables.

Once you've identified the data in the model, you may go ahead and initialize it. We can do this by

extending the data section as follows:

DATA:

 DAYS = MON TUE WED THU FRI SAT SUN;

 REQUIRED = 20 16 13 16 19 14 12;

ENDDATA

62 CHAPTER 2

We are now at the point where we can begin entering the model's mathematical relations (i.e., the

objective and constraints). Let's begin by writing out the mathematical notation for the objective. Our

objective is to minimize the total number of employees we start during the week. Using standard

mathematical notation, this objective may be expressed as:

Minimize: i STARTi

The equivalent LINGO statement is very similar. Substitute "MIN=" for "Minimize:" and "@SUM(

DAYS(I):" for i and we have:

MIN = @SUM(DAYS(I): START(I));

Now, all that is left is to come up with our constraints. There is only one set of constraints in this

model. Namely, we must have enough staff on duty each day to meet or exceed staffing requirements.

In words, what we want is:

Staff on duty today Staff required today, for each day of the week

The right-hand side of this expression, Staff required today, is easy to calculate. It is simply the

quantity REQUIRED(I). The left-hand side, Staff on duty today, is a bit trickier to compute. Given that

all employees are on a "five day on, two day off" schedule, the number of employees working today is:

Number working today = Number starting today +

 Number starting 1 day ago + Number starting 2 days ago +

 Number starting 3 days ago + Number starting 4 days ago.

In other words, to compute the number of employees working today, we sum up the number of people

starting today plus those starting over the previous four days. The number of employees starting five

and six days back don't count because they are on their days off. So, using mathematical notation, what

one might consider doing is adding the constraint:

i = j-4, j STARTi REQUIRED j , for j DAYS

USING SETS 63

Translating into LINGO notation, we can write this as:

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5: START(J - I + 1))

 >= REQUIRED(J)

);

In words, the LINGO statement says, for each day of the week, the sum of the employees starting over

the five day period beginning four days ago and ending today must be greater-than-or-equal-to the

required number of staff for the day. This sounds correct, but there is a slight problem. If we try to

solve our model with this constraint we get the error message:

To see why we get this error message, consider what happens on Thursday. Thursday has an index of 4

in our set DAYS. As written, the staffing constraint for Thursday will be:

START(4 - 1 + 1) + START(4 - 2 + 1) +

 START(4 - 3 + 1) + START(4 - 4 + 1) +

 START(4 - 5 + 1) >= REQUIRED(4);

Simplifying, we get:

START(4) + START(3) +

 START(2) + START(1) +

 START(0) >= REQUIRED(4);

The START(0) term is the root of our problem. START is defined for days 1 through 7. START(0) does

not exist. An index of 0 on START is considered "out of range.”

We would like to have any indices less-than-or-equal-to 0 wrap around to the end of the week.

Specifically, 0 would correspond to Sunday (7), -1 to Saturday (6), and so on. LINGO has a function

that does just this: @WRAP.

The @WRAP function takes two argumentscall them INDEX and LIMIT. Formally speaking,

@WRAP returns J such that J = INDEX - K * LIMIT, where K is an integer such that J is in the interval

[1, LIMIT]. Informally speaking, @WRAP will subtract or add LIMIT to INDEX until it falls in the

range 1 to LIMIT. Therefore, this is just what we need to "wrap around" an index in multiperiod

planning models.

64 CHAPTER 2

Incorporating the @WRAP function, we get the corrected, final version of our staffing constraint:

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)))

 >= REQUIRED(J)

);

The Solution
Below is our staffing model in its entirety:

MODEL:

SETS:

 DAYS: REQUIRED, START;

ENDSETS

DATA:

 DAYS = MON TUE WED THU FRI SAT SUN;

 REQUIRED = 20 16 13 16 19 14 12;

ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)))

 >= REQUIRED(J)

);

END

Model: STAFFDEM

USING SETS 65

Solving the model, we get the solution report:

Global optimal solution found.

Objective value: 22.00000

Infeasibilities: 0.000000

Total solver iterations: 5

 Variable Value Reduced Cost

REQUIRED(MON) 20.00000 0.000000

REQUIRED(TUE) 16.00000 0.000000

REQUIRED(WED) 13.00000 0.000000

REQUIRED(THU) 16.00000 0.000000

REQUIRED(FRI) 19.00000 0.000000

REQUIRED(SAT) 14.00000 0.000000

REQUIRED(SUN) 12.00000 0.000000

 START(MON) 8.000000 0.000000

 START(TUE) 2.000000 0.000000

 START(WED) 0.000000 0.000000

 START(THU) 6.000000 0.000000

 START(FRI) 3.000000 0.000000

 START(SAT) 3.000000 0.000000

 START(SUN) 0.000000 0.3333333

 Row Slack or Surplus Dual Price

 1 22.00000 -1.000000

 2 0.000000 -0.3333333

 3 0.000000 0.000000

 4 0.000000 -0.3333333

 5 0.000000 0.000000

 6 0.000000 -0.3333333

 7 0.000000 -0.3333333

 8 0.000000 0.000000

Solution to STAFFDEM

The objective value of 22 means we need to hire 22 workers.

We start our workers according to the schedule:

Day Mon Tue Wed Thu Fri Sat Sun

Start 8 2 0 6 3 3 0

If we look at the surpluses on our staffing requirement rows (rows 2 - 7), we see that the slack values

are 0 on all of the days. This means there are no more workers than required and we just meet staffing

requirements on every day. Even though this is a small model, trying to come up with a solution this

efficient "by hand" would be a difficult task.

66 CHAPTER 2

Dense Derived Set Example - Blending
This following model illustrates, among other things, the use of a dense derived set in a blending

model. In a blending model, one is blending raw materials into a finished product that must meet

minimal quality requirements on one or more dimensions. The goal is to come up with a blend of the

raw materials to satisfy the quality requirements at minimal cost.

This model may be found in the SAMPLES subdirectory off the main LINGO directory under the name

CHESS.

The Problem
The Chess Snackfoods Co. markets four brands of mixed nuts. The four brands of nuts are called

Pawn, Knight, Bishop, and King. Each brand contains a specified ratio of peanuts and cashews. The

table below lists the number of ounces of the two nuts contained in each pound of each brand and the

price the company receives per pound of each brand.

 Pawn Knight Bishop King

Peanuts (oz.) 15 10 6 2

Cashews (oz.) 1 6 10 14

Selling Price ($) 2 3 4 5

Chess has contracts with suppliers to receive 750 pounds of peanuts/day and 250 pounds of

cashews/day. Our problem is to determine the number of pounds of each brand to produce each day to

maximize total revenue without exceeding the available supply of nuts.

The Formulation
The primitive sets in this model are the nut types and the brands of mixed nuts. We can declare them in

the sets section as follows:

SETS:

 NUTS: SUPPLY;

 BRANDS: PRICE, PRODUCE;

ENDSETS

The NUTS set has the single attribute SUPPLY, which we will use to store the daily supply of nuts in

pounds. The BRANDS set has PRICE and PRODUCE attributes, where PRICE stores the selling price

of the brands, and PRODUCE represents the decision variables of how many pounds of each brand to

produce each day.

We need one more set, however, which is the dense derived set we have been promising. In order to

input the brand formulas, we will need a two dimensional table defined on the nut types and the

brands. To do this, we will generate a derived set named FORMULA from the cross of the NUTS and

BRANDS sets. Adding this derived set, we get the completed sets section:

SETS:

 NUTS: SUPPLY;

 BRANDS: PRICE, PRODUCE;

 FORMULA(NUTS, BRANDS): OUNCES;

ENDSETS

USING SETS 67

We have titled the derived set FORMULA. It has the single attribute OUNCES, which will be used to

store the ounces of nuts used per pound of each brand. Since we have not specified the members of this

derived set, LINGO assumes we want the complete, dense set that includes all pairs of nuts and brands,

for a total of eight (nut,brand) pairs.

Now that our sets are declared, we can move on to building the data section. We initialize our three

sets, NUTS, BRANDS and FORMULA, as well as the two data attributes SUPPLY and PRICE as

follows:

DATA:

 NUTS, SUPPLY =

 PEANUTS 750

 CASHEWS 250;

 BRANDS, PRICE =

 PAWN 2

 KNIGHT 3

 BISHOPP 4

 KING 5;

 FORMULA = 15 10 6 2

 1 6 10 14;

ENDDATA

With the sets and data established, we can begin to enter our objective function and constraints. The

objective function of maximizing total revenue is straightforward. We can express this as:

MAX = @SUM(BRANDS(I): PRICE(I) * PRODUCE(I));

Our model has only one class of constraints: We can't use more nuts than we are supplied with on a

daily basis. In words, we would like to ensure:

For each nut i, the number of pounds of nut i used must be

less-than-or-equal-to the supply of nut i.

We can express this in LINGO as:

@FOR(NUTS(I):

 @SUM(BRANDS(J):

 OUNCES(I, J) * PRODUCE(J) / 16) <= SUPPLY(I)

);

We divide the sum on the left-hand side by 16 to convert from ounces to pounds.

68 CHAPTER 2

The Solution
Our completed blending model is:

MODEL:

SETS:

 NUTS: SUPPLY;

 BRANDS: PRICE, PRODUCE;

 NCROSSB(NUTS, BRANDS): FORMULA;

ENDSETS

DATA:

 NUTS, SUPPLY =

 PEANUTS 750

 CASHEWS 250;

 BRANDS, PRICE =

 PAWN 2

 KNIGHT 3

 BISHOPP 4

 KING 5;

 FORMULA = 15 10 6 2

 1 6 10 14;

ENDDATA

MAX = @SUM(BRANDS(I): PRICE(I) * PRODUCE(I));

@FOR(NUTS(I):

 @SUM(BRANDS(J):

 FORMULA(I, J) * PRODUCE(J) / 16) <= SUPPLY(I)

);

END

Model: CHESS

An abbreviated solution report for the model follows:

 Global optimal solution found.

 Objective value: 2692.308

 Infeasibilities: 0.000000

 Total solver iterations: 2

 Variable Value Reduced Cost

 PRODUCE(PAWN) 769.2308 0.0000000

PRODUCE(KNIGHT) 0.000000 0.1538461

PRODUCE(BISHOP) 0.000000 0.7692297E-01

 PRODUCE(KING) 230.7692 0.0000000

 Row Slack or Surplus Dual Price

 1 2692.308 1.000000

 2 0.000000 1.769231

 3 0.000000 5.461538

Solution to CHESS

USING SETS 69

This solution tells us Chess should produce 769.2 pounds of the Pawn mix and 230.8 pounds of King

for total revenue of $2692.30. Additional interesting information can also be found in the report. The

dual prices on the rows indicate Chess should be willing to pay up to $1.77 for an extra pound of

peanuts and $5.46 for an extra pound of cashews. If, for marketing reasons, Chess decides it must

produce at least some of the Knight and Bishop mixes, then the reduced cost figures tell us revenue

will decline by 15.4 cents with the first pound of Knight produced and 7.69 cents with the first pound

of Bishop produced.

Sparse Derived Set Example - Explicit List
In this example, we will introduce the use of a sparse derived set with an explicit listing. As you recall,

when we use this technique to define a sparse set, we must explicitly list all members belonging to the

set. This will usually be some small subset of the dense set resulting from the full Cartesian product of

the parent sets.

For our example, we will set up a PERT (Project Evaluation and Review Technique) model to

determine the critical path of tasks in a project involving the roll out of a new product. PERT is a

simple, but powerful, technique developed in the 1950s to assist managers in tracking the progress of

large projects. PERT is particularly useful in identifying the critical activities within a project, which,

if delayed, will delay the project as a whole. These time critical activities are referred to as the critical

path of a project. Having such insight into the dynamics of a project goes a long way in guaranteeing it

won't get sidetracked and become delayed. In fact, PERT proved so successful, the Polaris project that

it was first used on was completed 18 months ahead of schedule. PERT continues to be used

successfully on a wide range of projects. For more information on PERT, and a related technique

called CPM (Critical Path Method), please refer to Schrage (2005) or Winston (1995).

The formulation for this model is included in the SAMPLES subdirectory off the main LINGO

directory under the name PERT.

A Project Scheduling Problem
Wireless Widgets is about to launch a new product: The Solar Widget. In order to guarantee the launch

will occur on time, WW wants to perform a PERT analysis of the tasks leading up to the launch. Doing

so will allow them to identify the critical path of tasks that must be completed on time in order to

guarantee the Solar Widget's timely introduction. The tasks that must be accomplished before

introduction and their anticipated times for completion are listed in the table below:

Task Weeks

Finalize Design 10

Forecast Demand 14

Survey Competition 3

Set Prices 3

Schedule Production Run 7

Cost Out 4

Train Salesmen 10

70 CHAPTER 2

Certain of the tasks must be completed before others can commence. These precedence relations are

shown in the following graph:

Finalize
Design

Train
Salesman

Set
Prices

Survey
Competition

Cost Out
Schedule

Production Run
Forecast
Demand

Product Launch Precedence Relations

For instance, the two arrows originating from the Forecast Demand node indicate the task must be

completed before the Schedule Production Run and the Set Prices tasks may be started.

Our goal is to construct a PERT model for the Solar Widget's introduction in order to identify the tasks

on the critical path.

The Formulation
We will need a primitive set to represent the tasks of the project. We can add such a set to the model

using the set definition:

SETS:

 TASKS: TIME, ES, LS, SLACK;

ENDSETS

We have associated four attributes with the TASKS set. The definitions of the attributes are:

TIME Time to complete the task

ES Earliest possible start time for the task

LS Latest possible start time for the task

SLACK Difference between LS and ES for the task

The TIME attribute is given to us as data. We will compute the values of the remaining three attributes.

If a task has a 0 slack time, it means the task must start on time or the whole project will be delayed.

The collection of tasks with 0 slack time constitute the critical path for the project.

In order to compute the start times for the tasks, we will need the precedence relations. The precedence

relations can be viewed as a list of ordered pairs of tasks. For instance, the fact that the DESIGN task

must be completed before the FORECAST task could be represented as the ordered pair (DESIGN,

FORECAST). Creating a two-dimensional derived set on the TASKS set will allow us to input the list

of precedence relations. Specifically, we add the derived set definition PRED:

SETS:

 TASKS: TIME, ES, LS, SLACK;

 PRED(TASKS, TASKS);

ENDSETS

USING SETS 71

Next, we can input the TASKS set and task times in the data section by including:

DATA:

 TASKS, TIME =

 DESIGN 10

 FORECAST 14

 SURVEY 3

 DUMMY 0

 PRICE 3

 SCHEDULE 7

 COSTOUT 4

 TRAIN 10

 ;

ENDDATA

The set PRED is the sparse derived set with an explicit listing that we want to highlight in this

example. The set is a subset derived from the cross of the TASKS set upon itself. The set is sparse

because it contains only 8 out of a possible 49 members found in the complete cross of TASKS on

TASKS. The set is said to be an "explicit list" set, because we will explicitly list the members we want

included in the set. Explicitly listing the members of a sparse set may not be convenient in cases where

there are thousands of members to select from, but it does make sense whenever set membership

conditions are not well defined and the sparse set size is small relative to the dense alternative. Adding

the initialization of PRED to the data set give us:

DATA:

 TASKS, TIME =

 DESIGN 10

 FORECAST 14

 SURVEY 3

 DUMMY 0

 PRICE 3

 SCHEDULE 7

 COSTOUT 4

 TRAIN 10

 ;

 PRED =

 DESIGN, FORECAST,

 DESIGN, SURVEY,

 FORECAST, DUMMY

 FORECAST, SCHEDULE,

 SURVEY, PRICE,

 SCHEDULE, COSTOUT,

 PRICE, TRAIN,

 COSTOUT, TRAIN,

 DUMMY, PRICE

 ;

ENDDATA

Keep in mind that the first member of this set is the ordered pair (DESIGN, FORECAST)not just the

single task DESIGN. Therefore, this set has a total of 8 members that all correspond to a directed arc in

the precedence relations diagram.

72 CHAPTER 2

Now, with our sets and data established, we can turn our attention to building the formulas of the

model. We have three attributes to compute: earliest start (ES), latest start (LS), and slack time

(SLACK). The trick is computing ES and LS. Once we have these times, SLACK is merely the

difference of the two.

Lets start by coming up with a formula to compute ES. A task cannot begin until all its predecessor

tasks are completed. Thus, if we find the latest finishing time of all predecessors to a task, then we

have also found its earliest start time. Therefore, in words, the earliest start time for task t is equal to

the maximum over all predecessors of task t of the sum of the earliest start time of the predecessor plus

its completion time. The corresponding LINGO notation is:

@FOR(TASKS(J)| J #GT# 1:

 ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))

);

Note that we skip the computation for the first task by adding the conditional qualifier J #GT# 1. We

do this because the first task has no predecessors. We will give the first task an arbitrary start time as

shown below.

Computing LS is slightly trickier, but very similar to ES. In words, the latest time for task t to start is

the minimum over all successor tasks of the sum of the successor's earliest start minus the time to

perform task t. If task t starts any later than this, it will prohibit at least one successor from starting at

its earliest start time. Converting into LINGO syntax gives:

@FOR(TASKS(I)| I #LT# LTASK:

 LS(I) = @MIN(PRED(I, J): ES(J) - TIME(I))

);

Here, we omit the computation for the last task since it has no successor tasks.

Computing slack time is just the difference between LS and ES, and may be written as:

@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

We can set the start time of the first task to some arbitrary value. For our purposes, we will set it to 0

with the statement:

ES(1) = 0;

We have now input formulas for computing the values of all the variables with the exception of the

latest start time for the last task. It turns out, if the last project were started any later than its earliest

start time, the entire project would be delayed. So, by definition, the latest start time for the last project

is equal to its earliest start time. We can express this in LINGO using the equation:

LS(7) = ES(7);

USING SETS 73

This would work, but it's probably not the best way to express the relation. Suppose you were to add

some tasks to your model. You'd have to change the 7 in this equation to the new number of tasks was.

The whole idea behind LINGO's set-based modeling language is the equations in the model should be

independent of the data. Expressing the equation in this form violates data independence. Here's a

better way to do it:

LTASK = @SIZE(TASKS);

LS(LTASK) = ES(LTASK);

The @SIZE function returns the size of a set. In this case, it will return the value 7, as desired.

However, if we changed the number of tasks, @SIZE would also return the new, correct value. Thus,

we preserve the data independence of our model's equations.

74 CHAPTER 2

The Solution
The entire PERT formulation and portions of its solution appear below.

MODEL:

SETS:

 TASKS: TIME, ES, LS, SLACK;

 PRED(TASKS, TASKS);

ENDSETS

DATA:

 TASKS, TIME =

 DESIGN 10

 FORECAST 14

 SURVEY 3

 DUMMY 0

 PRICE 3

 SCHEDULE 7

 COSTOUT 4

 TRAIN 10

 ;

 PRED =

 DESIGN, FORECAST,

 DESIGN, SURVEY,

 FORECAST, DUMMY

 FORECAST, SCHEDULE,

 SURVEY, PRICE,

 SCHEDULE, COSTOUT,

 PRICE, TRAIN,

 COSTOUT, TRAIN,

 DUMMY, PRICE

 ;

ENDDATA

@FOR(TASKS(J)| J #GT# 1:

 ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))

);

@FOR(TASKS(I)| I #LT# LTASK:

 LS(I) = @MIN(PRED(I, J): LS(J) - TIME(I));

);

@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

ES(1) = 0;

LTASK = @SIZE(TASKS);

LS(LTASK) = ES(LTASK);

END

Model: PERT

USING SETS 75

 Feasible solution found.

 Total solver iterations: 0

 Variable Value

 LTASK 7.000000

 ES(DESIGN) 0.0000000

 ES(FORECAST) 10.00000

 ES(SURVEY) 10.00000

 ES(PRICE) 24.00000

 ES(SCHEDULE) 24.00000

 ES(COSTOUT) 31.00000

 ES(TRAIN) 35.00000

 LS(DESIGN) 0.0000000

 LS(FORECAST) 10.00000

 LS(SURVEY) 21.00000

 LS(PRICE) 32.00000

 LS(SCHEDULE) 24.00000

 LS(COSTOUT) 31.00000

 LS(TRAIN) 35.00000

 SLACK(DESIGN) 0.0000000

 SLACK(FORECAST) 0.0000000

 SLACK(SURVEY) 11.00000

 SLACK(PRICE) 8.000000

 SLACK(SCHEDULE) 0.0000000

 SLACK(COSTOUT) 0.0000000

 SLACK(TRAIN) 0.0000000

Solution to PERT

The interesting values are the slacks for the tasks. Both SURVEY and PRICE have slack in their start times

of 11 weeks and 8 weeks, respectively. Their start times may be delayed by as much as these slack values

without compromising the completion time of the entire project. The tasks DESIGN, FORECAST,

SCHEDULE, COSTOUT, and TRAIN, on the other hand, have 0 slack times. These tasks constitute the

critical path for the project and, if any of their start times are delayed, the entire project will be delayed.

Management will want to pay close attention to these critical path projects to be sure they start on time and

are completed within the allotted amount of time. Finally, the ES(TRAIN) value of 35 tells us the estimated

time to the start of the roll out of the new Solar Widget will be 45 weeks _35 weeks to get to the start of

training, plus 10 weeks to complete training.

A Sparse Derived Set Using a Membership Filter
In this example, we introduce the use of a sparse derived set with a membership filter. Using a

membership filter is the third method for defining a derived set. When you define a set using this

method, you specify a logical condition each member of the set must satisfy. LINGO then filters out

potential set members that don't satisfy the membership condition.

For our example, we will formulate a matching problem. In a matching problem, there are N objects

we want to match into pairs at minimum cost. The pair (I,J) is indistinguishable from the pair (J,I).

Therefore, we arbitrarily require I be less than J in the pair. Formally, we require I and J make a set of

ordered pairs. In other words, we do not wish to generate redundant ordered pairs of I and J, but only

those with I less than J. This requirement that I be less than J will form our membership filter.

76 CHAPTER 2

The file containing this model may be found in the SAMPLES subdirectory off the main LINGO

directory under the name MATCHD.

A Matching Problem
Suppose you manage your company’s strategic planning department. You have a total of eight analysts

in the department. Furthermore, your department is about to move into a new suite of offices. There

are a total of four offices in the new suite and you need to match up your analysts into 4 pairs, so each

pair can be assigned to one of the new offices. Based on past observations, you know some of the

analysts work better together than they do with others. In the interest of departmental peace, you would

like to come up with a pairing of analysts that results in minimal potential conflicts. To this goal, you

have come up with a rating system for pairing your analysts. The scale runs from 1 to 10, with a 1

rating of a pair meaning the two get along fantastically. Whereas, a rating of 10 means all sharp objects

should be removed from the pair’s office in anticipation of mayhem. The ratings appear in the

following table:

Analysts 1 2 3 4 5 6 7 8

1 - 9 3 4 2 1 5 6

2 - - 1 7 3 5 2 1

3 - - - 4 4 2 9 2

4 - - - - 1 5 5 2

5 - - - - - 8 7 6

6 - - - - - - 2 3

7 - - - - - - - 4

Analysts’ Incompatibility Ratings

Since the pairing of analyst I with analyst J is indistinguishable from the pairing of J with I, we have

only included the above diagonal elements in the table. Our problem is to find the pairings of analysts

that minimizes the sum of the incompatibility ratings of the paired analysts.

The Formulation
The first set of interest in this problem is the set of analysts. This is a primitive set that can be declared

simply as:

SETS:

 ANALYSTS;

ENDSETS

The final set we want to construct is a set consisting of all the potential pairings. This will be a derived

set that we will build by taking the cross of the ANALYST set on itself. As a first pass, we could build

the dense derived set:

PAIRS(ANALYSTS, ANALYST);

USING SETS 77

This set, however, would include both PAIRS(I, J) and PAIRS(J, I). Since only one of these pairs is

required, the second is wasteful. Furthermore, this set will include "pairs" of the same analyst of the

form PAIRS(I, I). As much as each of the analysts might like an office of their own, such a solution is

not feasible. The solution is to put a membership filter on our derived set requiring each pair (I,J) in

the final set to obey the condition J be greater than I. We do this with the set definition:

PAIRS(ANALYSTS, ANALYSTS) | &2 #GT# &1;

The start of the membership filter is denoted with the vertical bar character (|). The &1 and &2

symbols in the filter are known as set index placeholders. Set index placeholders are valid only in

membership filters. When LINGO constructs the PAIRS set, it generates all combinations in the cross

of the ANALYSTS set on itself. Each combination is then "plugged" into the membership filter to see if

it passes the test. Specifically, for each pair (I,J) in the cross of the ANALYST set on itself, I is

substituted into the placeholder &1 and J into &2 and the filter is evaluated. If the filter evaluates to

true, (I,J) is added to the pairs set. Viewed in tabular form, this leaves us with just the diagonal

elements of the (I,J) pairing table.

We will also be concerned with two attributes of the PAIRS set. First, we will need an attribute that

corresponds to the incompatibility rating of the pairings. Second, we will need an attribute to indicate

if analyst I is paired with analyst J. We will call these attributes RATING and MATCH. We append

them to the PAIRS set definition as follows:

PAIRS(ANALYSTS, ANALYSTS) | &2 #GT# &1:

 RATING, MATCH;

The completed sets section containing both set declarations is then:

SETS:

 ANALYSTS;

 PAIRS(ANALYSTS, ANALYSTS) | &2 #GT# &1:

 RATING, MATCH;

ENDSETS

Next, we initialize the ANALYSTS set and the RATING attribute to the incompatibility ratings in the

data section:

DATA:

 ANALYSTS = 1..8;

 RATING =

 9 3 4 2 1 5 6

 1 7 3 5 2 1

 4 4 2 9 2

 1 5 5 2

 8 7 6

 2 3

 4;

ENDDATA

We will use the convention of letting MATCH(I, J) be 1 if we pair analyst I with analyst J, otherwise

0. Given this, the MATCH attribute contains the decision variables for the model.

78 CHAPTER 2

Our objective is to minimize the sum of the incompatibility ratings of all the final pairings. This is just

the inner product on the RATING and MATCH attributes and is written as:

MIN = @SUM(PAIRS(I, J):

 RATING(I, J) * MATCH(I, J));

There is just one class of constraints in the model. In words, it is:

For each analyst, ensure that the analyst is paired with exactly one other analyst.

Putting the constraint into LINGO syntax, we get:

@FOR(ANALYSTS(I):

 @SUM(PAIRS(J, K) | J #EQ# I #OR# K #EQ# I:

 MATCH(J, K)) = 1

);

The feature of interest in this constraint is the conditional qualifier (J #EQ# I #OR# K #EQ# I) on the

@SUM function. For each analyst I, we sum up all the MATCH variables that contain I and set them

equal to 1. In so doing, we guarantee analyst I will be paired up with exactly one other analyst. The

conditional qualifier guarantees we only sum up the MATCH variables that include I in its pairing.

One other feature is required in this model. We are letting MATCH(I, J) be 1 if we are pairing I with J.

Otherwise, it will be 0. Unless specified otherwise, LINGO variables can assume any value from 0 to

infinity. Because we want MATCH to be restricted to being only 0 or 1, we need to apply the @BIN

variable domain function to the MATCH attribute. Variable domain functions are used to restrict the

values a variable can assume. Unlike constraints, variable domain functions do not add equations to a

model. The @BIN function restricts a variable to being binary (i.e., 0 or 1). When you have a model

that contains binary variables, it is said to be an integer programming (IP) model. IP models are much

more difficult to solve than models that contain only continuous variables. Carelessly formulated large

IPs (with several hundred integer variables or more) can literally take forever to solve! Thus, you

should limit the use of binary variables whenever possible. To apply @BIN to all the variables in the

MATCH attribute, add the @FOR expression:

@FOR(PAIRS(I, J): @BIN(MATCH(I, J)));

The Solution
The entire formulation for our matching example and parts of its solution appear below.

USING SETS 79

MODEL:

SETS:

 ANALYSTS;

 PAIRS(ANALYSTS, ANALYSTS) | &2 #GT# &1:

 RATING, MATCH;

ENDSETS

DATA:

 ANALYSTS = 1..8;

 RATING =

 9 3 4 2 1 5 6

 1 7 3 5 2 1

 4 4 2 9 2

 1 5 5 2

 8 7 6

 2 3

 4;

ENDDATA

MIN = @SUM(PAIRS(I, J):

 RATING(I, J) * MATCH(I, J));

@FOR(ANALYSTS(I):

 @SUM(PAIRS(J, K) | J #EQ# I #OR# K #EQ# I:

 MATCH(J, K)) = 1

);

@FOR(PAIRS(I, J): @BIN(MATCH(I, J)));

END

Model: MATCHD

80 CHAPTER 2

 Global optimal solution found.

 Objective value: 6.000000

 Extended solver steps: 0

 Total solver iterations: 0

 Variable Value Reduced Cost

 MATCH(1, 2) 0.0000000 9.000000

 MATCH(1, 3) 0.0000000 3.000000

 MATCH(1, 4) 0.0000000 4.000000

 MATCH(1, 5) 0.0000000 2.000000

 MATCH(1, 6) 1.000000 1.000000

 MATCH(1, 7) 0.0000000 5.000000

 MATCH(1, 8) 0.0000000 6.000000

 MATCH(2, 3) 0.0000000 1.000000

 MATCH(2, 4) 0.0000000 7.000000

 MATCH(2, 5) 0.0000000 3.000000

 MATCH(2, 6) 0.0000000 5.000000

 MATCH(2, 7) 1.000000 2.000000

 MATCH(2, 8) 0.0000000 1.000000

 MATCH(3, 4) 0.0000000 4.000000

 MATCH(3, 5) 0.0000000 4.000000

 MATCH(3, 6) 0.0000000 2.000000

 MATCH(3, 7) 0.0000000 9.000000

 MATCH(3, 8) 1.000000 2.000000

 MATCH(4, 5) 1.000000 1.000000

 MATCH(4, 6) 0.0000000 5.000000

 MATCH(4, 7) 0.0000000 5.000000

 MATCH(4, 8) 0.0000000 2.000000

 MATCH(5, 6) 0.0000000 8.000000

 MATCH(5, 7) 0.0000000 7.000000

 MATCH(5, 8) 0.0000000 6.000000

 MATCH(6, 7) 0.0000000 2.000000

 MATCH(6, 8) 0.0000000 3.000000

 MATCH(7, 8) 0.0000000 4.000000

Solution to MATCHD

From the objective value, we know the total sum of the incompatibility ratings for the optimal pairings

is 6. Scanning the Value column for 1s, we find the optimal pairings: (1,6), (2,7), (3,8), and (4,5).

Summary
In this chapter, we’ve discussed the concept of sets, how to declare sets, and demonstrated the power

and flexibility of set-based modeling. You should now have a foundation of knowledge in the

definition and use of both primitive and derived sets. The next chapter will discuss the use of variable

domain functions, which were briefly introduced in this chapter when we used @BIN in the previous

matching model.

81

3 Using Variable Domain
Functions

Unless specified otherwise, variables in a LINGO model default to being non-negative and continuous.

More specifically, variables can assume any real value from zero to positive infinity. In many cases,

this default domain for a variable may be inappropriate. For instance, you may want a variable to

assume negative values, or you might want a variable restricted to purely integer values. LINGO

provides seven variable domain functions, which allow you to override the default domain of a

variable. The names of these functions and a brief description of their usage are:

@GIN restricts a variable to being an integer value,

@BIN makes a variable binary (i.e., 0 or 1),

@FREE allows a variable to assume any real value, positive or negative,

@BND limits a variable to fall within a finite range,

@SOS defines a set of binary variables and places restrictions on their collective

values,

@CARD defines a set of binary variables and places an upper limit on their sum, and

@SEMIC restricts variables to being either zero or grater than a specified constant.

@PRIORITY used to assign branching priorities to variables.

In the remainder of this section, we'll investigate the mechanics of using these functions, and present a

number of examples illustrating their usage.

Integer Variables
LINGO gives the user the ability to define two types of integer variablesgeneral and binary. A

general integer variable is required to be a whole number. A binary integer variable is further required

to be either zero or one. Any model containing one or more integer variables is referred to as an

integer programming (IP) model.

In many modeling projects, you will be faced with Yes/No types of decisions. Some examples would

include Produce/Don’t Produce, Open Plant/Close Plant, Supply Customer I from Plant J/Don’t

Supply Customer I from Plant J, and Incur a Fixed Cost/Don’t Incur a Fixed Cost. Binary variables are

the standard method used for modeling these Yes/No decisions.

82 CHAPTER 3

General integer variables are useful where rounding of fractional solutions is problematic. For

instance, suppose you have a model that dictates producing 5,121,787.5 blue crayons in your crayon

factory. Whether you round the solution to 5,121,787 or 5,121,788 is inconsequential. On the other

hand, suppose your planning model for NASA determines the optimal number of space stations to

deploy is 1.5. Because building 0.5 space stations is impossible, you must very carefully consider how

to round the results. When whole numbers are required and rounding can make a significant

difference, general integer variables are appropriate.

LINGO does not simply round or truncate values to come up with an integer answer. Rounding of a

solution will typically lead to either infeasible or suboptimal solutions. To illustrate this point, consider

the small model:

MAX = X;

X + Y = 25.5;

X <= Y;

By examining this model, one can deduce the optimal solution is X=Y=12.75. Now, suppose we want

an optimal solution with X being integer. Simply rounding X to 13 would make the model infeasible,

because there would be no value for Y that would satisfy both the constraints. Clearly, the optimal

solution is X=12 and Y=13.5. Unfortunately, “eyeballing” the optimal solution on larger models with

many integer variables is virtually impossible.

To solve these problems, LINGO performs a complex algorithm called branch-and-bound that

implicitly enumerates all combinations of the integer variables to determine the best feasible answer to

an IP model. Because of the extra computation time required by this algorithm, formulating your

problem to avoid the use of integer variables is advised whenever possible. Even so, although

computation times may grow dramatically when you add integer variables, it often makes sense to ask

LINGO for integer solutions when fractional values are of little or no use.

General Integer Variables
By default, LINGO assumes all variables in a model are continuous. In many applications, fractional

values may be undesirable. You won’t be able to hire two-thirds of a person, or sell half an

automobile. In these instances, you will want to make use of the general integer variable domain

function, @GIN.

The syntax of the @GIN function is:

@GIN(variable_name);

VARIABLE DOMAIN FUNCTIONS 83

where variable_name is the name of the variable you wish to make general integer. The @GIN

function may be used in a model anywhere you would normally enter a constraint. The @GIN function

can be embedded in an @FOR statement to allow you to easily set all, or selected, variables of an

attribute to be general integers. Some examples of @GIN are:

Example 1: @GIN(X);

makes the scalar variable X general integer,

Example 2: @GIN(PRODUCE(5));

makes the variable PRODUCE(5) general integer,

Example 3: @FOR(DAYS(I): @GIN(START(I)));

makes all the variables of the START attribute general integer.

General Integer Example - CompuQuick Product-Mix
To illustrate the use of @GIN in a full model, we will consider a variation on the CompuQuick

Corporation model in Chapter 1, Getting Started with LINGO. CompuQuick has successfully

rebalanced the Standard computer’s assembly line. In so doing, they are now able to build an

additional 3 Standard computers on the line each day, for a daily total of 103 computers. As a result,

the constraint on the Standard’s assembly line will now be:

STANDARD <= 103;

Incorporating this constraint into the original CompuQuick model, we have:

! Here is the total profit objective function;

MAX = 100 * STANDARD + 150 * TURBO;

! Constraints on the production line capacity;

STANDARD <= 103;

TURBO <= 120;

! Our labor supply is limited;

STANDARD + 2 * TURBO <= 160;

84 CHAPTER 3

Solving this modified model, we get the solution:

Global optimal solution found.

Objective value: 14575.00

Infeasibilities: 0.000000

Total solver iterations: 0

Model Class: LP

Total variables: 2

Nonlinear variables: 0

Integer variables: 0

Total constraints: 4

Nonlinear constraints: 0

Total nonzeros: 6

Nonlinear nonzeros: 0

 Variable Value Reduced Cost

 STANDARD 103.0000 0.000000

 TURBO 28.50000 0.000000

 Row Slack or Surplus Dual Price

 1 14575.00 1.000000

 2 0.000000 25.00000

 3 91.50000 0.000000

 4 0.000000 75.00000

Note the new optimal number of Turbo computers, 28.5, is no longer an integer quantity. CompuQuick

must produce whole numbers of computers each day. To guarantee this, we add @GIN statements to

make both the STANDARD and TURBO variables general integer. The revised model follows:

! Here is the total profit objective function;

MAX = 100 * STANDARD + 150 * TURBO;

! Constraints on the production line capacity;

STANDARD <= 103;

TURBO <= 120;

! Our labor supply is limited;

STANDARD + 2 * TURBO <= 160;

! Integer values only;

@GIN(STANDARD); @GIN(TURBO);

VARIABLE DOMAIN FUNCTIONS 85

Solving the modified model results in the integer solution we were hoping for:

Global optimal solution found.

Objective value: 14550.00

Objective bound: 14550.00

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 0

Model Class: PILP

Total variables: 2

Nonlinear variables: 0

Integer variables: 2

Total constraints: 4

Nonlinear constraints: 0

Total nonzeros: 6

Nonlinear nonzeros: 0

 Variable Value Reduced Cost

 STANDARD 102.0000 -100.0000

 TURBO 29.00000 -150.0000

 Row Slack or Surplus Dual Price

 1 14550.00 1.000000

 2 1.000000 0.000000

 3 91.00000 0.000000

 4 0.000000 0.000000

Note that we now have a two new solution statistics: Extended solver steps and Objective bound.

For models with integer variables, such as this one, the extended solver steps statistic is a tally of the

number of times integer variables had to be forced to an integer value during the branch-and-bound

solution procedure. In general, this value is not of much practical use to the normal user, other than to

give you a notion of how hard LINGO is working at finding an integer solution. If the number of steps

gets quite large, LINGO is having a hard time finding good integer solutions to your model. In this

case, given that the model is quite small, LINGO's preprocessor was able to find the optimal solution

without having to resort to the branch-and-bound solver.

The objective bound statistic gives us a bound on the best possible solution for the model. In other

words, there is no feasible solution to the model with an objective value better than the objective

bound statistic. Here we see that the bound and the objective value are both equal, which is further

evidence that we have a globally optimal solution. On larger models that take a while to run, you may

decide to interrupt LINGO before a global solution is found. In this case, the objective bound and the

objective value will probably not agree. In this case, the bound will let you know how far you are

from the true optimal solution. You may also find it useful to interrupt the solver once the bound and

objective value get close to one another, with the idea being that any further potential gains in the best

objective aren't worth the additional solve time.

86 CHAPTER 3

Also of interest is the Model Class, which has changed from LP (Linear Program) to PILP (Pure

Integer Linear Program).

General Integer Example - Staff-Scheduling
Recalling the staff-scheduling example in Chapter 2, Using Sets, for the Pluto hot dog stand, you will

remember the solution told us how many employees to start on any given day of the week. You may

also remember the optimal solution had us starting whole numbers of employees on every day even

though we weren’t using integer variables. It turns out this was just a happy coincidence. Let’s return

to the staffing model to demonstrate this.

In the original staffing model, we required the following number of people on duty for the seven days

of the week: 20, 16, 13, 16, 19, 14, and 12. Let’s change the second day requirement from 16 to 12 and

the third day’s requirement from 13 to 18. Incorporating this change into the model, we have:

MODEL:

SETS:

 DAYS: REQUIRED, START;

ENDSETS

DATA:

 DAYS = MON TUE WED THU FRI SAT SUN;

 REQUIRED = 20 12 18 16 19 14 12;

ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)))

 >= REQUIRED(J)

);

END

After making this modest change and re-solving, we no longer have a pure integer solution. In fact, all

the START variables are now fractional as the following, abbreviated solution report shows:

Global optimal solution found.

Objective value: 23.66667

Total solver iterations: 0

 Variable Value Reduced Cost

 START(MON) 9.666667 0.000000

 START(TUE) 2.000000 0.000000

 START(WED) 1.666667 0.000000

 START(THU) 5.666667 0.000000

 START(FRI) 0.000000 0.000000

 START(SAT) 4.666667 0.000000

 START(SUN) 0.000000 0.333333

VARIABLE DOMAIN FUNCTIONS 87

In this particular model, we can always round the solution up and remain feasible. (In most models, we

won’t tend to be as lucky. Rounding the continuous solution in one direction or the other can lead to an

infeasible solution.) There may be some extra staff on some of the days, but, by rounding up, we will

never have a day without enough staff. Rounding the continuous solution up gives an objective of

10+2+2+6+5=25 employees.

Now, let’s apply integer programming to the revised staffing model. First, we will need to use the

@GIN function to make the START variables general integers. We could do this by adding the

following to our model:

@GIN(START(MON));

@GIN(START(TUE));

@GIN(START(WED));

@GIN(START(THU));

@GIN(START(FRI));

@GIN(START(SAT));

@GIN(START(SUN));

However, an easier approach would be to embed the @GIN function in an @FOR function, so we can

apply @GIN to each member of START using the single statement:

@FOR(DAYS(I): @GIN(START(I)));

This new statement says, for each day of the week, make the variable corresponding to the number of

people to start on that day a general integer variable.

After inserting this @FOR statement at the end of our model and reoptimizing, we get the pure integer

solution:

Global optimal solution found.

Objective value: 24.00000

Extended solver steps: 0

Total solver iterations: 6

 Variable Value Reduced Cost

 START(MON) 10.00000 1.000000

 START(TUE) 2.000000 1.000000

 START(WED) 1.000000 1.000000

 START(THU) 6.000000 1.000000

 START(FRI) 0.000000 1.000000

 START(SAT) 5.000000 1.000000

 START(SUN) 0.000000 1.000000

Note that the objective of 24 beats the objective of 25 obtained by rounding. Thus, had we gone with

the rounded solution, we would have hired one more employee than required.

88 CHAPTER 3

Binary Integer Variables
A binary integer variable—also called a 0/1 variable—is a special case of an integer variable that is

required to be either zero or one. It’s often used as a switch to model Yes/No decisions.

The syntax of the @BIN function is:

@BIN(variable_name);

where variable_name is the name of the variable you wish to make binary. The @BIN function may be

used in a model anywhere you would normally enter a constraint. The @BIN function can be

embedded in an @FOR statement to allow you to easily set all, or selected, variables of an attribute to

be binary integers. Some examples of @BIN are:

Example 1: @BIN(X);

 makes the scalar variable, X, a binary integer,

Example 2: @BIN(INCLUDE(4));

 makes the variable INCLUDE(4) binary,

Example 3: @FOR(ITEMS: @BIN(INCLUDE));

 makes all variables in the INCLUDE attribute binary.

Binary Integer Example - The Knapsack Problem
The knapsack model is a classic problem that uses binary variables. In this problem, you have a group

of items you want to pack into your knapsack. Unfortunately, the capacity of the knapsack is limited

such that it is impossible to include all items. Each item has a certain value, or utility, associated with

including it in the knapsack. The problem is to find the subset of items to include in the knapsack that

maximizes the total value of the load without exceeding the capacity of the knapsack.

Of course, the knapsack euphemism shouldn’t lead one to underestimate the importance of this class of

problem. The “knapsack” problem can be applied to many situations. Some examples are vehicle

loading, capital budgeting, and strategic planning.

VARIABLE DOMAIN FUNCTIONS 89

The Problem
As an example, suppose you are planning a picnic. You’ve constructed a list of items you would like to

carry with you on the picnic. Each item has a weight associated with it and your knapsack is limited to

carrying no more than 15 pounds. You have also come up with a 1 to 10 rating for each item, which

indicates how strongly you want to include the particular item in the knapsack for the picnic. This

information is listed below:

Item Weight Rating

Ant Repellent 1 2

Beer 3 9

Blanket 4 3

Bratwurst 3 8

Brownies 3 10

Frisbee 1 6

Salad 5 4

Watermelon 10 10

The Formulation
We have only one set in this model—the set of items we are considering carrying in the knapsack. This

is a primitive set, and we can define it in the sets section:

SETS:

 ITEMS: INCLUDE, WEIGHT, RATING;

ENDSETS

We have associated the three attributes INCLUDE, WEIGHT, and RATING with the set. INCLUDE

will be the binary variables used to indicate if an item is to be included in the knapsack. WEIGHT is

used to store the weight of each item, and RATING is used to store each item's rating.

Next, we will need to construct a data section to input the set members of set ITEMS and their

associated weights and ratings. Here is a data section that accomplishes the task:

DATA:

 ITEMS WEIGHT RATING =
 ANT_REPEL 1 2

 BEER 3 9

 BLANKET 4 3

 BRATWURST 3 8

 BROWNIES 3 10

 FRISBEE 1 6

 SALAD 5 4

 WATERMELON 10 10;

 KNAPSACK_CAPACITY = 15;
ENDDATA

Note that we have also included the knapsack’s capacity in the data section. This is a good practice in

that it isolates data from the constraints of the model.

90 CHAPTER 3

Given that all the sets and data have been defined, we can turn to building our objective function. We

want to maximize the sum of the ratings of the items included in our knapsack. Note that INCLUDE(I)

will be 1 if item I is included. Otherwise, it will be 0. Therefore, if we take the inner product of

INCLUDE with the RATING attribute, we will get the overall rating of a combination of included

items. Putting this into LINGO syntax, we have:

MAX = @SUM(ITEMS: RATING * INCLUDE);

Note that we did not specify a set index variable in the @SUM function. Since all the attributes in the

function (RATING and INCLUDE) are defined on the index set (ITEMS), we can drop the set index

variable and use implicit indexing.

Our next step is to input our constraints. There is only one constraint in this model. Specifically, we

must not exceed the capacity of the knapsack. In a similar manner as the objective, we compute the

weight of a given combination of items by taking the inner product of the INCLUDE attribute with the

WEIGHT attribute. This sum must be less-than-or-equal-to the capacity of the knapsack. In LINGO

syntax, we express this as:

@SUM(ITEMS: WEIGHT * INCLUDE) <= KNAPSACK_CAPACITY;

Finally, we must make the INCLUDE variable binary. We could do this by adding:

@BIN(INCLUDE(@INDEX(ANT_REPEL)));

@BIN(INCLUDE(@INDEX(BEER)));

@BIN(INCLUDE(@INDEX(BLANKET)));

@BIN(INCLUDE(@INDEX(BRATWURST)));

@BIN(INCLUDE(@INDEX(BROWNIES)));

@BIN(INCLUDE(@INDEX(FRISBEE)));

@BIN(INCLUDE(@INDEX(SALAD)));

@BIN(INCLUDE(@INDEX(WATERMELON)));

(Note that the @INDEX function simply returns the index of a primitive set member in its set.)

However, a more efficient and data independent way of doing this would be to embed an @BIN

function in an @FOR function as follows:

@FOR(ITEMS: @BIN(INCLUDE));

VARIABLE DOMAIN FUNCTIONS 91

The Solution
The entire model for our knapsack example and excerpts from its solution are listed below. The model

formulation file may be found in your SAMPLES subdirectory off the main LINGO directory under the

name KNAPSACK:

MODEL:

 SETS:
 ITEMS: INCLUDE, WEIGHT, RATING;

ENDSETS

DATA:

 ITEMS WEIGHT RATING =

 ANT_REPEL 1 2

 BEER 3 9

 BLANKET 4 3

 BRATWURST 3 8

 BROWNIES 3 10

 FRISBEE 1 6

 SALAD 5 4

 WATERMELON 10 10;

 KNAPSACK_CAPACITY = 15;

ENDDATA

MAX = @SUM(ITEMS: RATING * INCLUDE);

@SUM(ITEMS: WEIGHT * INCLUDE) <=

 KNAPSACK_CAPACITY;

@FOR(ITEMS: @BIN(INCLUDE));

END

Model: KNAPSACK

92 CHAPTER 3

Global optimal solution found.

Objective value: 38.00000

Objective bound: 38.00000

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 0

 Variable Value Reduced Cost

 INCLUDE(ANT_REPEL) 1.000000 -2.000000

 INCLUDE(BEER) 1.000000 -9.000000

 INCLUDE(BLANKET) 1.000000 -3.000000

 INCLUDE(BRATWURST) 1.000000 -8.000000

 INCLUDE(BROWNIES) 1.000000 -10.00000

 INCLUDE(FRISBEE) 1.000000 -6.000000

 INCLUDE(SALAD) 0.000000 -4.000000

INCLUDE(WATERMELON) 0.000000 -10.00000

Solution to KNAPSACK

Your knapsack is fully packed at 15 pounds, and we take along everything, but the salad and

watermelon. Your lunch of beer, bratwurst and brownies may not be very healthy, but at least you will

be happy!

An Extension - Modeling a Logical Or Condition
Binary variables are very useful for modeling logical conditions. For instance, suppose your physician

reviews your picnic plans and, fearing for your health, insists you must take either the salad or the

watermelon along on your picnic. You could add this condition to your model by simply appending the

constraint:

INCLUDE(@INDEX(SALAD)) + INCLUDE(@INDEX(WATERMELON)) >= 1;

In order to satisfy this constraint, either the salad, the watermelon, or both must be included in the

knapsack. Unfortunately, constraints of this form are not good practice in that they are not data

independent. Suppose your list of picnic items changes. You may need to modify this new constraint to

reflect those changes. A well formulated model should require no changes to the constraints as a result

of changes to the data. The following model demonstrates a data independent way of incorporating

your physician’s request (additions to the original model are listed in bold):

VARIABLE DOMAIN FUNCTIONS 93

MODEL:

 SETS:
 ITEMS: INCLUDE, WEIGHT, RATING;

 MUST_EAT_ONE(ITEMS);

ENDSETS

DATA:

 ITEMS WEIGHT RATING =

 ANT_REPEL 1 2

 BEER 3 9

 BLANKET 4 3

 BRATWURST 3 8

 BROWNIES 3 10

 FRISBEE 1 6

 SALAD 5 4

 WATERMELON 10 10;

 MUST_EAT_ONE = SALAD WATERMELON;

 KNAPSACK_CAPACITY = 15;

ENDDATA

MAX = @SUM(ITEMS: RATING * INCLUDE);

@SUM(ITEMS: WEIGHT * INCLUDE) <=

 KNAPSACK_CAPACITY;

@FOR(ITEMS: @BIN(INCLUDE));

@SUM(MUST_EAT_ONE(I): INCLUDE(I)) >= 1;

END

We have derived a set called MUST_EAT_ONE from the original picnic items, and used an explicit list

to include the items we must carry as members. Then, at the end of the model, we added a constraint

that forces at least one of the “must eat” items into the solution.

94 CHAPTER 3

For those interested, the solution to the modified model is:

Global optimal solution found.

Objective value: 37.00000

Objective bound: 37.00000

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 0

 Variable Value Reduced Cost

 INCLUDE(ANT_REPEL) 0.000000 -2.000000

 INCLUDE(BEER) 1.000000 -9.000000

 INCLUDE(BLANKET) 0.000000 -3.000000

 INCLUDE(BRATWURST) 1.000000 -8.000000

 INCLUDE(BROWNIES) 1.000000 -10.00000

 INCLUDE(FRISBEE) 1.000000 -6.000000

 INCLUDE(SALAD) 1.000000 -4.000000

INCLUDE(WATERMELON) 0.000000 -10.00000

In short, we drop the ant repellent and blanket, and replace them with the salad.

Binary Integer Example – Product-Mix with Fixed Costs
In many situations, it is not unusual for a particular activity to incur a fixed cost. Examples where one

might incur a fixed cost include opening a plant, producing a product, paying a commission on an

order to buy stock, or retooling an assembly line.

In this next example, we will put together a product-mix model much like the CompuQuick example

from Chapter 1, Getting Started with LINGO. In this case, however, there is a fixed setup charge

associated with the production of an item. In other words, whenever we produce any amount of a

product, we incur a fixed charge independent of the output level of the product.

The Problem
You’re the manager of an airplane plant and you want to determine the best product-mix of your six

models to produce. The six models currently under production are the Rocket, Meteor, Streak, Comet,

Jet, and Biplane. Each plane has a known profit contribution. There is also a fixed cost associated with

the production of any plane in a period. The profit and fixed costs are given in the following table:

Plane Profit Setup

Rocket 30 35

Meteor 45 20

Streak 24 60

Comet 26 70

Jet 24 75

Biplane 30 30

VARIABLE DOMAIN FUNCTIONS 95

Each plane is produced using six raw materials—steel, copper, plastic, rubber, glass, and paint. The

units of these raw materials required by the planes as well as the total availability of the raw materials

are:

 Rocket Meteor Streak Comet Jet Biplane Available

Steel 1 4 0 4 2 1 800

Copper 4 5 3 0 1 0 1160

Plastic 0 3 8 0 1 0 1780

Rubber 2 0 1 2 1 5 1050

Glass 2 4 2 2 2 4 1360

Paint 1 4 1 4 3 4 1240

The problem is to determine the final mix of products that maximizes net profit (gross profit - setup

costs) without exceeding the availability of any raw material. Your brand new Meteor model has the

highest profit per unit of anything you’ve ever manufactured and the lowest setup cost. Maybe you

should build nothing but Meteors? Then again, maybe not.

The Formulation
As you might guess, we will need two primitive sets in this model—one to represent the airplane

models and one to represent the raw materials. We can construct these sets as follows:

PLANES:

 PROFIT, SETUP, QUANTITY, BUILD;

RESOURCES: AVAILABLE;

We added the following four attributes to the PLANES set:

 PROFIT stores profit contribution for the plane,

 SETUP stores setup cost to begin producing the plane,

 QUANTITY a variable for quantity of planes to produce, and

 BUILD a binary variable, 1 if we produce the plane, else 0.

The AVAILABLE attribute on the RESOURCES set will be used to store the availability of each

resource.

We will also need to derive a dense set by taking the cross of the RESOURCES set with the PLANES

set. We need this set in order to define a USAGE attribute to store the resource usage of each plane.

We will call this derived set RXP, which, after inclusion into the sets section, gives us:

SETS:

 PLANES:

 PROFIT, SETUP, QUANTITY, BUILD;

 RESOURCES: AVAILABLE;

 RXP(RESOURCES, PLANES): USAGE;

ENDSETS

96 CHAPTER 3

In our data section, we will initialize the set members: PLANES and RESOURCES, along with the data

attributes: PROFIT, SETUP, AVAILABLE, and USAGE. Here is the data section we will use:

DATA:

 PLANES PROFIT SETUP =

 ROCKET 30 35

 METEOR 45 20

 STREAK 24 60

 COMET 26 70

 JET 24 75

 BIPLANE 30 30;

 RESOURCES AVAILABLE =

 STEEL,800 COPPER,1160 PLASTIC,1780

 RUBBER,1050 GLASS,1360 PAINT,1240;

 USAGE = 1 4 0 4 2 0

 4 5 3 0 1 0

 0 3 8 0 1 0

 2 0 1 2 1 5

 2 4 2 2 2 4

 1 4 1 4 3 4;

ENDDATA

With the sets and data sections complete, we can now turn our attention to the objective function. For

our objective, we want to maximize total net profit. Specifically, this is computed as the sum of profit

times quantity produced of each plane, minus its setup cost multiplied by the BUILD binary variable.

In LINGO syntax, we express the objective as:

MAX = @SUM(PLANES:

 PROFIT * QUANTITY - SETUP * BUILD);

Since all attributes are defined on the index set, we can drop the set index variable and use implicit

indexing.

For our first set of constraints, we want to be sure raw material supplies are not exceeded. In words,

what we want is:

For each resource i, the sum over each plane j of the quantity of plane j built

 multiplied by the resource usage of resource i by plane j must be

 less-than-or-equal-to the availability of resource i.

VARIABLE DOMAIN FUNCTIONS 97

Given the vagaries of the English language, it's highly likely one would find the equivalent LINGO

notation more concise and easier to understand:

@FOR(RESOURCES(I):

 @SUM(PLANES(J):

 USAGE(I, J) * QUANTITY(J)) <=

 AVAILABLE(I)

);

Our next set of constraints is not quite as intuitive. We are using the binary variable BUILD to

represent if a plane is being built, so we can incorporate a fixed cost for the plane in the objective

function. What we need is some constraint mechanism to force BUILD(I) to be 1 when we produce a

nonzero quantity of plane I. The following constraint will do just that:

@FOR(PLANES:

 QUANTITY <= 400 * BUILD;

 @BIN(BUILD)

);

Given that BUILD is 0/1, as soon as QUANTITY goes nonzero the only feasible solution is for BUILD

to go to 1. Constraints of this form used to force a binary variable to an appropriate value are

sometimes referred to as forcing constraints.

The coefficient of 400 in our forcing constraints was chosen because we know from scanning our data

that no more than 400 of any plane can be built. Can you verify this? Coefficients used in this manner

are sometimes called BigM coefficients. For solver efficiency reasons, it's best to try to keep BigM

values as small as reasonably possible.

Because the BigM coefficient of 400 is dependent upon the model's data, it is actually bad modeling

practice to embed the coefficient in the model's constraints as we have done here. As we have

discussed, it is best to try to keep the constraints of your model independent of the data to facilitate

model maintenance. A more data independent formulation would actually involve calculations to come

up with a good BigM value. Can you think of how you might add such a feature to this model?

A reasonable question at this point would be: "We have the machinery to force BUILD to 1 when we

build a plane. What forces BUILD to zero when we don't build a plane?" The fact that BUILD appears

in the objective with a negative coefficient (we multiply it by SETUP and then subtract it from the

objective) guarantees this. If a plane was not being built and the corresponding BUILD variable was 1,

we could get a better solution by simply setting BUILD to 0. Since the goal is to maximize the

objective, BUILD will always be driven to 0 when a plane is not built.

One final feature of our forcing constraints to note is that we have piggybacked the @BIN function call

onto the @FOR statement for the forcing constraints. As you recall from the discussion of set looping

functions in Using Sets, an @FOR function may contain multiple expressions as long as they are

separated by a semicolon. We have capitalized on this feature by including the @BIN expression as

well.

As a final feature, we can make the QUANTITY variables general integers with the expression:

@FOR(PLANES: @GIN(QUANTITY));

98 CHAPTER 3

The Solution
The formulation in its entirety and a selected portion of the solution appear below. The formulation file

may be found in file PRODMIX.

MODEL:

SETS:

 PLANES:

 PROFIT, SETUP, QUANTITY, BUILD;

 RESOURCES: AVAILABLE;

 RXP(RESOURCES, PLANES): USAGE;

ENDSETS

DATA:

 PLANES PROFIT SETUP =

 ROCKET 30 35

 METEOR 45 20

 STREAK 24 60

 COMET 26 70

 JET 24 75

 BIPLANE 30 30;

 RESOURCES AVAILABLE =

 STEEL,800 COPPER,1160 PLASTIC,1780

 RUBBER,1050 GLASS,1360 PAINT,1240;

 USAGE = 1 4 0 4 2 0

 4 5 3 0 1 0

 0 3 8 0 1 0

 2 0 1 2 1 5

 2 4 2 2 2 4

 1 4 1 4 3 4;

ENDDATA

MAX = @SUM(PLANES:

 PROFIT * QUANTITY - SETUP * BUILD);

@FOR(RESOURCES(I):

 @SUM(PLANES(J):

 USAGE(I, J) * QUANTITY(J)) <=

 AVAILABLE(I);

);

@FOR(PLANES:

 QUANTITY <= 400 * BUILD;

 @BIN(BUILD);

);

@FOR(PLANES: @GIN(QUANTITY));

END

Model: PRODMIX

VARIABLE DOMAIN FUNCTIONS 99

Global optimal solution found.

Objective value: 14764.00

Objective bound: 14764.00

Infeasibilities: 0.000000

Extended solver steps: 7

Total solver iterations: 296

 Variable Value Reduced Cost

 QUANTITY(ROCKET) 96.00000 -30.00000

 QUANTITY(METEOR) 0.000000 -45.00000

 QUANTITY(STREAK) 195.0000 -24.00000

 QUANTITY(COMET) 0.000000 -26.00000

 QUANTITY(JET) 191.0000 -24.00000

 QUANTITY(BIPLANE) 94.00000 -30.00000

 BUILD(ROCKET) 1.000000 35.00000

 BUILD(METEOR) 0.000000 20.00000

 BUILD(STREAK) 1.000000 60.00000

 BUILD(COMET) 0.000000 70.00000

 BUILD(JET) 1.000000 75.00000

 BUILD(BIPLANE) 1.000000 30.00000

Solution to PRODMIX

Surprisingly, we see from the solution that we build none of the "profitable" Meteors. Can you

determine why this is so? On the other hand, the Rocket, Streak, Jet and Biplane are produced, and, as

we anticipated, the BUILD variable for each of these planes has been correctly set to 1.

Dual Values and IP
In Chapter 1, Getting Started with LINGO, we introduced the concept of dual values. The dual values

of a solution are the reduced costs of the variables and dual prices on the constraints. We also

discussed the useful information that can be obtained from dual values. Unfortunately, in IP models

the interpretation of the dual values breaks down. Due to the discreet nature of IP models, the dual

values in the solution to an IP model are of no practical use to the average user. Given this, the dual

values should be ignored when your model contains integer variables created through the use of @BIN

or @GIN.

Variable Priorities
The time required for branch-and-bound algorithm to converge is highly dependent on the order in

which the solver branches on the integer variables. Some integer variables impact the solution more

than others. An example would be a plant location model, where we are deciding a) which plants to

open, and b) which customers to assign to which plants. Clearly, the decision of opening a plant

influences the solution considerably more than the decision of which plant to assign a given customer

to. In general, performance will improve if the solver branches on the more critical integer variables

first, while branching on the less critical variables later. LINGO provides the @PRIORITY function

for controlling the branching priority of the variables.

The syntax of the @PRIORITY function is:

@PRIORITY(variable_name, relative_priority);

100 CHAPTER 3

where variable_name is the name of the variable and relative_priority is a non-negative integer

representing the relative priority of the variable. The @PRIORITY function may be used in a model

anywhere you would normally enter a constraint. The @PRIORITY function can be embedded in an

@FOR statement to allow you to easily set the priority of all, or selected, variables of an attribute. If a

variable is not assigned a priority, it is assumed to have the lowest priority level of 0.

Some examples of @PRIORITY are:

Example 1: @PRIORITY(X, 100);

 assigns variable X a priority of 100,

Example 2: @PRIORITY(PRODUCE(5), 10);

 assigns variable PRODUCE(5) a priority of 10,

Example 3: @FOR(DAYS(I): @PRIORITY(START(I), 30));

 assigns all the variables of the START a priority of 30.

Summary
You should now be familiar with the use of the variable domain functions @BIN and @GIN, and how

they are used to introduce integer variables into a model. This section has shown how integer variables

bring a whole new dimension of power to the mathematical modeler. Given that we have only briefly

delved into the topic of modeling with integer variables, the user that would like to become more

familiar with the many practical applications of integer programming and their formulations can refer

to Schrage (2006), or Winston (1995).

Free Variables
By default, a LINGO variable has a lower bound of zero and an upper bound of infinity. @FREE

removes the lower bound of zero and lets a variable take negative values, rendering it unconstrained in

sign, or free. The syntax is:

@FREE(variable_name);

where variable_name is the name of the variable you wish to make free.

The @FREE function may be used in a model anywhere you would normally enter a constraint. The

@FREE function can be embedded in an @FOR statement to allow you to easily make all, or selected,

variables of an attribute to be free. Some examples of @FREE are:

Example 1: @FREE(X);

makes the scalar variable, X, free,

Example 2: @FREE(QUANTITY(4));

makes the variable QUANTITY(4) free,

Example 3: @FOR(ITEMS: @FREE(QUANTITY));

makes all variables in the QUANTITY attribute free.

VARIABLE DOMAIN FUNCTIONS 101

FREE Variable Example - Forecasting
You are the inventory controller for the successful new Shack4Shades retail chain. Your business

specializes exclusively in the retailing of sunglasses to the lover of the outdoors. You need to come up

with a model to forecast sales of sunglasses in the coming quarter in order to build up inventory levels.

You have created the following chart of your sales for the last eight quarters:

Looking at this chart, you theorize that sales are growing according to a linear trend line, but with

rather sizable seasonal variations. Sales pick up in the summer months when people head to the

beaches and again in winter when they head for the ski slopes. Given this, you have come up with the

following theoretical function to forecast sales as a function of time:

Predicted_Sales(t) = Seasonal_Factor(t) * (Base + Trend * t)

where,

Predicted_Sales(t) represents predicted sales for quarter t,

Seasonal_Factor(t) is one of four multipliers (one for each quarter of the

year) to account for seasonal variations,

Base is the y-intercept of the hypothesized linear function, and

Trend is the slope of the linear function.

You would like to come up with a LINGO model to estimate the six parameters of your function (i.e.,

the four seasonal factors, the trend line base, and the trend line slope). To do this, you will let LINGO

choose values for the parameters that minimize the sum of the squared differences between predicted

and observed sales for the historical data.

102 CHAPTER 3

The Formulation
We will need two primitive sets in our model. The first set will have eight members to represent the

quarters that we have historical data for. The second set will have four members corresponding to the

four quarters of the year. This second set is used for defining the four seasonal factors. Here is our sets

section that incorporates these two sets:

SETS:

 PERIODS: OBSERVED, PREDICT, ERROR;

 QUARTERS: SEASFAC;

ENDSETS

The three attributes on the PERIODS set—OBSERVED, PREDICT, and ERROR—correspond to the

observed sales values, predicted sales values, and the prediction error. The prediction error is simply

predicted sales minus observed sales. The SEASFAC attribute on the SEASONS set corresponds to the

seasonal sales factors and will be computed by LINGO.

We will also need to add a data section to initialize the set members and the OBSERVED attribute with

the historical sales data. We can do this with the following:

DATA:

 PERIODS = P1..P8;

 QUARTERS = Q1..Q4;

 OBSERVED = 10 14 12 19 14 21 19 26;

ENDDATA

Next, we must add a formula to compute the error terms. As mentioned, the error term in a period is

the difference between the observed and predicted sales. We can express this in LINGO as:

@FOR(PERIODS: ERROR =

 PREDICT - OBSERVED);

Our objective is to minimize the sum of the squared error terms, which may be written as:

MIN = @SUM(PERIODS: ERROR ^ 2);

We choose to use squared error terms as a measure to minimize because we want to weight large errors

relatively more heavily. Another option might be to minimize the sum of the absolute values of the

errors, which would weight large and small errors proportionally the same.

In order to compute the error terms, we will also need to compute predicted sales. Using our

theoretical formula, we compute predicted sales as follows:

@FOR(PERIODS(P): PREDICT(P) =

 SEASFAC(@WRAP(P, 4))

 * (BASE + P * TREND));

The @WRAP function is used here to allow us to apply the four seasonal factors over a time horizon

exceeding four periods. Had we simply used the index P, instead of @WRAP(P, 4), we would have

generated a subscript out of range error. For a more in depth explanation of the use of the @WRAP

function, please see the staff-scheduling example on page 60.

For esthetic reasons, we would like the seasonal factors to average out to a value of one. We can do

this by adding the constraint:

@SUM(QUARTERS: SEASFAC) = 4;

VARIABLE DOMAIN FUNCTIONS 103

Finally, it is possible for the error terms to be negative as well as positive. Given that variables in

LINGO default to a lower bound of zero, we will need to use the @FREE function to allow the error

terms to go negative. By embedding the @FREE function in an @FOR loop, we can apply @FREE to

all the ERROR variables in the statement:

@FOR(PERIODS: @FREE(ERROR));

The Solution
The entire formulation and excerpts from the solution appear below.

MODEL:

SETS:

 PERIODS: OBSERVED, PREDICT, ERROR;

 QUARTERS: SEASFAC;

ENDSETS

DATA:

 PERIODS = P1..P8;

 QUARTERS = Q1..Q4;

 OBSERVED = 10 14 12 19 14 21 19 26;

ENDDATA

MIN = @SUM(PERIODS: ERROR ^ 2);

@FOR(PERIODS: ERROR =

 PREDICT - OBSERVED);

@FOR(PERIODS(P): PREDICT(P) =

 SEASFAC(@WRAP(P, 4))

 * (BASE + P * TREND));

@SUM(QUARTERS: SEASFAC) = 4;

@FOR(PERIODS: @FREE(ERROR);

 @BND(-1000, ERROR, 1000));

END

Model: SHADES

104 CHAPTER 3

Local optimal solution found.

Objective value: 1.822561

Total solver iterations: 32

 Variable Value

 BASE 9.718878

 TREND 1.553017

 OBSERVED(P1) 10.00000

 OBSERVED(P2) 14.00000

 OBSERVED(P3) 12.00000

 OBSERVED(P4) 19.00000

 OBSERVED(P5) 14.00000

 OBSERVED(P6) 21.00000

 OBSERVED(P7) 19.00000

 OBSERVED(P8) 26.00000

 PREDICT(P1) 9.311820

 PREDICT(P2) 14.10136

 PREDICT(P3) 12.85213

 PREDICT(P4) 18.80620

 PREDICT(P5) 14.44367

 PREDICT(P6) 20.93171

 PREDICT(P7) 18.40496

 PREDICT(P8) 26.13943

 ERROR(P1) -0.6881796

 ERROR(P2) 0.1013638

 ERROR(P3) 0.8521268

 ERROR(P4) -0.1938024

 ERROR(P5) 0.4436688

 ERROR(P6) -0.6828722E-01

 ERROR(P7) -0.5950374

 ERROR(P8) 0.1394325

 SEASFAC(Q1) 0.8261096

 SEASFAC(Q2) 1.099529

 SEASFAC(Q3) 0.8938789

 SEASFAC(Q4) 1.180482

Solution to SHADES

The solution is: TREND, 1.55; BASE, 9.72. The four seasonal factors are .826, 1.01, .894, and 1.18.

The spring quarter seasonal factor is .826. In other words, spring sales are 82.6% of the average. The

trend of 1.55 means, after the effects of season are taken into account, sales are increasing at an

average rate of 1,550 sunglasses per quarter. As one would expect, a good portion of the error terms

are negative, so it was crucial to use the @FREE function to remove the default lower bound of zero

on ERROR.

VARIABLE DOMAIN FUNCTIONS 105

Our computed function offers a very good fit to the historical data as the following graph illustrates:

Using this function, we can compute the forecast for sales for the upcoming quarter (quarter 1). Doing

so gives:

Predicted_Sales(9) = Seasonal_Factor(1) * (Base + Trend * 9)

 = 0.826 * (9.72 + 1.55 * 9)

 = 19.55

Given this, inventory levels should be brought to a level sufficient to support an anticipated sales level

of around 19,550 pairs of sunglasses.

Bounded Variables
Whereas @FREE sets the upper and lower bounds of the specified variable to plus and minus infinity

(effectively removing any bounds on the variable), the @BND function lets you set specific upper and

lower bounds on a variable. In other words, @BND limits a variable’s range within some specified

interval. The syntax for @BND is:

@BND(lower_bound, variable_name, upper_bound);

where variable_name is the variable to be bounded below by the quantity lower_bound and bounded

above by the quantity upper_bound. Both lower_bound and upper_bound must be either numeric

values or variables whose values have been set in a data section or calc section. @BND may be used

wherever you would normally enter a constraint in a model—including inside an @FOR looping

function.

In mathematical terms, LINGO interprets this @BND function as:

lower_bound variable_name upper_bound

106 CHAPTER 3

It is certainly possible to add constraints in lieu of the @BND function, but, from the standpoint of the

optimizer, @BND is an extremely efficient way of representing simple bounds on variables.

Specifying variable bounds using @BND rather than explicitly adding constraints can noticeably speed

up the solution times for larger models. Furthermore, @BND does not count against the limit on the

total number of constraints LINGO imposes on some versions. So, in general, it is a good idea to use

@BND in place of constraints whenever possible.

Some examples of @BND are:

Example 1: @BND(-1, X, 1);

constrains the variable X to lie in the interval [-1,1],

Example 2: @BND(100, QUANTITY(4), 200);

constrains the variable QUANTITY(4) to fall within 100 to 200,

Example 3: @FOR(ITEMS: @BND(10, Q, 20));

sets the bounds on all variables in the Q attribute to 10 and 20,

Example 4: @FOR(ITEMS: @BND(QL, Q, QU));

sets the bounds on all variables in the Q attribute to QL and QU (QL and

QU must have been previously set to some values in a data section).

SOS Variables
LINGO supports SOS (Special Ordered Sets) variables of Type 1, 2 and 3 via the @SOS1, @SOS2 and

@SOS3 functions, respectively. The properties of the three SOS types are:

SOS Type Property

SOS1 At most, only one variable belonging to an SOS1 set will be greater than 0.

SOS2 At most, only two variables in an SOS2 set can be different from 0. If two variables

are nonzero, then the variables will be adjacent to one another. SOS2 sets are

particularly useful for implementing piecewise-linear functions in models.

SOS3 Exactly one variable from a given SOS3 set will be equal to 1. All remaining

variables will be equal to 0.

Note: Any variables added to an SOS set will count against the integer variable limit imposed in

limited versions of LINGO.

The syntax for the @SOS declarations is as follows:

 @SOS{1|2|3}('set_name', variable_reference);

The set_name argument is a unique label, or name, for the particular set of SOS variables. You add

additional variables to an SOS set by making subsequent calls to the @SOS function using the same set

name.

VARIABLE DOMAIN FUNCTIONS 107

Some examples of SOS sets are:

Example 1: @SOS3('SUM_TO_1', X);

@SOS3('SUM_TO_1', Y); @SOS3('SUM_TO_1', Z);

In this example, an SOS Type 3 set forces either X, Y or Z to be equal to 1. The remaining

variables will be equal to 0.

Example 2: @FOR(CUST(J): @FOR(PLANTS(I):

@SOS1('SNGSRC_' + CUST(J), SHIP(I, J))));

Here, multiple SOS Type 1 sets force each customer to receive shipments from only one plant.

There is one SOS1 set created for each customer, each bearing the name

SNGSRC_customer_name.

An example of using Type 2 sets follows in the next section.

Piecewise Linear Example - Type SOS2 Set
As we mentioned above, SOS2 sets are particularly useful for implementing piecewise-linear

functions. Many cost curves exhibit the piecewise-linear property. For example, suppose we want to

model the following cost function, where cost is a piecewise-linear function of volume, X:

0

10

20

30

40

50

60

0 5 10 15 20 25

Piecewise-Linear Function Example

The breakpoints of the curve lie at the following points: (0,22), (5,10), (12,41) and (20,49).

108 CHAPTER 3

The following sample model, SOSPIECE.LG4, uses a Type 2 SOS set to model this piecewise-linear

function using what is referred to as the lambda method:

MODEL:

! Demonstrates the lambda method for

 representing arbitrary, piecewise-linear

 curves using an SOS2 set;

! See "Optimization Modeling with Lingo",

 Section 11.2.7;

SETS:

 ! 4 breakpoints in this example;

 B /1..4/: W, U, V;

ENDSETS

DATA:

 ! total cost at the breakpoints;

 V = 22 10 41 49;

 ! the breakpoints;

 U = 0 5 12 20;

ENDDATA

 ! set x to any value in interval--the cost

 variable will automatically be set to the

 correct total cost;

 X = 8.5;

 ! calculate total cost;

 COST = @SUM(B(i): V(i) * W(i));

 ! force the weights (w);

 X = @SUM(B(I): U(I) * W(i));

 !weights must sum to 1;

 @SUM(B(I): W(I)) = 1;

 ! the weights are SOS2: at most two adjacent

 weights can be nonzero;

 @FOR(B(I): @SOS2('SOS2_SET', W(I)));

END

Model: SOSPIECE

We defined an attribute, W, whose members act as weights, placing us on an particular segment of the

curve. For example, if W(2)=W(3)=0.5, then we are exactly halfway between the second and third

breakpoints : (5,10) and (12,41), i.e., at point (8.5,25.5). In the case where we lie exactly on a

breakpoint, then only one of the W(i) will be nonzero and equal to 1.

VARIABLE DOMAIN FUNCTIONS 109

For this strategy to work correctly, only two, at most, of the W(i) may be nonzero, and they must be

adjacent. As you recall, this is the definition of an SOS2 set, which we create at the end of the model

with the expression:

 ! the weights are SOS2: at most two adjacent

 weights can be nonzero;

 @FOR(B(I): @SOS2('SOS2_SET', W(I)));

In particular, each weight W(i) is a member of the Type SOS2 set titled SOS2_SET.

For this particular example, we have chosen to pick an x-value and then let LINGO compute the

corresponding y-value, or cost. Running, the model, as predicted, we see that for an X value of 8.5,

total cost is 25.5:

 Variable Value

 X 8.500000

 COST 25.50000

 W(1) 0.000000

 W(2) 0.5000000

 W(3) 0.5000000

 W(4) 0.000000

Solution to SOSPIECE

In addition to allowing the solver to work more efficiently, SOS sets also help to reduce the number of

variables and constraints in your model. In this particular example, had we not had the SOS2

capability, we would have needed to add an additional 0/1 attribute, Z, and the following expressions

to the model:

! Here's what we eliminated by using @sos2:

! Can be on only one line segment at a time;

w(1) <= z(1); w(@size(b)) <= z(@size(b));

@for(b(i) | i #gt# 1 #and# i #lt# @size(b):

 w(i) <= z(i) + z(i + 1)

);

@sum(b(i): z(i)) = 1;

@for(b(i): @bin(z(i)));

Note: It may seem that piecewise linearity could be implemented in a more straightforward manner

through the use of nested @IF functions. Certainly, the @IF approach would be more natural

than the lambda method presented here. However, @IF functions would add discontinuous

nonlinearities to this model. This is something to try and avoid, in that such functions are

notoriously difficult to solve to global optimality. In the approach used above, we have

maintained linearity, which allows LINGO to use its faster, linear solvers, and converge to a

globally optimal solution.

110 CHAPTER 3

Cardinality
Related to the SOS capability discussed above, LINGO also supports cardinality sets of variables via

the @CARD function. The cardinality feature allows you to specify a set of variables with a

cardinality of N, meaning that, at most, N of the variables in the set will be allowed to be nonzero.

As with SOS sets, cardinality sets help the integer solver branch more efficiently, and they reduce the

number of variables and constraints in your models. Also, as with SOS sets, each variable added to a

cardinality set will count against any integer variable limits imposed on your installation of LINGO.

The syntax for the @CARD declarations is as follows:

@CARD('set_name', variable_reference|set_cardinality);

The set_name argument is a unique label, or name, for the particular cardinality set. You add

additional variables to an SOS set by making subsequent calls to the @CARD function using the same

set name with a different variable_reference. In addition to calling @CARD once for each variable in

a set, you will need to call @CARD once for each set passing an integer value as the second argument.

This integer argument is the set_cardinality, and may be either an actual integer number or a variable

set to an integer value in either a data or calc section.

Some examples of @CARD sets are:

Example 1: @CARD('PICK2', 2);

@CARD('PICK2', X);

@CARD('PICK2', Y); @CARD('PICK2', Z);

In this example, at most, two out of the three variable X, Y, and Z will be nonzero.

Example 2: @FOR(PLANT(I): @CARD('OPENLIM', OPEN(I)));

@CARD('OPENLIM', NCARD);

Here, we limit the maximum number of open plants to NCARD, where NCARD must be set

beforehand to an integer value in either a data or calc section.

Semicontinuous Variables
Many models require certain variables to either be 0 or lie within some nonnegative range, e.g., 10 to

20. Variables with this property are said to be semicontinuous. Modeling semicontinuity in LINGO in

the past meant having to add an additional 0/1 variable and two additional constraints. LINGO now

allows you to establish semicontinuous variables directly with the @SEMIC statement.

The syntax for the @SEMIC declarations is as follows:

@SEMIC(lower_bound, variable_reference, upper_bound);

This will restrict the variable, variable_reference, to be either 0 or to lie within the range

[lower_bound, upper_bound].

VARIABLE DOMAIN FUNCTIONS 111

Note: Each semi-continuous variable will be counted against any integer variable limit for your

installation.

Some examples of @SEMIC usage are:

Example 1: @SEMIC(10, X, 20);

In this example, X will be restricted to being either 0, or to lie within the range [10,20].

Example 2: @FOR(PLANT(I): @SEMIC(MIN_HOURS, HOURS(I),

MAX_HOURS));

Here, we restrict the operating hours of each plant to be either 0, or to line in the range

[MIN_HOURS,MAX_HOURS]. Note that MIN_HOURS and MAX_HOURS must have

been set to explicit values beforehand in either a data or calc section.

Below, we have taken our familiar transportation model and modified it, via the use of @SEMIC, to

restrict shipments from each warehouse to each customer to be either 0, or between 3 and 10.

112 CHAPTER 3

MODEL:

! A 3 Warehouse, 4 Customer Transportation Problem

 that uses the semi-continuous (@SEMIC) to restrict

 nonzero shipments to be between 3 and 10 units.;

SETS:

 WAREHOUSE: CAPACITY;

 CUSTOMER: DEMAND;

 ROUTES(WAREHOUSE, CUSTOMER) : COST, VOLUME;

ENDSETS

DATA:

 WAREHOUSE,CAPACITY = WH1,30 WH2,25 WH3,21;

 CUSTOMER,DEMAND = C1,15 C2,17 C3,22 C4,12;

 COST = 6 2 6 7

 4 9 5 3

 8 8 1 5;

ENDDATA

! The objective;

 [R_OBJ] MIN = @SUM(ROUTES: COST * VOLUME);

! The demand constraints;

 @FOR(CUSTOMER(J): [R_DEM]

 @SUM(WAREHOUSE(I): VOLUME(I, J)) >=

 DEMAND(J));

! The supply constraints;

 @FOR(WAREHOUSE(I): [R_SUP]

 @SUM(CUSTOMER(J): VOLUME(I, J)) <=

 CAPACITY(I));

 @FOR(ROUTES: @SEMIC(3, VOLUME, 10));

END

Model: TRANSEMIC

VARIABLE DOMAIN FUNCTIONS 113

Solving this model yields the following optimal values for the semicontinuous attribute, VOLUME:

Global optimal solution found.

Objective value: 264.0000

Objective bound: 264.0000

Infeasibilities: 0.000000

Extended solver steps: 1

Total solver iterations: 32

 Variable Value Reduced Cost

 VOLUME(WH1, C1) 5.000000 0.000000

 VOLUME(WH1, C2) 10.00000 -6.000000

 VOLUME(WH1, C3) 6.000000 0.000000

 VOLUME(WH1, C4) 0.000000 2.000000

 VOLUME(WH2, C1) 10.00000 -1.000000

 VOLUME(WH2, C2) 0.000000 2.000000

 VOLUME(WH2, C3) 6.000000 0.000000

 VOLUME(WH2, C4) 9.000000 -1.000000

 VOLUME(WH3, C1) 0.000000 2.000000

 VOLUME(WH3, C2) 7.000000 0.000000

 VOLUME(WH3, C3) 10.00000 -5.000000

 VOLUME(WH3, C4) 3.000000 0.000000

115

4 Data, Init and Calc
Sections

Typically, when dealing with a model’s data, you need to assign set members to sets and give values to

some set attributes before LINGO can solve your model. For this purpose, LINGO gives the user three

optional sections, the data section for inputting set members and data values, the init section for setting

the starting values for decision variables, and the calc section for performing computations on raw

input data.

The DATA Section of a Model
The DATA section allows you to isolate data from the rest of your model. This is a useful practice in

that it facilitates model maintenance and scaling of a model’s dimensions.

Basic Syntax
The data section begins with the keyword DATA: (including the colon) and ends with the keyword

ENDDATA. In the data section, you can have statements to initialize set members and/or the attributes

of the sets you instantiated in a previous sets section. These expressions have the syntax:

object_list = value_list;

The object_list contains the names of the attributes and/or a set whose members you want to initialize,

optionally separated by commas. There can be no more than one set name in object_list, while there

may be any number of attributes. If there is more than one attribute name in object_list, then the

attributes must be defined on the same set. If there is a set name in object_list, then all attributes in

object_list must be defined on this set.

The value_list contains the values you want to assign to the members of object_list, optionally

separated by commas. As an example, consider the following model:

SETS:

 SET1 /A, B, C/: X, Y;

ENDSETS

DATA:

 X = 1, 2, 3;

 Y = 4, 5, 6;

ENDDATA

116 CHAPTER 4

We have two attributes, X and Y, defined on the SET1 set. The three values of X are set to 1, 2, and 3,

while Y is set to 4, 5, and 6. We could have also used the following compound data statement to the

same end:

SETS:

 SET1 /A, B, C/: X, Y;

ENDSETS

DATA:

 X, Y = 1, 4,

 2, 5,

 3, 6;

ENDDATA

Looking at this example, you might imagine X would be assigned the values 1, 4, and 2 because they

are first in the values list, rather than the true values of 1, 2, and 3. When LINGO reads a data

statement's value list, it assigns the first n values to the first position of each of the n attributes in the

attribute list, the second n values to the second position of each of the n attributes, and so on. In other

words, LINGO is expecting the input data in column form rather than row form.

As mentioned, we can also initialize the set members in the data section. Modifying our sample model

to use this approach by moving the set members from the sets section to the data section, we get:

SETS:

 SET1: X, Y;

ENDSETS

DATA:

 SET1, X, Y = A 1 4

 B 2 5

 C 3 6;

ENDDATA

This final method is, perhaps, the most elegant in that all model data—attribute values and set

members—are isolated within the data section.

Parameters
You are not limited to putting attributes and sets on the left-hand side of data statements. You may also

initialize scalar variables in the data section. When a scalar variable's value is fixed in a data section,

we refer to it as a parameter.

As an example, suppose your model uses an interest rate of 8.5% as a parameter. You could input the

interest rate as a parameter in the data section as follows:

DATA:

 INTEREST_RATE = .085;

ENDDATA

DATA, INIT AND CALC SECTIONS 117

As with set attributes, you can initialize multiple parameters in a single statement. Suppose you also

add the inflation rate to your model. You could initialize both the interest rate and inflation rate in the

same data statement as follows:

DATA:

 INTEREST_RATE, INFLATION_RATE = .085, .03;

ENDDATA

What If Analysis
In some cases, you may not be sure what values to input for the data in your model. For example,

suppose your model uses the inflation rate as a parameter. You may be uncertain as to the exact rate of

inflation in the future, but you know it will most likely fall within a range of 2 to 6 percent. What you

would like to do is run your model for various values of the inflation rate within this range to see how

sensitive the model's results are to inflation. We refer to this as what if analysis, and LINGO has a

feature to facilitate this. To set up a parameter for what if analysis, input a question mark (?) as its

value in place of a number as in the following example:

DATA:

 INFLATION_RATE = ?;

ENDDATA

LINGO will prompt you for a value for the INFLATION_RATE parameter each time you solve the

model. Under Windows, you will receive a dialog box resembling:

Simply input the desired value for the inflation rate and then press the OK button. LINGO will then set

INFLATION_RATE to the value you input and proceed with solving the model.

On platforms other than Windows, LINGO will write a prompt to your screen asking you to input a

value for INFLATION_RATE. Type in the value and then press the Enter key.

In addition to parameters, you can perform what if analysis on individual members of attributes by

initializing them to question marks in the data section, as well.

For an example of a model that uses what if analysis to compute the value of a home mortgage, see the

Home Mortgage Calculation model in Appendix A, Additional Examples of LINGO Modeling.

118 CHAPTER 4

Initializing an Attribute to a Single Value
Suppose you want to initialize all the elements of an attribute to a single value. You can do this by

entering a single value on the right-hand side of the data statement. LINGO will initialize all the

elements of the attribute to this value. To perform what if analysis on the attribute, initialize it to a

single question mark and LINGO will prompt you for the values of all the members of the attribute

each time the model is solved.

As an example, consider the following excerpt from a model:

SETS:

 DAYS / MO, TU, WE, TH, FR, SA, SU/:

 NEEDS;

ENDSETS

DATA:

 NEEDS = 20;

ENDDATA

LINGO will initialize all the members of the NEEDS attribute to the value 20.

If there are multiple attributes on the left-hand side of the data statement, you will need one value on

the right-hand side for each attribute on the left. For instance, let's extend the previous example, so we

have an additional attribute called COST:

SETS:

 DAYS / MO, TU, WE, TH, FR, SA, SU/:

 NEEDS, COST;

ENDSETS

DATA:

 NEEDS, COST = 20, 100;

ENDDATA

All seven members of NEEDS will be initialized to 20 and all seven members of COST to 100.

Omitting Values in a Data Section
You can omit values in a data statement to indicate that you don’t want to fix the values of particular

members. For instance, suppose you have a manufacturing company and you need to do some capacity

planning for the next 5 years. Furthermore, suppose it takes some time to boost capacity. As such, it

would be impossible to increase capacity over the next two years. In such a case, you might do

something like the following:

SETS:

 YEARS /1..5/: CAPACITY;

ENDSETS

DATA:

 CAPACITY = 34, 34, , , ;

ENDDATA

DATA, INIT AND CALC SECTIONS 119

We have set CAPACITY for the first two years to 34, but have omitted values for the last three years.

LINGO will assume, therefore, that it is free to determine the values for CAPACITY in the last three

years.

Note: You must use commas when omitting values. If you do not use the commas, LINGO will

think you did not enter the correct number of values for the attribute, which will trigger an

error message.

The INIT Section of a Model
The INIT section is another optional section offered by LINGO. In the init section, you enter

initialization statements that look much like the data statements found in the data section. The values

you input in the init section are used as starting points by LINGO’s solver. Unlike the variables that

are initialized in the data section, the solver is free to alter the values of variables initialized in the init

section.

Note: Starting points specified in an INIT section are only of use in nonlinear or integer models.

Starting points currently offer no help in purely linear models. If you are not sure whether

your model is linear or nonlinear, you can check the count of nonlinear constraints in the

solver status window. If there are any nonlinear constraints, then your model is nonlinear. For

more information on the nature of nonlinear models and how good starting points can be of

assistance, please see Chapter 15, On Mathematical Modeling.

Note: As an example, in a set defining a group of stocks, you may have a known price of each

stock, but the amount to buy or sell of each stock is unknown. You would typically initialize

the price attribute in the data section. If approximate values of the buy and sell attributes are

known, you can tell LINGO this information by entering it in the init section. LINGO then

uses the values specified as a starting point in its search for the optimal solution. If your

starting point is relatively close to an optimal solution, you may save on the solution time

required to run your model.

An init section begins with the keyword INIT: and ends with the keyword ENDINIT. The syntax rules

for init statements in the init section are identical to the rules for data section statements. You can have

multiple attributes on the left-hand side of a statement, you can initialize an entire attribute to a single

value, you can omit values in an attribute, and you can use the question mark to have LINGO prompt

you for an initialization value whenever you solve the model.

As an example of how a good starting point may help to reduce solution times, consider the small

model:

Y <= @LOG(X);

X^2 + Y^2 <=1;

120 CHAPTER 4

The function @LOG(X) returns the natural logarithm of X. This model has only one feasible point of

(X,Y) = (1,0). If we solve this model without an init section, we get the solution:

Feasible solution found at step: 12

 Variable Value

 Y 0.5721349E-03

 X 1.000419

Note that it required 12 iterations to solve. Now, let’s add an init section to initialize X and Y to a point

close to the solution, so we have:

INIT:

 X = .999;

 Y = .002;

ENDINIT

Y <= @LOG(X);

X^2 + Y^2 <=1;

Solving this modified model, we get the solution:

Feasible solution found at step: 3

 Variable Value

 X 0.9999995

 Y 0.0000000

Note that our solution required only 3 iterations compared to the 12 iterations required without the init

section.

The CALC Section of a Model
In many instances, your model’s raw input data will need additional massaging to get it into the proper

form. As an example, suppose your raw data consists of daily observations of a number of securities’

closing prices. Furthermore, let’s suppose that your model ultimately requires the covariance matrix

for the securities to be computed from the raw closing price data. You could certainly compute the

covariance matrix as part of the constraint section in your model. However, entering simple

computations as constraints will make your model artificially large. Another option, although

inconvenient, would be to compute the covariance matrix outside of LINGO and pass it to LINGO as

external data. Actually, what you would really like is a section in LINGO to perform data

manipulation in such a way that it doesn’t increase the size of the final optimization model passed

through to the solver engine. This is the function of the calc section.

A CALC section begins with the keyword CALC: and ends with the keyword ENDCALC. You may

input any expression in a calc section that you would in the constraint section of a model. However,

each expression must be in the form of an assignment statement. In an assignment statement, a single

variable appears on the left-hand side of an expression, followed by an equality sign, followed by an

arbitrary mathematical expression on the right-hand side. Furthermore, the right-hand side expression

may only contain references to variables that are set as part of the model’s input data (i.e., set in a

previous data section or calc expression.)

DATA, INIT AND CALC SECTIONS 121

As an example, here’s a model with a calc section that computes the average of three variables:

MODEL:

DATA:

 X, Y, Z = 1, 2, 3;

ENDDATA

CALC:

 AVG = (X + Y + Z) / 3;

ENDCALC

END

Example of a valid calc section

Now, suppose we did not know the value of Y beforehand. The following model with Y dropped from

the data section would trigger an error in LINGO. The error occurs because the value of Y is an

unknown, which violates the requirement that all right-hand side variables in a calc expression must

have already had their values established in a previous data or calc section:

MODEL:

DATA:

 X, Z = 1, 3;

ENDDATA

CALC:

 AVG = (X + Y + Z) / 3;

ENDCALC

END

Example of an invalid calc section

You may perform running calculations in a calc section, which means that you may break complex

calc expressions down into a series of smaller expressions. Here we break the computation from

above into two steps:

MODEL:

DATA:

 X, Y, Z = 1, 2, 3;

ENDDATA

CALC:

 AVG = X + Y + Z;

 AVG = AVG / 3;

ENDCALC

END

Example of a running calc expression

122 CHAPTER 4

There is no limit to the number of times that a variable may appear on the left-hand side of a calc

expression. However, the final calc expression for the variable will determine its value in the final

solution report.

Calc expressions are computed sequentially in the order in which they appear in the model. So, if one

calc expression feeds its value into a subsequent expression, then it must appear before its dependent

expression. For example, the following calc section is valid:

CALC:

 X = 1;

 Y = X + 1;

ENDCALC

while this variation is not valid:

CALC:

 Y = X + 1;

 X = 1;

ENDCALC

In the second example, Y depends on X, but X is not defined until after Y.

Of course, Set looping functions may also be used in calc expressions. For example, consider the

following portfolio optimization model. In this model, we take the annual returns for three stocks and

in a calc section compute the following three pieces of information for the stocks: average return, the

covariance matrix, and the correlation matrix. This information is then used in a standard Markowitz

model to determine an optimal portfolio that meets a desired level of return while minimizing overall

risk.

MODEL:

SETS:

 STOCKS: AVG_RET, WEIGHT;

 DAYS;

 SXD(DAYS, STOCKS): RETURN;

 SXS(STOCKS, STOCKS): COVR, CORR;

ENDSETS

DATA:

 DAYS = 1..12;

 TARGET = .15;

 STOCKS = ATT GMC USX;

 RETURN = 0.300 0.225 0.149

 0.103 0.290 0.260

 0.216 0.216 0.419

 -0.046 -0.272 -0.078

 -0.071 0.144 0.169

 0.056 0.107 -0.035

 0.038 0.321 0.133

 0.089 0.305 0.732

 0.090 0.195 0.021

 0.083 0.390 0.131

 0.035 -0.072 0.006

DATA, INIT AND CALC SECTIONS 123

 0.176 0.715 0.908;

ENDDATA

CALC:

 !Average annual return for each stock;

 @FOR(STOCKS(S):

 AVG_RET(S) =

 (@SUM(SXD(D, S): RETURN(D, S)) /

 @SIZE(DAYS))

);

 !Covariance matrix;

 @FOR(SXS(S1, S2):

 COVR(S1, S2) =

 @SUM(DAYS(D):(RETURN(D, S1) - AVG_RET(S1)) *

 (RETURN(D, S2) - AVG_RET(S2))) / @SIZE(DAYS)

);

 !Although not required, compute the correlation matrix;

 @FOR(SXS(S1, S2):

 CORR(S1, S2) = COVR(S1, S2) /

 (COVR(S1, S1) * COVR(S2, S2))^.5;

);

ENDCALC

!Minimize the risk of the portfolio

 (i.e., its variance);

[R_OBJ] MIN = @SUM(SXS(S1, S2):

 WEIGHT(S1) * WEIGHT(S2) * COVR(S1, S2));

!Must be fully invested;

[R_BUDGET] @SUM(STOCKS: WEIGHT) = 1;

!Must exceed target return;

[R_TARGET] @SUM(STOCKS: AVG_RET * WEIGHT) >= TARGET;

END

Model: MARKOW

Summary
You should now be comfortable with adding basic data, init and calc sections to your models. Keep in

mind that initialization performed in a data section fixes a variable's value. Initialization done in an init

section is used only as a temporary starting point, which may be of benefit in finding solutions to

nonlinear models. Initialization in a calc section holds until another calc expression redefining a

variable’s value is encountered. The benefit of placing computations in a calc section as opposed to

placing them in the general constraint section is that calc expressions are treated as side computations

and aren’t fed into the main solver, thereby improving execution times.

We have only touched on some of the basic features of data and init sections in this chapter. In

subsequent sections, you will see how to add hooks in your data and init sections to external files,

spreadsheets, and databases.

125

5 Windows Commands
In this chapter, we will discuss the pull down menu commands available in the Windows version of

LINGO. The following chapter, Command-line Commands, deals with the commands available

through LINGO’s command-line interface. If you’re not using a Windows version of LINGO, then you

will be primarily interested in the following chapter. If you are using a Windows version of LINGO,

then you will be primarily interested in this chapter. Windows users will also be interested in the

command-line interface if they plan to build command scripts to automate LINGO.

Accessing Windows Commands
Under Windows, commands may be accessed by either selecting them from a pull down menu,

pressing the command’s button in the toolbar, or, if applicable, entering the command’s keyboard

equivalent (also referred to as its accelerator key).

Menus
LINGO groups commands under the following five menus:

 File

 Edit

 LINGO

 Window

 Help

The File menu contains commands that primarily deal with handling input and output. The Edit menu

contains commands for editing the document in the current window. The LINGO menu contains

commands to solve a model and generate solution reports. The Window menu has commands that deal

with the mechanics of handling multiple windows. The Help menu provides access to LINGO’s help

facility.

The Toolbar
By default, the toolbar runs along the top of the screen and is illustrated in the following picture:

LINGO’s toolbar “floats”. Thus, you can reposition it by dragging it to any part of the screen. You can

also choose to suppress the toolbar by clearing the Toolbar button on the Interface tab of the

LINGO|Options dialog box.

Each button on the toolbar corresponds to a menu command. Not all menu commands have a toolbar

button, but, in general, the most frequently used commands have an equivalent button.

126 CHAPTER 5

LINGO displays “tool tips” for each button. When you position the mouse over a button, a short

description of what the button does appears in a pop up window and in the status bar at the bottom of

the screen.

Here is a list of the buttons and their equivalent commands:

 File|New Edit|Match Parenthesis

 File|Open LINGO|Solve

File|Save LINGO|Solution

 File|Print

LINGO|Options

 Edit|Undo

LINGO|Picture

 Edit|Redo Window|Send To Back

 Edit|Cut Window|Close All

 Edit|Copy

Window|Tile

 Edit|Paste Help|Topics

 Edit|Find

Help|Pointer

 Edit|Go To Line

Accelerator Keys
Along with accessing commands via the menus and toolbar, most commands may also be accessed by

a single, unique keystroke known as an accelerator. The equivalent accelerator key is listed alongside

each command in the menus.

Windows Commands In Brief
In this section, we give a brief listing of the commands available in the Windows version of LINGO.

The commands are categorized into the five main menus:

 File

 Edit

 LINGO

 Window

 Help

The next section in this chapter contains an in-depth description of the commands.

WINDOWS COMMANDS 127

1. File Menu Commands:
New Opens a new model window.

Open Opens an existing model previously saved to disk.

Save Saves the contents of the current window to disk.

Save As Saves the contents of the current window to a new name.

Close Closes the current window.

Print Prints the contents of the current window.

Print Setup Configures your printer.

Print Preview Displays the contents of the current window as it would

appear if printed.

Log Output Opens a log file for logging output to the command window.

Take Commands Runs a command script contained in a file.

Export File Exports a model in MPS or MPI file format.

License Prompts you for a new license password to upgrade your

system.

Database User Info Prompts you for a user id and password for database access

via the @ODBC() function.

Exit Exits LINGO.

2. Edit Menu Commands:
Undo Undoes the last change.

Redo Redoes the last undo command.

Cut Cuts the current selection from the document.

Copy Copies the current selection to the clipboard.

Paste Pastes the contents of the clipboard into the document.

Paste Special Pastes the contents of the clipboard into the document,

allowing choice as to how the object is pasted.

Select All Selects the entire contents of the current window.

Find Searches the document for the occurrence of a specified text

string.

Find Next Repeats the find operation for the last string specified.

Replace Replaces a specified text string with a new string.

Go To Line Moves the cursor to a specified line number.

Match Parenthesis Finds the parenthesis that closes a selected parenthesis.

Paste Function Pastes a template of a selected LINGO @function.

Select Font Specifies a font for a selected block of text.

Insert New Object Embeds an OLE (Object Linking and Embedding) object into

the document.

Links Controls the links to external objects in your document.

Object Properties Specifies the properties of a selected, embedded object.

128 CHAPTER 5

3. LINGO Menu Commands:
Solve Solves the model in the current window.

Solution Generates a solution report window for the current model.

Range Generates a range analysis report for the current window.

Options Sets system options.

Generate Generates the algebraic representation for the current

model.

Picture Displays a graphical picture of a model in matrix form.

Debug Tracks down formulation errors in infeasible and

unbounded linear programs.

Model Statistics Displays a brief report regarding the technical detail of a

model.

Look Generates a formulation report for the current window.

4. Window Menu Commands:
Command Window Opens a command window for command-line operation of

LINGO.

Status Window Opens the solver's status window.

Send to Back Sends the current window behind all other open windows.

Close All Closes all open windows.

Tile Arranges all open windows into a tile pattern.

Cascade Arranges all open windows into a cascading pattern.

Arrange Icons Aligns all iconized windows at the bottom of the main frame

window.

5. Help Menu Commands:
Help Topics Accesses LINGO's Help facility.

Register Registers your version of LINGO online.

AutoUpdate Checks to see if an updated copy of LINGO is available for

download on the LINDO Systems Web site.

About LINGO Displays the version and size of your copy of LINGO, along with

information on how to contact LINDO Systems.

WINDOWS COMMANDS 129

Windows Commands In Depth
In the remainder of this chapter, we will document all the commands specific to the Windows version

of LINGO. The commands are categorized into the five main menus described in the Windows

Commands In Brief section above.

1. File Menu
 LINGO's File menu is pictured below. This menu contains

commands that generally pertain to the movement of files in and

out of LINGO.

130 CHAPTER 5

File|New F2
The New command opens a new, blank window. When you select the New command, you will be

presented with the following dialog box:

You may then select the type of file you want to create. The file must be one of the four types:

1. LINGO Model (*.lg4)
The LG4 format was established with release 4.0 of LINGO. LG4 is the primary

file format used by LINGO to store models under Windows. This format

supports multiple fonts, custom formatting, and OLE (Object Linking and

Embedding). LG4 files are saved to disk using a proprietary binary format.

Therefore, these files can’t be read directly into other applications or transported

to platforms other than the PC. Use the LNG format (discussed next) to port a

file to other applications or platforms.

2. LINGO Model (Text Only) (*.lng)
The LNG format is a portable format for storing your models. It was the

standard file format used by LINGO in releases prior to 4.0 and remains in use

on all platforms other than Windows. LNG files are saved to disk as ASCII text

and may be read into any application or word processor that supports text files.

LNG files may also be ported to platforms besides the PC. LNG files do not

support multiple fonts, custom formatting, or OLE.

3. LINGO Data (*.ldt)
LDT files are data files typically imported into LINGO models using the @FILE

function. @FILE can only read text files. Given this, all LDT files are stored as

ASCII text. LDT files do not support multiple fonts, custom formatting, or OLE.

4. LINGO Command Script (*.ltf)
LTF files are LINGO command scripts. These are ASCII text files containing a

series of LINGO commands that can be executed with the File|Take Commands

command. For more information on commands that can be used in a LINGO

script, refer to the following chapter, Command-line Commands. LTF files do

not support multiple fonts, custom formatting, or OLE.

WINDOWS COMMANDS 131

5. LINDO Model (*.ltx)

LTX files are model files that use the LINDO syntax. Longtime LINDO users may

prefer LINDO syntax over LINGO syntax. LINDO syntax is convenient for quickly

entering small to medium sized linear programs. As long as a file has an extension

of .ltx, LINGO will assume that the model is written using LINDO syntax. Readers

interested in the details of LINDO syntax may contact LINDO Systems to obtain a

LINDO user’s manual.

When you simply press either the New toolbar button or the F2 key, LINGO assumes you want a

model file. Thus, LINGO does not display the file type dialog box and immediately opens a model file

of type LG4.

If you have used the LINGO|Options command to change the default model file format from LG4 to

LNG, LINGO will automatically open a model of type LNG when you press either the New button or

the F2 key.

You may begin entering text directly into a new model window or paste in text from other applications

using the Windows clipboard and the Edit|Paste command in LINGO.

File|Open... Ctrl+O

The Open command reads a saved file from disk and places it in a LINGO Window. The file can be a

LINGO model file (*.LG4), or any other file. If the file is not in LG4 format, it must be in ASCII text

format.

After issuing the Open command, you will be presented with a dialog box resembling the following:

132 CHAPTER 5

You can enter a file name in the File name edit box, or select a file name from the list of existing files

by double-clicking on a file. Press the Open button to open the file, the Cancel button to exit without

opening a file, or the Help button for assistance. You may select a different file type from the Files of

type list box causing LINGO to list only the files of that type. Once you have read in a LINGO model

file (a LG4 or LNG file), you may use the LINGO|Solve command to solve the model.

In addition to its native LG4 and LNG file formats, LINGO supports the following three additional file

formats :

 MPS ¾ The MPS file format is an industry standard format developed by IBM,

which is useful for passing linear and quadratic models from one solver or platform

to another.

 MPI ¾ The MPI format was developed by LINDO Systems as a portable format for

representing arbitrary math programming models.

 LP ¾ The LP file format is another industry standard file format, as is MPS, for

storing linear and quadratic model. However, with LP format equations are stored

using standard algebraic format, making LP files much easier to read and interpret

than MPS files. At present, LINGO only supports linear models when reading LP

format files.

If the file to be opened has an extension of .MPS, .MPI or .LP, then LINGO will invoke, respectively,

its MPS, MPI or LP reader to parse the file. When importing a non-native file, LINGO reads the file

from disk, converts it to an equivalent LINGO model, and places the model into a new model window.

More details follow immediately below. LINGO can also write MPS and MPI format files (but not LP

files); this is discussed in the File|Export File section below.

Importing MPS, MPI or LP Files

When LINGO reads an MPS, MPI or LP file, it converts the formulation to an equivalent LINGO

model. As an example, consider the following, simple model:

ObjRow) Maximize 20X + 30Y

Subject To:

 Row1) X < 50

 Row2) Y < 60

 Row3) X + 2Y < 120

The MPS file for this model is:

NAME SAMPLE

OBJSENSE

 MAX

ROWS

 N OBJROW

 L ROW1

 L ROW2

 L ROW3

COLUMNS

 X ROW3 1.0000000

 X OBJROW 20.0000000

 X ROW1 1.0000000

 Y OBJROW 30.0000000

 Y ROW2 1.0000000

WINDOWS COMMANDS 133

 Y ROW3 2.0000000

RHS

 RHS ROW1 50.0000000

 RHS ROW2 60.0000000

 RHS ROW3 120.0000000

ENDATA

The MPI version of the model is:

BEGINMODEL SAMPL

! Number of Objective Functions: 1

! Number of Constraints : 3

! Number of Variables : 2

VARIABLES

! Name Lower Bound Initial Point

Upper Bound Type

 X 0 1.23457

1e+030 C

 Y 0 1.23457

1e+030 C

OBJECTIVES

 OBJROW MAXIMIZE

 EP_USRCOD -101

 EP_PUSH_NUM 20

 EP_PUSH_VAR X

 EP_MULTIPLY

 EP_PUSH_NUM 30

 EP_PUSH_VAR Y

 EP_MULTIPLY

 EP_PLUS

CONSTRAINTS

 ROW1 L

 EP_USRCOD -101

 EP_PUSH_VAR X

 EP_PUSH_NUM 50

 EP_MINUS

 ROW2 L

 EP_USRCOD -101

 EP_PUSH_VAR Y

 EP_PUSH_NUM 60

 EP_MINUS

 ROW3 L

 EP_USRCOD -101

 EP_PUSH_VAR X

 EP_PUSH_NUM 2

 EP_PUSH_VAR Y

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_NUM 120

 EP_MINUS

ENDMODEL

And, the LP format version of the model is:

134 CHAPTER 5

\ LP format example

Maximize

 objrow: 20x + 30y

Subject To

 row1: x <= 50

 row2: y <= 60

 row3: x + 2y <= 120

End

One thing to notice at this point is that MPS and MPI formats are not very compact methods for

storing a model they are designed for portability, as opposed to efficiency.

Using the File|Open command to read either of these three versions of the model into LINGO, we are

presented with the following window containing an equivalent LINGO model:

Note how the model is automatically converted from MPS, MPI or LP format to native LINGO format.

Should you wish to save the file again using either MPS or MPI format rather than LINGO format, you

must use the File|Export File|MPS Format… command.

Note: The MPS, MPI and LP file formats are intended primarily for exporting (importing) models

to (from) other applications or platforms. These file formats are purely scalar in nature—all

set-based information is lost upon saving a LINGO model in either MPS or MPI format

(LINGO does not currently write LP format files). Thus, when saving copies of a model on

your own machine, you should always use the File|Save command in order to save models in

a native LINGO format (LG4 or LNG) in order to preserve your model in its entirety.

When it comes to acceptable constraint and variable names, the MPS, MPI and LP formats are less

restrictive than LINGO. To compensate for this fact, LINGO attempts to patch names when reading a

file, so that all the incoming names are compatible with its syntax. LINGO does this by substituting an

underscore for any character in a name that is not admissible. In most cases, this will work out OK.

However, there is a chance for name collisions where two or more names get mapped into one. For

instance, the variable names X.1 and X%1 would both get mapped into the single LINGO name X_1.

Of course, situations such as this entirely alter the structure of the model, rendering it incorrect.

However, you will be warned whenever LINGO has to patch a name with the following error message:

WINDOWS COMMANDS 135

This message displays the number of variable and row names that were patched to get them to conform

to LINGO syntax.

If name collisions are a problem, then LINGO has an option that will ensure that all names remain

unique. This option involves using RC format for names encountered during MPS I/O. RC format

involves renaming each row (constraint) in a model to be Rn, where n is the row’s index. Similarly,

each column (variable) is renamed to Cn. In addition, LINGO renames the objective row to be ROBJ.

To switch to RC format for MPS names, run the LINGO|Optionscommand, select the General Solver

tab, then click the checkbox titled Use R/C format names for MPS I/O, as illustrated here:

As an example, we will once again import the same MPS format model as above. However, this time

we will use RC naming conventions. Here is the model as it appears after importing it into LINGO:

Notice how the variable names now use RC format, guaranteeing that name collisions will not occur.

Another potential conflict is that MPS and MPI allow variable names to be duplicated as constraint

names and vice versa. LINGO does not allow for this. When you go to solve the model, you will

receive either error message 28 (Invalid use of a row name), or error message 37 (Name already in

use). Once again, you can switch to using RC name format to avoid this conflict.

As a final note, LINGO only supports free format MPS files, and does not support fixed format MPS

files. Therefore, variable and row names may not contain embedded blanks.

136 CHAPTER 5

File|Save Ctrl+S
The Save command saves the contents of the active window to disk using the existing file name for the

window. If the window has not been saved before, you will be prompted to provide a name for the file.

File|Save As... F5
The Save As command allows you to save the contents of the active window under a new file name.

When issuing the Save As command, you will be presented with a dialog box that resembles the

following:

You can enter a new file name in the File name edit box, or select a file name from the list of existing

files by double-clicking on it. If you do not specify a file extension, LINGO will append the extension

of the default model format to the name. If you want to prevent LINGO from appending an extension

to the name, place the file name in double quotes.

Press the Save button to save the model, the Cancel button to exit without saving, or the Help button

for assistance.

You may select a different file type from the Save as type list box. If your model has special fonts or

embedded objects, you must save it using the LG4 file format to preserve them. The LG4 format is a

special binary format readable only by LINGO. If you wish to create a text copy of your model, then

use the LNG file format. For further discussion of the available file formats under LINGO, refer to the

New command above.

WINDOWS COMMANDS 137

File|Close F6
Use the Close command to close the active (front most) window. If the window has been modified

without being saved, you’ll be asked whether you want to save the changes.

File|Print... F7
Use the Print command to send the contents of the active window to your printer. First, LINGO will

display the Print dialog box:

Select the printer to route the output to from the Name list box. Modify the printer’s properties by

pressing the Properties button. Select a range of pages to print in the Print range group box. If you

need multiple copies, input the number desired in the Number of copies field and specify if you want

the copies collated (assuming your printer is capable of collating). Finally, press the OK button to

begin printing. Press the Cancel button to exit without printing.

138 CHAPTER 5

File|Print Setup... F8
Use the Print Setup command to configure your printer. You should see a dialog box that resembles

the following:

Select the target printer from the Name list box. Press the Properties button to set additional printer

properties. Select the type of paper and tray from the Paper group box. In the Orientation group box,

select whether you want portrait or landscape output. Press the Cancel button to exit without changing

the printer configuration. Press the OK button to save changes and exit the Print Setup command.

WINDOWS COMMANDS 139

File|Print Preview Shift+F8
Use the Print Preview command to display each page of the active window as it will appear when

printed. After issuing the Print Preview command, the contents of the active window will be placed in

a Preview window as follows:

The Print button sends the file to the printer. The Next Page button brings the next page into the

viewer. The Prev Page button brings the previous page into the viewer. The One Page button puts the

viewer into single page mode, while the Two Page button puts the viewer into double page mode. The

Zoom In button is used to have the viewer zoom in on a region of the document. The Zoom Out button

undoes the effect of a Zoom In. Press the Close button to close the print viewer and return to the

normal command mode of LINGO.

If you would like to change some of the printer specifications, such as landscape output, use the Print

Setup command (described above) before issuing the Print Preview command.

140 CHAPTER 5

File|Log Output... F9
Normally, when you are using LINGO for Windows, it is operating in a menu driven mode, where you

choose commands from the pull down menus and reports are displayed in individual windows. LINGO

can also operate in command mode, where text commands or command script files drive the

application and all output is routed to a window known as the command window. All input and output

passes through the command window when LINGO is in command mode. You can open a command

window at anytime by issuing the Window|Command Window command.

In general, you will only be interested in running LINGO in command mode if you are planning to

embed LINGO in a larger application. If you do use LINGO in command mode, you will find that the

command window can only hold a limited amount of output. Should you need to keep a disk-based

copy of all that transpires in the command window, you will need to use the Log Output command.

The Log Output command opens a standard Windows file dialog box from which you can name the

log file. You can echo the output to the command window as well as the file by checking the Echo to

screen checkbox. If you would like to append output to the end of an existing file, check the Append

output checkbox.

When you have selected a file for logging output, a check mark will appear in the File menu before the

Log Output command. To turn off Log Output, select the command again and the check mark will

disappear.

File|Take Commands... F11
The Take Commands command is used to submit a LINGO command script file for processing. For

more information on LINGO’s script language, refer to the following chapter, Command-line

Commands.

As an example, we will build a small script file that contains a small product-mix model and process it

using Take Commands.

To build a script file, issue the File|New command. LINGO will present you with the following dialog

box:

Select item 4, LINGO Command Script, and press the OK button. LINGO will open a blank script file.

WINDOWS COMMANDS 141

Now, enter the following into the script file:

This is a command script that inputs a small product-mix model, solves it, and puts the solution in a

text file. Save the command script to a file titled MyScript.ltf using the File|Save As command.

To run the script, issue the File|Take Commands command. You should see the following:

142 CHAPTER 5

Double-click on the icon for MyScript.ltf to begin processing the command script. LINGO’s command

window will now appear, and you should be able to watch LINGO’s progress at processing the script

by watching commands and output as they are logged in the command window. When LINGO finishes

the command script, the command window will resemble the following:

WINDOWS COMMANDS 143

Also of interest is the solution file, SOLU.LGR, created as part of our command script. If you open this

file, you should find the following solution to the model:

Variable Value Reduced Cost

 X 50.00000 0.000000

 Y 35.00000 0.000000

 Row Slack or Surplus Dual Price

 1 2050.000 1.000000

 2 0.000000 5.000000

 3 25.00000 0.000000

 4 0.000000 15.00000

The output that was routed to the command window can be routed to a file using the Log Output

command described above.

File|Export File
The File|Export File command allows you to either export MPS or MPI format files. The MPS file

format is an industry standard format developed by IBM, and is useful for passing models from one

solver or platform to another. MPI file format was developed by LINDO Systems as a way to store all

math programs, from linear models to, in particular, nonlinear models

Exporting MPS Files
The File|Export File|MPS format command generates the underlying algebraic formulation for the

current model and then writes it to a selected disk file in MPS format. MPS format is a common format

for representing linear programming models. MPS files can be ported to any solver that reads MPS

files—this includes most commercial linear programming packages.

As an example of exporting an MPS file, consider the model:

144 CHAPTER 5

After issuing the File|Export File|MPS format command and opening the file containing the MPS

model, we will find:

NAME NO_TITLE

* NOTICE: Generated by the MPS export utility for

* a maximization type problem.

*

* The objective coefficients have flipped signs.

* Interpret the objective value from the solution of

* this model accordingly.

ROWS

 N 1

 L 2

 L 3

 L 4

COLUMNS

 X 1 -20

 X 2 1

 X 4 1

 Y 1 -30

 Y 3 1

 Y 4 2

RHS

 RHS1 2 50

 RHS1 3 60

 RHS1 4 120

BOUNDS

ENDATA

Note 1: A model must be linear or quadratic to successfully export it in MPS format.

Note 2: The MPS file format is intended primarily for exporting models to other applications or

platforms. The MPS format is purely scalar in nature—all set-based information is lost upon

converting a LINGO model to MPS format. Thus, when saving copies of a model on your

own machine, you should always use the File|Save command in order to preserve your model

in its entirety.

Note 3: When exporting a stochastic program to MPS format, LINGO will write a total of three

SMPS format files, consisting of the core model, its stochastic declarations and its time

structure.

WINDOWS COMMANDS 145

Exporting MPI Files
MPI file format was developed by LINDO Systems as a way to store all math programs, from linear

models to, in particular, nonlinear models. As with MPS files, the MPI format is scalar-based. Thus,

you will lose any sets in your model when saving it in this format. Most users will not have a need for

MPI formatted files. However, LINDO API users can load these files directly and may find this feature

useful.

Note 4: When exporting a stochastic program to MPI format, LINGO will write a total of four SMPI

format files, consisting of the core model, its stochastic declarations and its time structure.

File|License
Some versions of LINGO require the user to input a license key. Also, if you upgrade your copy of

LINGO, then you will need to enter a new password. The File|License command prompts you for a

new license key.

When you run the File|License command, you will be presented with the dialog box:

Carefully enter the key into the edit field, including hyphens, making sure that each character is

correct. Click the OK button and, assuming the password was entered correctly, LINGO will display

the Help|About LINGO dialog box listing the features in the upgraded license. Verify that these

features correspond to the license you intended to install.

146 CHAPTER 5

Note: If you were emailed your license key, then you have the option of cutting-and-pasting it into

the dialog box. Cut the cut the key from the email that contains it. Then, press Ctrl+V to paste

it into the LINGO File|License dialog box.

File|Database User Info
LINGO allows models to link directly with databases through use of the @ODBC() function. Many

times, the database you link your model to will require a user id and/or password. To avoid having to

enter your user id and password each time your model is run, you can input them once at the start of

your session using this command.

When you run the File|Database User Info command, you will be presented with the following dialog

box:

Enter any user id and/or password into the appropriate fields. For security reasons, LINGO does not

store this information from one session to the next. So, you will need to run this command at the start

of each session.

If security is not a concern, and you would like to store your database user information, then you can

create an AUTOLG.DAT file containing a DBUID command and a DBPWD command. Commands in

the AUTOLG.DAT file are executed automatically each time LINGO starts. Thus, DBUID and

DBPWD commands contained in an AUTOLG.DAT file will restore your database user information at

the start of each LINGO run. For more information on the use of AUTOLG.DAT files, refer to LINGO

Command Scripts section in Chapter 8, Interfacing with External Files.

File|Exit F10
Use the Exit command to quit LINGO. If any unsaved files are open, you will be prompted to save

them before LINGO shuts down.

WINDOWS COMMANDS 147

2. Edit Menu

LINGO’s Edit menu, pictured at left,

contains commands that generally

pertain to editing and modifying the text

within a window. Each command

contained in the Edit menu is discussed

below.

Edit|Undo Ctrl+Z
Use the Undo Command to undo the last modification made to the contents of a Window. Undo can

undo all operations except drag-and-drop. LINGO stores a limited amount of undo operations, so you

won’t be able to depend on LINGO to undo extensive changes.

Edit|Redo Ctrl+Y
This command will redo the last undo operation. LINGO stores a limited amount of redo operations, so

you won’t be able to depend on LINGO to redo extensive changes.

148 CHAPTER 5

Edit|Cut Ctrl+X
Use the Cut command to clear the selected block of text and place it on the clipboard for pasting. To

select a block of text for cutting, place the cursor immediately before the block and press down on the

left mouse button. Now, drag the mouse until the cursor appears immediately after the block of text.

The text block should now be displayed in reverse video. Now, issue the Cut command to remove the

selected text from the document, placing it in the Windows clipboard.

Edit|Copy Ctrl+C
Use the Copy command to copy the selected text to the clipboard for pasting. To select a block of text

for copying, place the cursor immediately before the block and press down on the left mouse button.

Now, drag the mouse until the cursor appears immediately after the block of text. The text block

should now be displayed in reverse video. Now, issue the Copy command to place a copy of the

selected text in the Windows clipboard.

The Copy command is a convenient way to transfer small amounts of data from LINGO to other

applications.

Edit|Paste Ctrl+V
Use the Paste command to replace the current selection in the active window with the contents of the

Windows clipboard. The Paste command is a convenient way to import small amounts of data from

other applications into your LINGO models.

WINDOWS COMMANDS 149

Edit|Paste Special...
Use the Paste Special command to insert the contents from the Windows clipboard into the active

window at the cursor insertion point. This command can do much more than insert just plain text as

done by the standard Paste command. Paste Special can be used to insert other objects and links to

other objects. This is particularly useful for adding links to supporting data for your model. By

inserting a link to your data sources, it is much easier to find and view them.

As an example, suppose we have the following transportation model:

! A 3 Warehouse, 4 Customer

 Transportation Problem;

SETS:

 WAREHOUSE / WH1, WH2, WH3/: CAPACITY;

 CUSTOMER / C1, C2, C3, C4/: DEMAND;

 ROUTES(WAREHOUSE, CUSTOMER): COST, VOLUME;

ENDSETS

! The objective;

MIN = @SUM(ROUTES: COST * VOLUME);

! The demand constraints;

@FOR(CUSTOMER(J):

 @SUM(WAREHOUSE(I): VOLUME(I, J)) >=

 DEMAND(J));

! The supply constraints;

@FOR(WAREHOUSE(I): [SUP]

 @SUM(CUSTOMER(J): VOLUME(I, J)) <=

 CAPACITY(I));

! Here are the parameters;

DATA:

 CAPACITY = @OLE('D:\LNG\TRANLINKS.XLS');

 DEMAND = @OLE('D:\LNG\TRANLINKS.XLS');

 COST = @OLE('D:\LNG\TRANLINKS.XLS');

 @OLE('D:\LNG\TRANLINKS.XLS') = VOLUME;

ENDDATA

As we can see from the data section, we are importing data from the Excel file TRANLINKS.XLS and

writing the solution back out to the same file.

150 CHAPTER 5

A nice feature would be to insert a link to the spreadsheet into our model file. This way, we could view

the data and the solution without having to start Excel and load the spreadsheet. To do this, open Excel

and load the spreadsheet as we have done here:

For complete information on importing data from Excel, see Chapter 9, Interfacing with Spreadsheets.

WINDOWS COMMANDS 151

Now, select the range B2:F21 in the spreadsheet. Next, from Excel’s Edit menu, choose the Copy

command. Now, click on LINGO, place the cursor right before the data section, and give the

Edit|Paste Special command. Click on the Paste Link button in the dialog box, so you see the

following:

152 CHAPTER 5

Finally, click the OK button, and you should be able to see the spreadsheet contents in the LINGO

model:

This link will be saved as part of your LINGO file. Therefore, whenever you open the model, the

spreadsheet will be visible. Note that whenever you reopen the LINGO model, you may want to open

the link, so the contents are updated automatically. You can do this by selecting the spreadsheet in the

LINGO model, giving the Edit|Links command, and pressing the Open Links button in the dialog box.

As a final note, LINGO's compiler ignores all embedded links and objects. Thus, you are free to insert

links and objects wherever you choose in a model.

WINDOWS COMMANDS 153

Edit|Select All
Use the Select All command to select the entire contents of the active window. This is useful when you

want to copy the entire contents of the window elsewhere, or if you want to delete the contents of the

window.

Edit|Find... Ctrl+F
Use the Find command to search for a desired string of text in the active window. When you issue the

Find command, you should see the following dialog box:

Enter the text you wish to search for in the Find what box. Check the Match whole word only box to

have LINGO find only whole words of text (i.e., don’t search for occurrences of the text embedded in

other words). Check the Match case box to have LINGO search only for instances of the text with the

same capitalization. Click the Find Next button to find the next instance of the text.

Edit|Find Next Ctrl+N
Use the Find Next command to find the next instance of the text most recently searched for using the

Find command in the active window.

Edit|Replace Ctrl+H
Use the Replace command to replace one string of text with another in the active window. When you

issue the Replace command, you will see the following dialog box:

154 CHAPTER 5

Enter the name of the text you want to replace in the Find what box. Enter the text you want to replace

the old text with in the Replace with box. Clicking the Find Next button will cause LINGO to find the

next occurrence of the old text. Clicking the Replace button will cause the next occurrence of the old

text to be replaced by the new text. The Replace All button will replace all occurrences of the old text

with the new text throughout the entire document.

Check the Match whole word only box to have LINGO replace only whole words of the text (i.e., don’t

replace occurrences of the text embedded in other words). Check the Match case box to have LINGO

replace only instances of the text with the same capitalization.

Edit|Go To Line... Ctrl+T
Use the Go To Line command to jump to a selected line in the active window. When you issue the Go

To Line command, you will see the following dialog box:

Enter a line number in the Go to line number box. Then, press the OK button and LINGO will jump to

the desired line number. Press the Top button to go to the top of the document, or the Bottom button to

go to the bottom.

Edit|Match Parenthesis Ctrl+P
Select a parenthesis in a document. Then, use the Match Parenthesis command to find the closing

parenthesis for the selected parenthesis.

This command is useful when using nested statements such as:

@FOR(FXA(I, J):

 JP(I, J) = MPF(I) * CAGF(I, J);

 JP(I, J) = MPA(J) * CFGA(I, J));

where it may be difficult to find the close of a given parenthesis.

If no parenthesis is selected prior to issuing the Match Parenthesis command, LINGO will select the

parenthesis nearest to the current cursor position.

WINDOWS COMMANDS 155

In addition to this command, there is one other way to find matching parentheses. LINGO will

highlight matching parentheses in red when the Match Paren option is enabled under the

LINGO|Options command. By placing the cursor immediately after one of the parentheses of interest,

you will notice that the color of the parenthesis changes from black to red. LINGO will simultaneously

display the matching parenthesis in red. These parentheses will remain displayed in red until you move

the cursor to another position, at which point they will be returned to a black color.

Edit|Paste Function
Use the Paste Function command to paste any of LINGO’s built-in functions at the current insertion

point. Choose the category of the LINGO function you want to paste from the secondary menu, and

then select the function from the cascading menu.

In the following illustration, we have chosen the External Files category from the secondary menu:

On the right are all the functions that deal with external files. By selecting one of these functions,

LINGO will paste a template for the selected function into your document, with a suggestive

placeholder for each argument. You should then replace the argument placeholders with actual

arguments that are relevant to your model.

Edit|Select Font
Use the Select Font command to select a new font, size, style, color, or effect in which to display the

selected text. You may find it easier to read models and solution reports if you select a mono-spaced

font such as Courier. Custom fonts are preserved only when saving in the LG4 file format. (Refer to

the File|New command above for a description of LINGO’s various file types.)

Note: You cannot change the display color of text if syntax coloring is enabled. If you need to use

specific display colors in your document, you will need to disable syntax coloring.

156 CHAPTER 5

Edit|Insert New Object
Use the Insert New Object command to insert an object or a link to an object into your model. As with

the Edit|Paste Special command, this command is helpful in that it allows you to insert links to your

model’s data sources. Unlike the Paste Special command, which links to portions of an external object,

the Insert New Object command can add a link to an entire object.

As an example, suppose you have the following staff-scheduling model:

From the model’s data section, we see that we are using the @ODBC function to retrieve the values for

the NEED attribute from the STAFFING ODBC data source. We are also using the @ODBC function

to send the optimal values for the START attribute back to the same data source. Because this data

source is an integral part of our model, it would be nice to place a link to it in our model, so we can

retrieve it easily each time we want to refer to it. We can do this with the Edit|Insert New Object

command as follows:

1. Position the cursor in the model where you would like the icon for the link

to appear (Note, the LINGO parser ignores links to external objects, so you

can insert the link anywhere you like).

WINDOWS COMMANDS 157

2. Issue the Edit|Insert New Object command. You should see the following

dialog box:

3. Select the Create from File radio button.

4. Type in the name of the database file containing your data.

5. Click the Display As Icon button, so the box now resembles:

158 CHAPTER 5

6. Finally, click on the OK button, and an icon representing the linked

database will appear in your LINGO model as pictured below:

Now, whenever you want to edit or view the supporting database, all you need do is double-click on

the icon. In this case, Microsoft Access will start and load the staffing database, so you will see the

following on the screen:

As a final note, keep in mind linked objects are preserved only when a model is saved in LG4 format

(see the File|New command above for details on the LG4 file format).

For complete information on exchanging data and solution values with data sources, see Chapter 10,

Interfacing with Databases.

WINDOWS COMMANDS 159

Edit|Links
Use the Links command to modify the properties of the links to external objects in a LINGO

document. The dialog box appears as follows:

Select the Automatic radio button to have LINGO automatically update the object when the source file

is changed. The Manual radio button allows you to update the object only when you select the Update

Now button.

The Open Source button is used to open the connection to an automatic link. Once the link has been

opened, any changes to the source document will be reflected in the view of the object in your LINGO

model.

The Change Source button is used to attach the link to a different source file.

Finally, the Break Link button is used to break the connection to the external object.

Edit|Object Properties Alt+Enter
Select a linked or embedded object in your model by single-clicking it, and then you can use the

Object Properties command to modify the properties of the object. Properties you will be able to

modify include:

1. display of the object,

2. the object’s source,

3. type of update (automatic or manual),

4. opening a link to the object,

5. updating the object, and

6. breaking the link to the object.

160 CHAPTER 5

3. LINGO Menu

The LINGO menu, pictured at left,

contains commands that generally

pertain to solving a model and

generating reports. This menu also

contains the Options command for

customizing LINGO’s configuration.

LINGO|Solve Ctrl+U
Use the Solve command to have LINGO solve the model in the active window. The Solve command is

available only for model windows—report, script, and data windows cannot be solved.

When you solve a model, LINGO first examines the model’s syntax to determine if it is valid. If

LINGO finds a mistake in the syntax, you will be presented with a dialog box similar to the following:

In the Error Text box, LINGO prints the line number where the syntax error occurred, the text of the

line, and points to where LINGO determines that the error occurred. In most cases, LINGO is good at

pointing to where the error occurred. Sometimes, however, the error may not be located exactly where

LINGO is pointing. Be sure to examine neighboring lines for possible flaws as well. In this particular

example, the syntax error occurred in line 2, where we forgot to insert the multiplication signs (*)

between the two coefficients and variable names.

WINDOWS COMMANDS 161

When you issue the Solve command (assuming your model has no further syntax errors), LINGO will

post the solver status window. This window contains information about the composition of your model

and keeps you posted as to the progress of the solver. The solver status window resembles the

following:

For more information on the various fields in the solver status window, refer to Chapter 1, Getting

Started with LINGO.

162 CHAPTER 5

Once the solver has completed processing your model, it will create a new window containing the

Solution Report for your model. You can scroll through this window to examine its contents, save it to

a text file, or queue it to your printer. The following is a sample solution report window:

LINGO|Solution Ctrl+O
Use the Solution command to generate a solution report for the active window. After selecting the

model window that you want to generate a solution for, issue the LINGO|Solution command and you

will be presented with this dialog box:

WINDOWS COMMANDS 163

By clicking on the appropriate radio button on the Type of Output box, the solution report may be

viewed in either text or chart format. If you select Text, LINGO will create a new window containing

the solution in text format. If you select Chart, LINGO will create a new window containing the

solution in one of several different graphical formats. Current supported chart formats are: bar, bubble,

contour, curve, histogram, line, pie, radar, scatter and surface.

164 CHAPTER 5

Note: LINGO maintains only one solution in memory. This is the solution to the last window you

issued the LINGO|Solve command for. If you try to issue the Solution command for a window

that LINGO does not currently have a solution, you will receive an error message. Thus, if

you plan to work with two or more models that take a long time to solve, be sure to save

copies of your solutions. This will allow you to refer to them later without having to re-solve

your models.

Text Solution Reports
In the Attribute(s) or Row Name(s) list box, select an attribute or row name for which you would like a

report. If you do not select a name in this box, LINGO will generate a full solution report that includes

all attributes and rows. You may also specify multiple objects in this box, in which case, each object

will be included in the report.

Both the multi-character (*) and single character (%) wildcards are supported in the Attribute(s) or

Row Name(s) field. For example, inputting "X*" would cause all variables and rows beginning with

the letter X to be displayed, while "X%1" will display all variables and rows with three-character

names that begin with letter X and end with the digit 1.

In the Header Text box, enter whatever text (e.g., "Values for X") you would like to appear at the head

of the report.

Check the Nonzeros Vars and Binding Rows Only box to see a report that contains only the variables

with a nonzero value and constraints that are binding.

When you click OK, LINGO creates a new solution window containing the solution report. You can

use Cut and Paste commands to move the contents of the report to other applications. You may also

use the File|Save command to save the report to a text file.

Charting Solutions
If you choose to have the solution displayed as a chart, the box titled Chart Properties will be

undimmed, which allows you to select options influencing the display of the chart.

In the Chart Type box, you have the option of selecting a bar, bubble, contour, curve, histogram, line,

netarc, netnode, pie, radar, scatter or surface chart. One easy way to familiarize yourself with the

various chart types is to open and run the sample model CHARTS.LG4, which displays a sample of

each of the chart types.

If you've selected a histogram chart, then you will also have the option of specifying the number of

bins in the histogram in the Histo Bins box. If the number of bins is set to 0, then LINGO will select a

reasonable number of bins for the given data set.

In the Values box, you can select to graph either primal or dual values.

WINDOWS COMMANDS 165

The Attribute(s) or Row Name(s) field works in the same way as mentioned in the previous section,

with the additional feature that a colon may be inserted in between object names to indicate that you

wish to display multiple series on the same graph. Each series of data will be displayed using a

different color. The chart types that support multiple series are: bar, bubble, curve, line, radar, scatter.

Contour, histogram, pie and surface charts do not support multiple data series. As an example,

consider the following staff scheduling model, similar to the one discussed above in section A Staff

Scheduling Problem:

MODEL:

SETS:

 DAYS: REQUIRED, START, ONDUTY;

ENDSETS

DATA:

 DAYS = MON TUE WED THU FRI SAT SUN;

 REQUIRED = 20 16 13 16 19 14 12;

ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

 ONDUTY(J) =

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)));

 ONDUTY(J) >= REQUIRED(J)

);

END

Model: STAFFDEM2

The ONDUTY attribute tells us how many employees are working on each day of the week. To

display a bar chart of this information, you would fill out the LINGO|Solution dialog box as below:

166 CHAPTER 5

After pressing OK, a new window will open with the desired chart:

WINDOWS COMMANDS 167

Along with charting the number on duty, it would also be useful to include the number of staffers

required on each day. This would allow us in one glance to quickly see the days (if any) where we are

over staffed. To do this, change the contents of Attribute(s) or Row Name(s) field from "ONDUTY" to

"ONDUTY : REQUIRED". This tells LINGO we want to view both on duty and required staffing

levels, with the colon inserted to indicate they should be displayed as separate series. Doing this yields

the multi-bar chart:

Here we see that we just meet our staffing needs Monday through Saturday and are over staffed

slightly on Sunday. Had we not inserted the colon separator between the attribute fields, then LINGO

would have displayed the two attributes as a single series:

168 CHAPTER 5

The Bounds box gives you the option of placing bounds on the values to be included in the graph. If a

number is entered in the Lower bound field, LINGO will only display points in the graph that are

greater-than-or-equal-to the value. Conversely, if a value is placed in the Upper bound field, LINGO

will only graph points less-than-or-equal-to the bound. For example, if we display a bar chart showing

the number of employees starting each day of the week we'd see the following:

WINDOWS COMMANDS 169

Notice there are several "holes" in the chart due to no one starting on Tuesday, Wednesday and

Sunday. Entering a lower bound of .1 in the Bounds box removes the holes in our chart:

170 CHAPTER 5

For charts with one-dimensional data (bar, histogram, line, pie and radar), the bounds will be applied

to all data points in the first data series. If a point is eliminated in the first series, then the

corresponding points in any additional series will also be eliminated, regardless of whether or not they

lie within the specified bounds.

Charts with two-dimensional data points (curve and scatter) and three-dimensional data (bubble,

contour and surface) will have the bound applied only to the x-axis data. If the x-axis value lies

outside the bounds, then the entire point will be eliminated from the chart. Of these higher dimension

charts, only curve scatter and bubble allow for multiple series. In this case, the bounds will be applied

to the x-axis value of each series, as opposed to just the first.

Note: Bounds are not currently applied to the two network chart types ¾ netarc and netnode.

Next in the Chart Properties box are options for controlling how the axes and legends are labeled. In

both cases, the choices are:

 Default - LINGO tries to make intelligent choices in choosing an

appropriate labeling scheme.

 None - No labels are displayed.

 Set - Use one of the model's sets for labeling. Multiple sets may be

specified, if needed, to supply sufficient labels.

 User Specified - Labels are entered explicitly into the Set(s) or User

Name(s) field, with individual labels being separated with colons.

WINDOWS COMMANDS 171

The final option in the Chart Properties box is the Use 3D and Shading checkbox. This option is

on by default and will result in more modern looking charts that utilize shading and 3-dimensional

effects. Disable this option to display simpler, 2-dimensional charts that may display better on

certain printers.

Higher Dimension Charts
In addition to the standard charts with one-dimensional data, LINGO offers 2-dimensional curve

network and scatter charts, as well as 3-dimensional bubble, contour and surface charts. When a chart

requires more than one dimension of data, you can supply the data in either of two ways. The first

method is to supply one attribute for each dimension. So, for example, a 3-dimensional surface chart

might be specified using the three attributes XVALS, YVALS and ZVALS. The first attribute always

stores the x-axis data, the second stores the y-axis and, if needed, the third attribute stores the z-axis

values. The second option is to provide a data series in an m x n table/attribute, where m is the number

of data points and n is the dimension of the chart type.

As an example, suppose we have the following model that generates points of the surface X * SIN(Y)

+ Y * SIN(X):

MODEL:

SETS:

 POINTS /1..21/;

 POINTS2(POINTS, POINTS): X, Y, Z;

ENDSETS

CALC:

 XS = @FLOOR(-(@SIZE(POINTS) / 2) + .5);

 YS = XS;

 @FOR(POINTS2(I, J):

 X(I, J) = XS + I - 1;

 Y(I, J) = YS + J - 1;

 Z(I, J) = X(I, J) * @SIN(Y(I, J)) +

 Y(I, J) * @SIN(X(I, J));

);

ENDCALC

END

Model: CHARTSURF

172 CHAPTER 5

A surface chart requires 3-dimensional data, which, in this case, is contained in the X, Y and Z

attributes. To request a surface chart after solving the model, we fill out the LINGO|Solution dialog

box as follows:

Note that we've listed each of the three attributes in the Attribute(s) or Row Name(s) field. Given that

this is a 3-dimensional graph, the three attributes will be used to create a single chart. Clicking on OK

then gives us the chart:

WINDOWS COMMANDS 173

174 CHAPTER 5

Below we list the dimensions of each of the various chart types and whether or not they allow for

multiple data series:

Chart Type Dimension Supports Multiple Series

Bar 1 Yes

Histogram 1 No

Line 1 Yes

Pie 1 No

Radar 1 Yes

Curve 2 Yes

Netarc 2 Yes

Netnode 2 Yes

Scatter 2 Yes

Bubble 3 Yes

Contour 3 No

Surface 3 No

Network Charts
Network charts are specified slightly differently from other charts. Although network charts are

technically 2-dimensional charts, they require 4 attributes of data.

LINGO supports two different formats for specifying network charts -- netarc and netnode. In netarc

format, each arc is specified by two (X,Y) pairs, indicating the two end points of the arc. Whereas in

netnode format, each node in the network is specified with one (X,Y) pair, and each arc between the

nodes is specified by pair of arc indices from the arcs set. An example of both formats follows:

WINDOWS COMMANDS 175

MODEL:

! Illustrates the two formats for network charts:

 NETARC and NETNODE;

SETS:

 ARCS /1..6/: X1, Y1, X2, Y2;

 NODES /1..4/: NODEX, NODEY;

 NODESINNET /1..6/: N1, N2;

ENDSETS

DATA:

 !Use NETARC format -- one arc for each

 (X1,Y1) <-> (X2,Y2) pair of coordinates;

 X1, Y1, X2, Y2 =

 10, 10, 20, 10,

 20, 10, 20, 40,

 20, 40, 10, 40,

 10, 40, 10, 10,

 10, 40, 20, 10,

 20, 40, 10, 10;

 !Use NETNODE format;

 !List locations of all the nodes;

 NODEX, NODEY =

 10, 10,

 20, 10,

 20, 40,

 10, 40;

 !And list the indices of the nodes

 that have arc between them;

 N1, N2 =

 1, 2,

 2, 3,

 3, 4,

 4, 1,

 4, 2,

 1, 3;

ENDDATA

END

Model: CHARTNET

The CHARTNET model above uses both network chart formats for specifying a rectangular network

of four nodes with each node pair being joined by an arc. After solving the model, you can display the

network using netarc format by running the LINGO|Solution command and filling out the dialog box

using the netarc attributes (X1, Y1, X2 and Y2) and clicking on the "Netarc" radio button as follows:

176 CHAPTER 5

To display the network using netnode format, you would fill out the dialog box as below, using the

netnode attributes (NODEX, NODEY, N1 and N2) along with checking off the "Netnode" radio button:

 In both cases, you should then generate a network chart resembling:

WINDOWS COMMANDS 177

LINGO|Range Ctrl+R
Use the Range command to generate a range report for the model in the active window. A range report

shows over what ranges you can: 1) change a coefficient in the objective without causing any of the

optimal values of the decision variables to change, or 2) change a row's constant term (also referred to

as the right-hand side coefficient) without causing any of the optimal values of the dual prices or

reduced costs to change.

Note: The solver computes range values when you solve a model. Range computations must be

enabled in order for the solver to compute range values. Range computations are not enabled

by default. To enable range computations, run the LINGO|Options command, select the

General Solver Tab, and, in the Dual Computations list box, choose the Prices and Ranges

option. Range computations can take a fair amount of computation time, so, if speed is a

concern, you don’t want to enable range computations unnecessarily.

178 CHAPTER 5

Note: The example model below, when solved, yields the range report that follows.

[OBJECTIVE] MAX = 20 * A + 30 * C;

[ALIM] A <= 60;

[CLIM] C <= 50;

[JOINT] A + 2 * C <= 120;

Here is the range report:

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 A 20.00000 INFINITY 5.000000

 C 30.00000 10.00000 30.00000

 Righthand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 ALIM 60.00000 60.00000 40.00000

 CLIM 50.00000 INFINITY 20.00000

 JOINT 120.0000 40.00000 60.00000

The first section of the report is titled Objective Coefficient Ranges. In the first column, titled Variable,

all the optimizable variables are listed by name. The next column, titled Current Coefficient, lists the

current coefficient of the variable in the objective row. The next column, Allowable Increase, tells us

the amount that we could increase the objective coefficient without changing the optimal values for the

variables. The final column, Allowable Decrease, lists the amount that the objective coefficient of the

variable could decrease before the optimal values of the variables would change. Information on the

allowable increases and decreases on objective coefficients can be useful when you need answers to

questions like, "How much more (less) profitable must this activity be before we should be willing to

do more (less) of it?".

Referring to the Objective Coefficient Ranges report for our example, we can say, as long as the

objective coefficient of A is greater-than-or-equal-to 15, the optimal values of the variables will not

change. The same may be said for the objective coefficient of variable C, as long as it falls within the

range of [0,40].

Note: Ranges are valid only if you are planning to alter a single objective or right-hand side

coefficient. The range information provided by LINGO cannot be applied in situations where

one is simultaneously varying two or more coefficients. Furthermore, ranges are only lower

bounds on the amount of change required in a coefficient to actually force a change in the

optimal solution. You can change a coefficient by any amount up to the amount that is

indicated in the range report without causing a change in the optimal solution. Whether the

optimal solution will actually change if you exceed the allowable limit is not certain.

WINDOWS COMMANDS 179

The second section of the range report is titled Right-hand Side Ranges. The first column, Row, lists

the names of all the optimizable rows, or constraints, in the model. The second column, Current

RHS, gives the constant term, or right-hand side value, for the row. The next two columns,

Allowable Increase and Allowable Decrease, tell us how far we can either increase or decrease the

right-hand side coefficient of the row without causing a change in the optimal values of the dual

prices or reduced costs. If you recall, the dual prices on rows are, effectively, shadow prices that tell

us at what price we should be willing to buy (or sell) our resources for. The dual prices do not,

however, tell us what quantity we should be willing to buy (or sell) at the dual price. This

information is obtained from the allowable increases and decreases on the right-hand side

coefficients for the row. So, for our example, the dual prices and reduced costs will remain constant

as long as the right-hand side of row ALIM falls within the range [20,120], the right-hand side of

CLIM is greater-than-or-equal-to 30, and the right-hand side of JOINT is in [60,160].

Note: We preceded all the constraints in our model with a name enclosed in square brackets. This is

an important practice if you wish to generate range reports. If you do not name your

constraints, LINGO assigns them a name that corresponds to the internal index of the

constraint. This internal index will not always correspond to the order of the constraint in the

text of the original model. So, to make the Right-hand Side Ranges section of range reports

meaningful, be sure to name all your constraints. (See the section Constraint Names for

details on assigning constraint names.)

Note: If a variable is nonlinear in the objective, its value in the Current Coefficient column will be

displayed as NONLINEAR. Similarly, if a row is nonlinear, the value in the Current RHS

column will be displayed as NONLINEAR.

Coefficients that can be increased or decreased indefinitely will display a range of INFINITY.

Fixed variables are substituted out of a model and will not appear in a range report. Rows that contain

only fixed variables are also substituted out of models and will also not appear in range reports. As an

example, suppose we changed the following inequality in our sample model from:

[ALIM] A <= 60;

to the equality:

[ALIM] A = 60;

LINGO can now solve directly for the value of A. The variable A is considered fixed, as is the row

ALIM (since it contains no optimizable variables.) Given this, the variable A will no longer appear in

the Objective Coefficient Ranges section of the range report and the row ALIM will not appear in the

Right-hand Side Ranges section. We can verify this by examining the updated range report:

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 C 30.00000 INFINITY 30.00000

180 CHAPTER 5

 Righthand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 CLIM 50.00000 INFINITY 20.00000

 JOINT 60.00000 40.00000 60.00000

Note: LINGO maintains the range report for only one model in memory. This is the report for the

window that you last issued the LINGO|Solve command for. If you try to issue the Range

command for a window that LINGO does not currently have range information for, you will

receive an error message. If you plan to work with two or more models that take a long time

to solve, be sure to save copies of your range reports to disk, so you can refer to them later

without having to re-solve your models.

Note: The barrier crossover option must be enabled if you plan to do range analysis. Range

computations cannot be performed if the final solution is not a basic solution.

WINDOWS COMMANDS 181

LINGO|Options Ctrl+I
Use the LINGO|Options command to change a number of parameters that affect LINGO's user

interface, as well as the way LINGO solves your model. When issuing the Options command, you will

be presented with the following dialog box:

Set these parameters to your personal preference and press the Apply button to set them for the extent

of the current LINGO session. The currently selected settings are also applied when you click the OK

button, with the one difference being that the OK button closes the dialog box. If you would like the

current parameter settings to be maintained for use in subsequent LINGO sessions, click the Save

button. The original default settings can be restored at any time by clicking the Default button.

182 CHAPTER 5

There are nine tabs in the Options dialog box:

 Interface

 General Solver

 Linear Solver

 Nonlinear Solver

 Integer Pre-Solver

 Integer Solver

 Global Solver

 Model Generator

 SP Solver

The first time you run the Options command during a session, the Interface tab will be selected. The

Interface and General Solver tabs contain options of interest to most users. The remaining tabs (Linear

Solver, Nonlinear Solver, Integer Pre-Solver, Integer Solver, Global Solver and SP Solver) contain

advanced options that tend to be of interest primarily to the expert user. Follow the links above for

more details on the options available under each tab.

Note: LINGO uses the LINDO API as its solver engine. The LINDO API has a wealth of advanced

parameter settings to control its various solvers. Most of the more relevant parameters may

be set through the LINGO|Options command. However, some of the more advanced

parameters must be set using the APISET command.

WINDOWS COMMANDS 183

Interface Tab
The Interface tab on the Options dialog box (shown above) can be used to control the appearance of

LINGO, LINGO’s output, and the default file format.

General Box
The General box on the Interface tab:

allows you to set the following general options:

 Errors In Dialogs,

 Status Bar,

 Fill Out Ranges and Tables,

 Status Window,

 Splash Screen,

 Toolbar, and

 Output Level.

Errors In Dialogs
If the Errors In Dialogs box is checked, LINGO will display error messages issued by the solver in a

modal dialog box. This dialog box must be cleared before LINGO proceeds with any other operation.

In some instances, you may have LINGO embedded in other applications, where it may not be

desirable, or possible, to have users clearing error dialogs. By unchecking this option, LINGO will

route the solver's error messages to the command window, where they will be displayed, and no user

intervention will be required to clear the messages.

The default is for solver errors to be displayed in dialog boxes.

Note: This option allows you to route only those error messages generated by LINGO's solver to the

report window. Error messages displayed by LINGO's interactive front-end will always be

posted in dialog boxes.

184 CHAPTER 5

Status Bar
If the Status Bar box is checked, LINGO displays a status bar along the bottom of the main frame

window. Among other things, the status bar displays the time of day, location of the cursor, menu tips,

and the current status of the program. To remove the status bar from the screen, clear the Status Bar

checkbox.

The default is for LINGO to display the status bar.

Fill Out ODBC Ranges
LINGO can export a model’s solution to Excel and/or databases. When exporting to Excel, LINGO

sends solutions to user defined ranges in a workbook. Solutions exported to a database are sent to

tables within the database. In either case, the target range or table may contain more space for values

than you are actually exporting. In other words, there may be cells at the end of ranges or records at the

end of tables that will not be receiving exported values from LINGO. The Fill Out Ranges option

determines how these extra cells and records are treated. When the Fill Out Ranges option is enabled,

LINGO overwrites the extra values with null entries. Conversely, when the option is not enabled,

LINGO leaves any extra values untouched.

The Fill Out Ranges option is disabled by default.

WINDOWS COMMANDS 185

Status Window
If the Status Window box is checked, LINGO displays a solver status window whenever you issue the

LINGO|Solve command. This window resembles the following:

The solver status window is useful for monitoring the progress of the solver and the dimensions of

your model. It is updated every n seconds, where n is the value in the Update interval field in the lower

right corner of the window. For a detailed description of the various fields in the solver status window,

see the section Solver Status Window in Chapter 1, Getting Started with LINGO.

The default is for the solver status window to be displayed.

Splash Screen
If the Splash Screen box is checked, LINGO will display its splash screen each time it starts up. The

splash screen lists the release number of LINGO and the software's copyright notice. If you disable this

option, LINGO will not display the splash screen.

The default is for the splash screen to be displayed.

186 CHAPTER 5

Output Level
You can use the Output Level setting to control the amount of output LINGO generates. There are

four settings available:

 Verbose—Causes LINGO to display the maximum amount of output, including full

solution reports.

 Terse—Less output than Verbose, with full solution reports suppressed. This is a good

output level if you tend to solve large models. LINGO also suppresses Export Summary

Reports generated when exporting data to spreadsheets or databases.

 Errors Only—All output is suppressed, with the exception of error messages.

 Nothing—LINGO suppresses all output. This level may be useful when taking

advantage of the programming capabilities in LINGO, in which case, you will add

statements to your model to generate all required output.

The default is for LINGO to be in verbose mode.

Toolbar
If the Toolbar box is checked, LINGO displays its command toolbar containing buttons, which act as

shortcuts to various commands contained in the LINGO menu. For definitions of the buttons on the

toolbar, please see the section The Toolbar at the beginning of this chapter. If the Toolbar checkbox is

unchecked, LINGO does not display its toolbar.

The default is for LINGO to display its toolbar.

Solution Display Box
The Solution Display box on the Interface tab:

allows you to set the following options:

 Show as 0, and,

 Precision.

Show as 0
On occasion, due to round-off error, some of the values returned by LINGO’s solver will be very small

(less than 1e9.) In reality, the true values of these variables are either zero or so small as to be of no

consequence. These tiny values can be distracting when interpreting a solution report. The Show as 0

parameter can be used to suppress small solution values. Any solution value less-than-or-equal-to

Show as 0 will be reported as being zero.

The default value for Show as 0 is 1e-9.

WINDOWS COMMANDS 187

Precision
LINGO defaults to displaying seven significant digits for values in standard solution reports. In some

cases, you may desire more or less than seven digits of precision, in which case, you will need to

adjust the Precision parameter.

For example, suppose we have a very simple model consisting of the single expression:
X = 1/3;

The default solution report for this model using seven digits of precision would contain:

Variable Value

 X 0.3333333

 Row Slack or Surplus

 1 0.000000

Increasing the Precision parameter to 16 and resolving yields the following solution report with 16

significant digits:

Variable Value

 X 0.3333333333333333

 Row Slack or Surplus

 1 0.000000000000000

The default value for Precision is seven significant digits.

File Format Box
The File Format box on the Interface tab:

is used to select the default file format that LINGO uses to save models to disk. There are three

different formats to choose from: LG4, LNG, or LTX.

The LG4 format is a binary format readable only by LINGO. This format enables you to have custom

formatting, fonts in your models, and to use LINGO as an OLE server and container. Files saved in the

LG4 format are readable only by Windows versions of LINGO.

The LNG format is a text-based format. Thus, models saved in the LNG format can be read into other

applications. LNG format models are transferable to other platforms running LINGO. Models saved in

LNG format cannot contain custom formatting or embedded objects.

LTX files are model files that use the LINDO syntax. Longtime LINDO users may prefer LINDO

syntax over LINGO syntax. LINDO syntax is convenient for quickly entering small to medium sized

188 CHAPTER 5

linear programs. As long as a file has an extension of .ltx, LINGO will assume that the model is

written using LINDO syntax. Readers interested in the details of LINDO syntax may contact LINDO

Systems to obtain a LINDO user’s manual.

The default file format is LG4.

Syntax Coloring Box
The Syntax Coloring box on the Interface tab:

is used to control the syntax coloring capability in LINGO’s editor. LINGO’s editor is “syntax aware.”

In other words, when it encounters LINGO keywords, it displays them in blue. Comments are

displayed in green, and all remaining text is displayed in black. Matching parentheses are also

highlighted in red when you place the cursor immediately following a parenthesis.

The controls available in this box are: Line Limit, Delay, and Paren Match.

Line Limit
Syntax coloring can take a long time if you have very large files. The Line Limit field sets the

maximum acceptable file size for syntax coloring. Files with line counts exceeding this parameter will

not be syntax colored.

Setting this parameter to 0 will disable the syntax coloring feature. The default line limit is 1000 lines.

Delay
The Delay field sets the number of seconds LINGO waits after the last keystroke was typed before

re-coloring modified text. Users on slower machines may want to set this higher to avoid having

syntax coloring interfere with typing. Users on faster machines may want to decrease this value, so text

is re-colored quickly.

The default is 0 seconds.

Paren Match
If the Paren Match box is checked, LINGO will highlight matching parentheses in red when you place

the cursor immediately following a parenthesis. In other words, by placing the cursor immediately

after one of the parentheses of interest, you will notice that the color of the parenthesis changes from

black to red. LINGO will simultaneously display the matching parenthesis in red. These parentheses

will remain displayed in red until you move the cursor to another position, at which point they will be

returned to a black color.

The default is for parenthesis matching to be enabled.

WINDOWS COMMANDS 189

Command Window Box
The Command Window box on the Interface tab:

is used to customize the configuration of LINGO’s command window.

LINGO’s command window can be opened by using the Window|Command Window command. This

gives the user a command-line interface to LINGO. This interface is identical to ones used by LINGO

on platforms other than Windows. The command window is also useful for testing LINGO command

scripts. For more information on the commands available under LINGO’s command-line interface,

refer to Chapter 6, Command-line Commands.

Send Reports to Command Window
If the Send Reports to Command Windowbox is checked, LINGO will send any reports it generates to

the command window rather than to individual report windows. This is useful if you’d like to have two

or more LINGO generated reports contained in a single window.

The default is to not send reports to the command window.

Echo Input
When you run a LINGO command script with File|Take Commands, the commands LINGO processes

are normally not displayed. If the Echo Input box is checked, processed commands will be displayed in

the command window. This can be a useful feature when you are trying to develop and debug a

LINGO command script.

The default is to not echo input.

Line Count Limits
The Line Count Limits box on the Interface tab:

is used to control the total number of output lines that can be stored in the command window.

190 CHAPTER 5

When LINGO sends output to the command window, it places it at the bottom of the window. All

previous output is scrolled up to make way for the new output. The Maximum field sets the maximum

number of output lines allowed in the command window. When LINGO hits this limit, it starts

removing lines from the top of the command window until there are n lines left, where n is the value of

the Minimum field.

In general, output to the command window will become slower as the maximum and minimum line

counts are increased, or the difference between the maximum and minimum is decreased. If you have a

long session you need to save, you can use the File|Log Output command to log all command window

output to disk.

The default value for Line Count Limits is 800 lines maximum and 400 lines minimum.

Page Size Limits
The Page Size Limits box on the Interface tab:

is used to control the page length and width of the command window.

If you would like LINGO to pause after a certain number of lines have been written to the command

window, you can do so by setting the Length field in the Page Size Limits box. When LINGO hits this

limit, it will display the following button on your screen:

LINGO will wait until you press the More button to display any subsequent output in the command

window. The default is None, meaning no page length limit is imposed.

When LINGO generates reports, it limits output lines to a certain width. In some reports, lines will be

wrapped, so they fall within the line limit. In other reports, lines may be truncated. Because LINGO

concatenates variable names in performing set operations, a variable name such as

SHIPMENTS(WAREHOUSE1, CUSTOMER2) may result. This could be truncated in a solution report

if too narrow an output width is used. You can control this line width limit through the Width field of

the Page Size Limits box. You may set it anywhere between 64 and 200, with the default being 85.

WINDOWS COMMANDS 191

General Solver Tab
The General Solver tab on the Options dialog box, shown here:

can be used to control several general parameters related to the functioning of LINGO’s solver.

192 CHAPTER 5

Multithreading Box
The Multithreading box on the General Solver tab:

gives you control over LINGO's use of multithreading. With multithreading, LINGO's model

generator and its solvers can utilize multiple processors to improve performance.

The Threads option controls the maximum number of threads, or processors, to utilize at any given

time. Interesting settings for the thread count are:

 Max Available — LINGO determines the number of processors on the system and sets

the thread limit to this number.

 1 — Only one processor will be used, causing LINGO to run in single-threaded mode.

 N — Here, N is some positive integer greater than 1 and less-than-or-equal-to 32, in

which case, LINGO will set the maximum number of threads to N.

LINGO defaults to running in single-threaded mode with a thread limit of 1.

The second option in the Multithreading box is Mode, which controls the multithreading mode that

LINGO operates in. LINGO offers multicore extensions to its model generator and solvers. The

multicore extensions are of two types: concurrent and parallel. Concurrent algorithms run two or more

different serial algorithms on multiple copies of the same model, using a separate thread for each

algorithm, terminating as soon as the winner thread finishes. These “different algorithms” may in fact

be the same algorithm type, but using different strategies and/or parameters. Parallel algorithms, on

the other hand, parallelize computationally intensive portions of the serial algorithm to distribute the

workload across multiple threads.

WINDOWS COMMANDS 193

The following multicore extensions are currently available in LINGO:

LINGO Component Model Class Parallel

Option

Concurrent Option

Barrier Solver Linear Programs Yes No

BNP Solver Mixed Integer Programs Yes No

Global Solver Nonlinear Programs Yes No

Integer Solver Mixed Integer Programs Yes Yes

Linear Solver Linear Programs No Yes

Model Generator All Yes No

Multistart Solver Nonlinear Programs Yes No

Stochastic Solver Stochastic Programs Yes No

The available settings for the Mode, or multithreading mode, parameter are as follows:

 Solver Decides — The best available multithreading strategy, either parallel or

concurrent, will be selected for each step of the solution process.

 Off in Solver — Multithreading will be disabled in the solvers, but allowed in the model

generator if the number of threads is greater than 1.

 Prefer Parallel — If a parallel option is available for a particular solution step, then it

will be selected, otherwise, a concurrent option will be selected when available.

 Parallel Only - If a parallel option is available for a particular solution step, then it will

be selected, otherwise, the step will be executed in single-thread mode.

 Prefer Concurrent - If a concurrent option is available for a particular solution step, then

it will be selected, otherwise, a parallel option will be selected when available.

 Concurrent Only - If a concurrent option is available for a particular solution step, then it

will be selected, otherwise, the step will be executed in single-thread mode.

Note: If the maximum thread count parameter, Threads, is set to 1, then the multithreading mode

setting will be ignored, and LINGO will execute in single-threaded mode.

Note: Setting the maximum thread count parameter, Threads, to N does not guarantee than N cores

will be fully utilized throughout the entire solve. There may be serial sections inside parallel

code that get executed from time to time, causing only one core to be utilized. Concurrent

algorithms may also have fewer than N different serial algorithms to launch, meaning fewer

than N cores will be occupied.

194 CHAPTER 5

Debugger Box
The Debugger box on the General Solver tab:

gives you control over the output level and the solver used as part of the model debugging command,

LINGO|Debug. The debugger is very useful in tracking down problems in models that are either

infeasible or unbounded .

The Output Level option controls how much output the model debugger generates. Possible output

levels range from 1 (minimum output) to 15 (maximum output). In general, you will want to generate

as much output as possible. The only reason to restrict the amount of output would be to speed

debugging times on large models.

The default setting for the debugger output level is 15.

The Cold Start Solver and Warm Start Solver options control the solver used on linear models for cold

starts (starting without an existing basis in memory) and warm starts (restarting from an existing basis)

during the debugging process. In either case, the available options are

 Solver Decides — LINGO selects the solver it believes is the most appropriate,

 Primal — the primal simplex solver will be used,

 Dual — the dual simplex solver will be used, and

 Barrier — the barrier solver will be used (requires a barrier solver license).

With some models, you may find that choosing a particular solver improves overall performance of the

debugger.

LINGO defaults to Solver Decides for both the cold and warm debug solver.

WINDOWS COMMANDS 195

Runtime Limits Box
The Runtime Limits box on the General Solver tab:

is used to control the length of time the solver spends on your model.

The first field, Iterations, allows you to place an upper limit on the number of iterations the solver will

perform. An iteration is the fundamental operation performed by the solver. At the risk of

oversimplification, it is a process that involves forcing a variable, currently 0, to become nonzero until

some other variable is driven to zero, improving the objective as we go. In general, larger models will

take longer to perform an iteration and nonlinear models will take longer than linear models. The

default iteration limit is None, meaning no limit is imposed on the iteration count.

The second field in the Runtime Limits box, Time (sec), is a limit on the amount of elapsed time the

solver is allowed when optimizing a model. The default time limit is None, meaning no limit is

imposed on the length of time the solver can run.

If the solver hits either of these limits, it returns to normal command mode. If the model contains

integer variables, LINGO will restore the best solution found so far. You may need to be patient,

however, because the solver may have to perform a fair amount of work to reinstall the current best

solution after it hits a runtime limit.

Note: When the solver is interrupted, the only time it will return a valid solution is when an

incumbent solution exists, as indicated by a Best Objective value in the Extended Solver

Status box of LINGO's solver status window. Interrupting a model without and incumbent

solution will result in an undefined solution. Models that can be interrupted include any

model with integer variables, or nonlinear models solved with either the global or multistart

solvers.

196 CHAPTER 5

Dual Computations Box
The Dual Computations box on the General Solver tab:

is used to control the level of dual computations performed by the solver.

The choices for this option are:

 None,

 Prices,

 Prices and Ranges, and

 Prices Opt Only.

When the None option is selected, LINGO does not compute any dual and range information. This

option yields the fastest solution times, but is suitable only if you don’t require any dual information.

In fact, the LINGO|Range command will not execute when dual computations are turned off.

When the Prices option is selected, LINGO computes dual values, but not the ranges on the duals.

When Prices & Ranges is selected, LINGO computes both dual prices and ranges

When the Prices, Opt Only option is selected, LINGO computes dual values on the optimizable rows

only—fixed rows simply receive a dual value of 0. Ranges are also not computed under this option.

This can be a useful option if LINGO is spending a lot of time in the “Computing Duals…” phase of

the solution process. This phase is devoted to the computation of dual values on the fixed rows.

LINGO defaults to the Prices option (computing all the dual prices but not ranges.)

Note: If solution times are a concern, you should avoid unnecessarily enabling range computations.

@SOLVE Time Limit Box
The @SOLVE Time Limits box on the General Solver tab:

is used to set time limits on the runtime of @SOLVE commands, which is a command available in calc

sections for solving sub-models. The time limit, if specified, will be applied to each individual

@SOLVE command encountered in calc sections.

WINDOWS COMMANDS 197

When the None option is selected for the Time field, LINGO does not impose a time limit. Any

nonnegative value will be treated as a runtime limit, in seconds, for each @SOLVE command. If the

time limit is hit, the @SOLVE command will be interrupted, and the best solution found, up to that

point, will be returned.

LINGO defaults to the no time limit on @SOLVE commands and will not kill scripting when interrupts

occur

Scaling Warning Threshold
The Scaling Warning Threshold parameter on the General Solver tab:

controls when LINGO displays its scaling warning message:

When LINGO generates a model, it keeps track of the largest and smallest coefficient values in the

model. LINGO then computes the ratio of the largest to smallest coefficient, and if the absolute value

of this ratio exceeds the setting for Scaling Warning Threshold, LINGO will display the above error

message.

The scaling warning is to reminder that, due to finite precision, round-off error in arithmetic

calculations can result when the largest-to-smallest coefficient ratio becomes too large. Not all models

will necessarily experience round-off problems when the scaling warning is issued, however, it is

something you should be on the lookout for.

The recommended technique for eliminating the scaling warning is to rescale the model so as to reduce

the extreme coefficient ratio. Many times, just scaling units of measure (e.g., dollars to millions of

198 CHAPTER 5

dollars) is enough the bring a model's scaling into line. If this is not possible, or your model is

performing well in light of the poor scaling, you may choose to increase the Scaling Warning

Threshold in order to suppress the warning message.

The default value for the Scaling Warning Threshold is 1.e12.

Variables Assumed Non-Negative
When enabled, the Variables Assumed Non-Negative checkbox on the General Solver tab:

tells LINGO to place a default lower bound of 0 on all variables. In other words, unless otherwise

specified, variables will not be allowed to go negative. Should you want a variable to take on a

negative value, you may always override the default lower bound of 0 using the @BND() function. If

this option is disabled, then LINGO’s default assumption is that variables are unconstrained and may

take on any value, positive or negative. Unconstrained variables are also referred to as be being free

Use RC Format Names
The Use R/C Format names for MPS I/O checkbox on the General Solver tab:

tells LINGO to convert all variable and row names to RC notation when performing MPS file format

Input/Output.

RC format involves renaming each row (constraint) in a model to be Rn, where n is the row’s index.

Similarly, each column (variable) is renamed to Cn. In addition, LINGO renames the objective row to

be ROBJ. Refer to the Importing MPS Files section under the File|Open command earlier in this

chapter for a discussion of RC notation and why this option is useful.

By default, LINGO disables the use of RC format names.

Favor Reproducibility Over Performance
The Favor reproducibility over performance checkbox on the General Solver tab:

allows you to indicate if your preference is for reproducible solutions across multiple runs, or if your

preference is for faster average runtimes.

WINDOWS COMMANDS 199

A number of solver steps have been found to perform better when using elapsed time as a measure of

work performed. The problem with this approach is that the actual amount of work that gets performed

over a fixed time interval will vary slightly across runs depending on the machine's load factor. Many

models have alternate optimal solutions, with equal objectives but different variable values. LINGO is

indifferent as to which solution is selected; it just wants to find a feasible solution with the best

objective value, regardless of the variables values. The end result of this variability in work performed

is that a different solution path may be selected from one run to the next, in which case, you may end

up with a different alternate optimum from a previous run.

On the other hand, enabling the Favor reproducibility over performance option causes LINGO to use

fixed measures of work (such as iteration counts), allowing solutions to be reproducible across runs

when using the same machine.

By default, LINGO disables the Favor reproducibility over performance option. However, if

reproducibility of results is important for your application, then you should enable this option.

200 CHAPTER 5

Model Generator Tab
The Model Generator tab on the Options dialog box, shown here:

is used to control several parameters related to the generation of the model. The model generator takes

the expressions in your LINGO model and converts them to a format understood by the solver engines

that find the actual solutions to the model.

WINDOWS COMMANDS 201

Generator Memory Limit Box
The Generator Memory Limit box on the Model Generator tab:

is used to control the amount of memory set aside to use as workspace for generating a model.

Large models may run out of generator memory when you attempt to solve them. In this case, you will

receive the error message "The model generator ran out of memory.” To avoid this error, increase the

amount of memory in the Generator Memory Limit field. You will then need to click the Save button

and restart LINGO. Since LINGO sets aside this memory when it starts, changes in LINGO's generator

memory limit are not established until you restart the program.

To determine exactly how much generator memory LINGO was able to successfully allocate, run the

Help|About LINGO command. The About LINGO dialog box displays the amount of generator

memory allocated at startup.

The memory allocated to LINGO’s generator will not be available to the various solver engines

contained in LINGO. Thus, you should not allocate overly excessive amounts of memory to the

generator.

If you set LINGO's generator memory limit to None, LINGO will allocate all available memory when

it starts up. This is not a recommended practice. The default size for the workspace is 32Mb.

Note: By setting LINGO's generator memory limit abnormally high, both LINGO and Windows

will resort to swapping virtual memory to and from the hard drive, which can slow down your

machine dramatically and result in poor performance. In general, set the memory allocation to

a level high enough to comfortably handle your largest models, but not too much higher than

that. You can view the amount of memory used in the allotted workspace at any time by

opening the solver status window and examining the Generator Memory Used field.

Unary Minus Priority
The Unary Minus Priority box on the Model Generator tab:

is used to set the priority of the unary minus operator. The two available options are High and Low.

202 CHAPTER 5

There are two theories as to the priority that should be assigned to the unary minus (i.e., negation)

operator in mathematical expressions. On the one hand, there is the Excel practice that the unary

minus operator should have the highest priority, in which case, the expression -3^2 would evaluate to

+9. On the other hand, there is the mathematicians’ preference for assigning a lower priority to unary

minus than is assigned to exponentiation, in which case, -3^2 evaluates to -9. Note that regardless

which relative priority is used, one can force the desired result through the use of parenthesis.

LINGO defaults to the Excel approach of setting a higher priority (High) on negation than on

exponentiation.

Fixed Var Reduction
The Fixed Var Reduction box on the Model Generator tab:

is used to control the degree to which fixed variables are substituted out of the ultimate math program

passed to the solver engines.

For example, consider the model:

MAX= 20*X + 30*Y + 12*Z;

X = 2*Y;

X + Y + Z <= 110;

Y = 30;

If we run the LINGO|Generate command, we see that LINGO is able to reduce this model down to the

equivalent, but smaller model:

MAX= 12 * Z + 2100;

Z <= 20;

From the third constraint of the original model, it is obvious that Y is fixed at the value 30. Plugging

this value for Y into the first constraint, we can conclude that X has a value of 60. Substituting these

two fixed variables out of the original formulation yields the reduced formulation above.

In most cases, substituting out fixed variables yields a smaller, more manageable model. In some

cases, however, you may wish to avoid this substitution. An instance in which you might want to

avoid substitution would be when equations have more than one root. When multiple roots are

present, reduction may select a suboptimal root for a particular equation. On the other hand, the global

and multistart solvers are adept at handling equations containing multiple roots. Thus, when using

these solvers one may wish to forgo fixed variable reduction.

The available options are:

 None,

 Always,

 Always, but linear only with global and multi, and

 Linear rows only.

WINDOWS COMMANDS 203

Selecting None disables all fixed variable reduction. Selecting Always enables reduction. When

Always, but linear only with global and multi is selected, LINGO always enables reduction except

when either the global or multistart solvers are selected, in which case it will only perform reduction

on rows where the key variable appears linearly. The Linear rows only option always limits reduction

to rows in which the key variable is linear.

Note: You should be careful when turning off fixed variable reduction. If the model generator is

unable to substitute out fixed variables, you may end up turning a linear model into a more

difficult nonlinear model.

LINGO defaults to selecting Always, but linear only with global and multi for fixed variable reduction.

Model Regeneration Box
The Model Regeneration box on the Model Generator tab:

is used to control the frequency with which LINGO regenerates a model. Commands that will trigger

the model generator are LINGO|Solve, LINGO|Generate, LINGO|Model Statistics, LINGO|Picture,

LINGO|Debug, and File|Export File.

The choices available under this option are:

 Only when text changes - LINGO regenerates a model only when a change has been

made to the model’s text since the last generation took place.

 When text changes or with external references – LINGO regenerates whenever a change

is made to the model text or when the model contains references to external data sources

(e.g., text files, databases, or spreadsheets).

 Always - (default) LINGO always regenerates the model each time information regarding

the generated model is needed.

LINGO defaults to always regenerating the model.

204 CHAPTER 5

Linearization
The Linearization box on the Model Generator tab:

controls the linearization option in LINGO. Many nonlinear operations can be replaced by linear

operations that are mathematically equivalent. The ultimate goal is to replace all the nonlinear

operations in a model with equivalent linear ones, thereby allowing use of the faster and more robust

linear solvers. We refer to this process as linearization. For more information on linearization, please

refer to the section On Mathematical Modeling.

Degree determines the extent to which LINGO will attempt to linearize models. The available options

are:

 Solver Decides,

 None,

 Math only,

 Math and Logic.

Under the None option, no linearization occurs. With the Math Only option, LINGO linearizes the

mathematical functions: @ABS(), @FLOOR(), @IF(), @MAX(), @MIN(), @SIGN(). @SMAX(), and

@SMIN() along with any products of binary and continuous variables. The Math and Logic option is

equivalent to the Math option plus LINGO will linearize all logical operators (#LT#, #LE#, #EQ#,

#GT#, #GE#, and #NE#). Under the Solver Decides option, LINGO will do maximum linearization if

the number of variables is less-than-or-equal-to 12, otherwise, LINGO will not perform any

linearization. LINGO defaults to the Solver Decides setting.

The Delta Coefficient is a tolerance indicating how closely you want the additional constraints added

as part of linearization to be satisfied. Most models won’t require any changes to this parameter.

However, some numerically challenging formulations may benefit from increasing Delta slightly.

LINGO defaults to a Delta of 1.e-6.

When LINGO linearizes a model, it will add forcing constraints to the mathematical program

generated to optimize your model. These forcing constraints are of the form:

 f(x) = M • y

where M is the BigM Coefficient and y is a 0/1 variable. The idea is that if some activity in the

variables is occurring, then the forcing constraint will drive y to take on the value of 1. Given this, if

we set the BigM value to be too small, we may end up with an infeasible model. Therefore, the astute

reader might conclude that it would be smart to make BigM quite large, thereby minimizing the chance

of an infeasible model. Unfortunately, setting BigM to a large number can lead to numerical stability

problems in the solver resulting in infeasible or sub-optimal solutions. So, getting a good value for the

BigM Coefficient may take some experimentation.

WINDOWS COMMANDS 205

As an example of linearization, consider the following model:

MODEL:

SETS:

 projects: baths, sqft, beds, cost, est;

ENDSETS

DATA:

projects, beds, baths, sqft, cost =

p1 5 4 6200 559608

p2 2 1 820 151826

p3 1 1 710 125943

p4 4 3 4300 420801

p5 4 2 3800 374751

p6 3 1 2200 251674

p7 3 2 3400 332426

;

ENDDATA

MIN = @MAX(projects: @abs(cost - est));

@FOR(projects:

 est = a0 + a1 * beds + a2 * baths + a3 * sqft

);

END

Model: COSTING

This model estimates the cost of home construction jobs based on historical data on the number of

bedrooms, bathrooms, and square footage. The objective minimizes the maximum error over the

sample project set. Both the @MAX() and @ABS() functions in the objective are non-smooth nonlinear

functions, and, as a result, can present problems for LINGO’s default, local search NLP solver.

Running the model under the default settings with linearization disabled, we get the following result:

 Local optimal solution found at step: 91

 Objective value: 3997.347

 Variable Value Reduced Cost

 A0 37441.55 0.000000

 A1 27234.51 0.000000

 A2 23416.53 0.000000

 A3 47.77956 0.000000

Enabling linearization and re-optimizing yields the substantially better solution:

 Global optimal solution found at step: 186

 Objective value: 1426.660

 Variable Value Reduced Cost

 A0 46814.64 0.000000

 A1 22824.18 0.000000

 A2 16717.33 0.000000

 A3 53.74674 0.000000

206 CHAPTER 5

Note that the maximum error has been reduced from 3,997 to 1,426!

Linearization will substantially increase the size of your model. The sample model above, in un-

linearized form, has a mere 8 rows and 11 continuous variables. On the other hand, the linearized

version has 51 rows, 33 continuous variables, and 14 binary variables! Although linearization will

cause your model to grow in size, you will tend to get much better solution results if the model can be

converted entirely to an equivalent linear form.

Note: Linearization will be of most use when a nonlinear model can be 100% linearized. If LINGO

can only linearize a portion of your model, then you may actually end up with a more difficult

nonlinear model.

The linearization option is set to Solver Decides by default.

Allow Unrestricted Use of Primitive Set Member Names Check Box
The Allow unrestricted use of primitive set member names checkbox on the Model Generator tab:

allows for backward compatibility with models created in earlier releases of LINGO.

In many instances, you will need to get the index of a primitive set member within its set. Prior to

release 4 of LINGO, you could do this by using the primitive set member’s name directly in the

model’s equations. This can create problems when you are importing set members from an external

source. In this case, you will not necessarily know the names of the set members beforehand. When

one of the imported primitive set members happens to have the same name as a variable in your model,

unintended results can occur. More specifically, LINGO will not treat such a variable as optimizable.

In fact, it would treat it as if it were a constant equal to the value of the index of the primitive set

member!

In short, different primitive set names can potentially lead to different results. Therefore, starting with

release 4.0 of LINGO, models such as the following were no longer permitted:

MODEL:

SETS:

 DAYS /MO TU WE TH FR SA SU/;

ENDSETS

 INDEX_OF_FRIDAY = FR;

END

If you want the index of FR in the DAYS set, you should now use the @INDEX function:

INDEX_OF_FRIDAY = @INDEX(DAYS, FR);

By default, LINGO disables the use of primitive set member names.

Assume Model Is Linear
The Assume model is linear checkbox on the Model Generator tab:

WINDOWS COMMANDS 207

This option can be used for minimizing memory usage on models that are entirely linear. When this

option is in effect, the model generator can take steps to dramatically reduce overall memory

consumption without sacrificing performance. In fact, if all your models are linear, we recommend

that you enable this option permanently as the default for your installation. The one restriction is that

the model must prove to be entirely linear. If a single nonlinearity is detected, you will receive an

error message stating that the model is nonlinear and model generation will cease. At which point, you

should clear this option and attempt to solve the model again.

By default, the Assume model is linear option is disabled.

Check for Duplicate Names
The Check for duplicate names in data and model checkbox on the General Solver tab:

allows you to test your LINGO models from older releases for instances where primitive set members

appear in the model’s equations. The next time you run a model, LINGO will issue an error message if

duplicate names appear as set members and as variables in the model.

Earlier releases of LINGO allowed you to use primitive set names in the equations of a model.

Primitive set names in a model’s equations returned the index of the set member. Starting with release

4.0, LINGO required you to use the @INDEX function (see the Chapter 7, LINGO's Operators and

Functions) to get the index of a primitive set member.

By default, this option is disabled.

Enforce Bounds in CALC and DATA
The Enforce Bounds In CALC and DATA checkbox on the General Solver tab:

causes LINGO to check the values of any variables input in calc and data sections against their bounds.

Normally, variable bounds apply only to optimizable variables that appear in the model's constraints

and not to variables fixed to constant values in calc and data sections. If you would also like LINGO

to check variables fixed in calc and data sections against their bounds, then you will need to enable this

option.

By default, this option is disabled.

Loop Optimization
The Loop optimization checkbox on the General Solver tab:

208 CHAPTER 5

is used to either enable or disable LINGO's loop optimization step. Loop optimization reformulates

expressions containing set looping functions in order to make them more efficient, while maintaining

mathematical equivalency. The end goal of loop optimization is to minimize the number of passes

through the inner loop of any nested loops in an expression.

As an example, consider the following transportation model fragment, that just contains constraints for

satisfying customer demand:

MODEL:

! A transportation problem fragment;

SETS:

 WAREHOUSE /1..50/ : CAPACITY;

 CUSTOMER /1..5000/ : DEMAND;

 ROUTES(WAREHOUSE, CUSTOMER) : COST, VOLUME;

ENDSETS

! The demand constraints;

 @FOR(CUSTOMER(J):

 @SUM(ROUTES(I, J): VOLUME(I, J)) >= DEMAND(J)

);

END

Transportation Model Fragment with Inefficient Constraints

In the demand constraints expression there are two loops an outer @FOR() over the CUSTOMER

set and an inner @SUM() over the ROUTES set. As written, the inner loop must be executed

5000*50*5000=1.25 billion times. Note that a valid reformulation of these demand constraints would

be:

! The demand constraints;

 @FOR(CUSTOMER(J):

 @SUM(WAREHOUSE(I): VOLUME(I, J)) >= DEMAND(J)

);

With the expression rewritten in this manner, the inner loop will now only be executed 50*5000 times,

reducing the total number of passes by a factor of 5000. LINGO's loop optimizer seeks out such

inefficient loops and, invisible to the user, rewrites them before the model gets passed to the generator.

Of course, the end result of such reformulations are faster generation times. In fact, the speedup from

reformulation can be quite dramatic in many cases. In this particular example, the reformulated

version ran over 400 times faster in the model generator.

Note that in some cases, particularly with models that primarily contain sparse sets, loop optimization

may actually increase runtimes. So, you should compare runtimes with, and without, the feature being

enabled.

By default, the Loop optimization feature is disabled.

WINDOWS COMMANDS 209

Minimize Memory Usage
The Minimize memory usage checkbox on the General Solver tab:

may be used to guide LINGO’s memory usage. Enabling Minimize memory usage causes LINGO to

opt for less memory usage when solving a model. The downside is that opting for less memory may

result in longer runtimes.

LINGO defaults to disabling Minimize memory usage.

210 CHAPTER 5

Linear Solver Tab
The Linear Solver tab on the Options dialog box, pictured here:

can be used to control several options, discussed below, for tailoring the operation of LINGO’s linear

solver. The linear solver is used on linear models and on mixed integer linear models as part of the

branch-and-bound process.

WINDOWS COMMANDS 211

Method Box
The Method box on the Linear Solver tab:

is used to control the algorithm LINGO’s linear solver employs.

The current choices are:

 Solver Decides - LINGO selects the algorithm it determines is most appropriate.

 Primal Simplex - LINGO uses a primal simplex algorithm.

 Dual Simplex - LINGO uses a dual simplex algorithm.

 Barrier - LINGO uses a barrier algorithm (i.e., interior point).

The simplex algorithm moves around the exterior of the feasible region to the optimal solution, while

the interior point algorithm, Barrier, moves through the interior of the feasible region. In general, it is

difficult to say which algorithm will be fastest for a particular model. A rough guideline is Primal

Simplex tends to do better on sparse models with fewer rows than columns. Dual Simplex does well on

sparse models with fewer columns than rows. Barrier works best on densely structured models or very

large models.

The barrier solver is available only as an additional option to the LINGO package. Furthermore, if the

model has any integer variables, the barrier solver will be used for solving the LP at the initial root

node of the branch-and-bound tree, but may or may not be used on subsequent nodes. From a

performance point-of-view, the barrier solver’s impact will be reduced on integer models.

LINGO defaults to the Solver Decides option.

Model Reduction Box
The Model Reduction box on the Linear Solver tab:

is used to control the amount of model reduction performed by LINGO’s linear solver.

Your options are:

 Off - Disables reduction,

 On - Reduction is used on all models, and

 Solver Decides - LINGO decides whether or not to use reduction.

When this option is enabled, LINGO attempts to identify and remove extraneous variables and

constraints from the formulation before solving. In certain cases, this can greatly reduce the size of the

final model to be solved. Sometimes, however, reduction merely adds to solution times without

trimming back much on the size of the model.

LINGO defaults to the Solver Decides option.

212 CHAPTER 5

Feasibility Tolerance Boxes
The Initial Linear Feasibility Tol. and the Final Linear Feasibility Tol. boxes on the Linear Solver tab:

are used to control the feasibility tolerances for the linear solver. These tolerances are related to how

closely constraints must be satisfied in linear models. In general, if your models are well formulated,

you should not have to modify these tolerances. However, access to these tolerances is provided for the

expert user.

Due to the finite precision available for floating point operations on digital computers, LINGO can’t

always satisfy each constraint exactly. Given this, LINGO uses these two tolerances as limits on the

amount of violation allowed on a constraint while still considering it “satisfied”. These two tolerances

are referred to as the Initial Linear Feasibility Tolerance (ILFT) and the Final Linear Feasibility

Tolerance (FLFT). The default values for these tolerances are, respectively, .000003 and .0000001.

The ILFT is used when the solver begins iterating. In the early stages of the solution process, having

the solver less concerned with accuracy issues can boost performance. When LINGO thinks it has an

optimal solution, it switches to the more restrictive FLFT. At this stage in the solution process, you

want a relatively high degree of accuracy. Thus, the FLFT should be smaller than the ILFT.

One instance where these tolerances can be of use is when LINGO returns a solution that is almost

feasible. You can verify this by checking the values in the Slack or Surplus column in the model’s

solution report. If there are only a few rows with small negative values in this column, then you have a

solution that is close to being feasible. Loosening (i.e., increasing) the ILFT and FLFT may help you

get a feasible solution. This is particularly true in a model where scaling is poor (i.e., very large and

very small coefficients are used in the same model), and the units of measurement on some constraints

are such that minor violations are insignificant. For instance, suppose you have a budget constraint

measured in millions of dollars. In this case, a violation of a few pennies would be of no consequence.

Short of the preferred method of rescaling your model, loosening the feasibility tolerances may be the

most expedient way around a problem of this nature.

Pricing Strategies Box
The Pricing Strategies box on the Linear Solver tab:

is used to control the pricing strategy used by LINGO’s simplex solvers. Pricing determines the

relative attractiveness of the variables during the simplex algorithm.

WINDOWS COMMANDS 213

For the Primal Solver, you have the following choices:

 Solver Decides - LINGO selects the pricing method it believes is the most appropriate.

 Partial - LINGO prices out a small subset of variables at each iteration and intermittently

prices out all the variables to determine a new subset of interesting variables.

 Devex - Devex prices out all columns at each iteration using a steepest-edge

approximation (see below).

Partial pricing tends to yield faster iterations. Devex, while slower, results in fewer overall iteration

and can be helpful when models are degenerate. Thus, it is difficult to determine what method is

superior beforehand.

For the Dual Solver, you have these options:

 Solver Decides - LINGO selects the pricing method it believes is the most appropriate.

 Dantzig - The dual simplex solver will tend to select variables that offer the highest

absolute rate of improvement to the objective regardless of how far other variables may

have to move per unit of movement in the newly introduced variable.

 Steepest Edge - The dual solver spends a little more time selecting variables by looking at

the total improvement in the objective when adjusting a particular variable.

 Devex - Devex prices out all columns at each iteration using a steepest-edge

approximation.

 Approximate Devex - An simplified implementation of true Devex pricing.

Dantzig pricing generally yields faster iterations, however, the other variables in the model may

quickly hit a bound resulting in little gain to the objective. With the steepest-edge option, each iteration

will tend to lead to larger gains in the objective resulting in fewer overall iterations, however, each

iteration will tend to take more compute time due to increased time spent in pricing. The Devex

options approximate true steepest-edge pricing.

Multi-Core Box
The Multi-Core box on the Linear Solver tab:

may be used to perform parallel solves of linear programs on multiple cores. One of four different

linear solvers is chosen for each core. LINGO will take the solution from the solver that finishes first

and then interrupt the remaining solver threads.

The idea behind this approach is that different linear solvers will have relatively better or worse

performance on different classes of models. However, it may be difficult to predict beforehand the

solver that is most likely to outperform. So, by enabling multi-core solves, we guarantee that we will

214 CHAPTER 5

always get top performance, even without knowledge beforehand of which solver is likely to run the

fastest.

Note: The multi-core feature requires that your machine have at least one core free for each solver

you wish to run. Using this feature with an inadequate number of cores will tend to decrease

overall performance.

For the Cores to Use parameter, you have the following choices: Off, 2, 3, or 4. When the default Off

option is selected, the multi-core feature is disabled, and LINGO will run only one solver on linear

programs, namely the one specified as part of the Solver Method option detailed above. When either

option 2, 3, or 4 is selected, LINGO will run linear solvers in the requested number of cores.

When selecting two or more cores, you will have the option to specify which of the linear solvers to

use in each of the running cores as part of the Core1 - Core4 list boxes. The available linear solvers

are:

 Primal1 - Primal simplex algorithm 1

 Dual - Dual simplex algorithm

 Barrier - Barrier/Interior point solver (available as a option)

 Primal2 - Primal simplex algorithm 2, installed as part of the Barrier option

As an example, the settings of the Multi-Core box below are requesting to run LP solvers in two cores,

with core 1 running the dual simplex solver and core 2 running the barrier solver:

While LINGO is solving linear programs it normally displays solver statistics in the Solver Status

Window. This will also be true with muti-core solves. However, LINGO reports the statistics from

only one of the solvers, specifically, the solver selected to run in Core 1. Once optimization is

complete, LINGO will populate the Solver Status Window with statistics from the solver that finished

first. Finally, as part of the solution report, LINGO will display a line indicating the solver that

finished first. In the solution report excerpt below, we see that the dual simplex solver was the first to

completion:

First returning solver: DUAL SIMPLEX

Global optimal solution found.

Objective value: 1272282.

Infeasibilities: 0.9313226E-09

Total solver iterations: 34862

WINDOWS COMMANDS 215

Linear Optimality Tolerance Box
The Linear Optimality Tolerance box on the Linear Solver tab:

allows you to control the setting for the linear optimality tolerance. This tolerance is used to determine

whether a reduced cost on a variable is significantly different from zero. You may wish to loosen this

tolerance (make it larger) on poorly scaled and/or large models to improve performance.

The default setting for the Linear Optimality Tolerance is 1.e-7.

Basis Refactor Frequency Box
The Basis Refactor Frequency box on the Linear Solver tab:

allows you to control the how frequently the linear solver refactors the basis matrix. The options are

either Solver Decides or some positive integer quantity. If an integer value, N, is selected, then the

linear solver will refactor every N iterations. Numerically tough and/or poorly scaled models may

benefit from more frequent refactoring. However, refactoring too frequently will cause the solver to

slow down.

The default setting for the Basis Refactor Frequency is Solver Decides, which will typically result in

refactoring about once every 100 iterations.

Barrier Crossover
The Barrier Crossover box on the Linear Solver tab:

is used to control whether or not the barrier solver performs a crossover operation. Unlike simplex

algorithms, the barrier solver does not automatically find basic (cornerpoint) solutions. Very roughly

speaking, basic solutions have the nice mathematical property that exactly m variables will have

nonzero values, where m is the number of constraints. The crossover procedure takes the barrier’s

non-basic solution, and, through the use of a simplex solver, converts the non-basic solution to a basic

one. If the basic solution property is not important for your models, then you may wish to disable

crossovers to improve performance when using the barrier solver.

Note: Barrier crossover must be enabled if you plan to do range analysis. Range computations

cannot be performed if the final solution is not a basic solution.

216 CHAPTER 5

The default is to perform crossovers.

Matrix Decomposition
The Matrix Decomposition box on the Linear Solver tab:

allows you to enable the matrix decomposition feature.

Many large-scale linear and mixed integer problems have constraint matrices that are totally

decomposable into a series of block structures. If total decomposition is possible, LINGO will solve

the independent problems sequentially and report a solution for the original model, resulting in

dramatic speed improvements.

LINGO defaults to not using matrix decomposition.

Scale Model Checkbox
The Scale Model box on the Linear Solver tab:

allows you to enable to matrix scaling option.

This option rescales the coefficients in the model’s matrix, so the ratio of the largest to smallest

coefficients is reduced. This reduces the chances of round-off error, which leads to greater numerical

stability and accuracy in the linear solver.

LINGO defaults to using scaling.

WINDOWS COMMANDS 217

Nonlinear Solver Tab
The Nonlinear Solver tab on the Options dialog box, pictured here:

controls several options that affect the operation of LINGO’s solver on nonlinear models.

218 CHAPTER 5

Initial Nonlinear Feasibility Tolerance
Final Nonlinear Feasibility Tolerance
The Initial Nonl Feasibility Tol and the Final Nonl Feasibility Tol boxes on the Nonlinear Solver tab:

are used to control the feasibility tolerances for the nonlinear solver in the same manner that the Initial

Linear and Final Linear Feasibility Tolerance are used by the linear solver. For information on how

and why these tolerances are useful, refer to the Feasibility Tolerances section in the Linear Solver

Tab section immediately above.

Default values for these tolerances are, respectively, .001 and .000001.

Nonlinear Optimality Tolerance
The Nonlinear Optimality Tol box on the Nonlinear Solver tab:

is used to control the adjustments to variables as described below.

While solving a model, the nonlinear solver is constantly computing a gradient. The gradient gives the

rate of improvement of the objective function for small changes in the variables. If the gradient’s rate

of improvement computation for a given variable is less-than-or-equal-to the Nonlinear Optimality

Tolerance, further adjustments to the variable’s value are not considered to be beneficial. Decreasing

this tolerance towards a limit of 0 will tend to make the solver run longer and may lead to better

solutions in poorly formulated or poorly scaled models.

The default value for the Nonlinear Optimality Tolerance is .0000001.

Slow Progress Iteration Limit
The Slow Progress Iteration Limit (SPIL) box on the Nonlinear Solver tab:

is used to terminate the solution process if little or no progress is being made in the objective value.

Specifically, if the objective function’s value has not improved significantly in n iterations, where n is

the value of SPIL, the nonlinear solver will terminate the solution process. Increasing this tolerance’s

value will tend to force the solver to run longer and may be useful in models with relatively “flat”

objective functions around the optimal solution.

The default value for SPIL is 5 iterations.

WINDOWS COMMANDS 219

This option is available on the off chance that the older version of the nonlinear solver, Ver 1.0, should

perform better on a particular model.

LINGO defaults to Solver Decides for the nonlinear solver version.

Derivative Computation
The Derivatives box on the Nonlinear Solver tab:

The First Order option determines how the nonlinear solver computes first order derivatives. There

are two general methods available: numerical or analytical derivatives. Analytical derivatives are

computed directly by symbolically analyzing the arithmetic operations in a constraint. Numerical

derivatives are computed using finite differences. There are two types of numerical derivatives

available using either central differences or forward differences. There are also two types of analytical

derivatives available: backward analytical and forward analytical. Finally, a Solver Decides option is

also available. LINGO defaults to the Solver Decides setting for the First Order option, which

presently involves LINGO using backward analytical derivatives. However, one of the other choices

may be more appropriate for certain classes on nonlinear models. We suggest you try the various

derivative options to see which works best for your particular models.

The Use Second Order option determines if the nonlinear solver will use second order derivatives. If

used, second order derivatives will always be computed analytically. Computing second order

derivatives will take more time, but the additional information they provide may lead to faster runtimes

and/or more accurate solutions. LINGO defaults to not using second order derivatives.

220 CHAPTER 5

Strategies Box
The Strategies box on the Nonlinear Solver tab:

allows you to set the following options:

 Crash Initial Solution,

 Quadratic Recognition,

 Selective Constraint Eval,

 SLP Directions,

 SLP Solver, and

 Steepest Edge.

Crash Initial Solution
If the Crash Initial Solution box is checked, LINGO’s nonlinear solver will invoke a heuristic for

generating a “good” starting point when you solve a model. If this initial point is relatively good,

subsequent solver iterations should be reduced along with overall runtimes.

LINGO defaults to not crashing an initial solution.

Quadratic Recognition
If the Quadratic Recognition box is checked, LINGO will use algebraic preprocessing to determine if

an arbitrary nonlinear model is actually a quadratic programming (QP) model. If a model is found to

be a QP model and convex, then it can be passed to the faster quadratic solver. Note that the QP solver

is not included with the standard, basic version of LINGO, but comes as part of the Barrier option.

LINGO defaults to using quadratic recognition.

Selective Constraint Evaluation
If the Selective Constraint Eval box is checked, LINGO’s nonlinear solver will only evaluate

constraints on an as needed basis. Thus, not every constraint will be evaluated during each iteration.

This generally leads to faster solution times, but can also lead to problems in models that have

functions that are undefined in certain regions.

WINDOWS COMMANDS 221

LINGO may not evaluate a constraint for many iterations only to find that it has moved into a region

where the constraint is no longer defined. In this case, there may not be a valid point for the solver to

retreat to, and the solution process terminates with an error. Turning off selective constraint evaluation

eliminates these errors.

LINGO defaults to not using Selective Constraint Eval.

SLP Directions
If the SLP Directions box is checked, LINGO’s nonlinear solver will use successive linear

programming to compute new search directions. This technique uses a linear approximation in search

computations in order to speed iteration times. In general, however, the number of total iterations will

tend to rise when SLP Directions are used.

LINGO defaults to not using SLP Directions.

SLP Solver
If the SLP Solver box is checked, LINGO uses a successive linear programming (SLP) algorithm for

its nonlinear solver. This technique uses a linear approximation of the true nonlinear model within

successive, small regions. This then allows the use of the fast linear solver for optimizing each linear

subregion. In general, the SLP solver will not be well suited for highly nonlinear models. However, it

may offer better performance than the standard nonlinear solver when a model has few nonlinear

variables, such that the model is "mostly linear".

LINGO defaults to not enabling the SLP Solver option.

Steepest Edge
If the Steepest Edge box is checked, LINGO’s nonlinear solver will use the steepest-edge strategy

when selecting variables to iterate on.

When LINGO is not in steepest-edge mode, the nonlinear solver will tend to select variables that offer

the highest absolute rate of improvement to the objective, regardless of how far other variables may

have to move per unit of movement in the newly introduced variable. The problem with this strategy is

that other variables may quickly hit a bound, resulting in little gain to the objective.

With the steepest-edge option, the nonlinear solver spends a little more time in selecting variables by

looking at the rate that the objective will improve relative to movements in the other nonzero

variables. Thus, on average, each iteration will lead to larger gains in the objective. In general, the

steepest-edge option will result in fewer iterations. However, each iteration will take longer.

LINGO defaults to not using the Steepest Edge option.

222 CHAPTER 5

Integer Pre-Solver Tab
The Integer Pre-Solver tab on the Options dialog box, pictured here:

can be used to control several options for tailoring the operation of LINGO’s integer programming

pre-solver. The integer pre-solver does a great deal of model reformulation, so that the final

formulation passed to the branch-and-bound solver may be solved as fast as possible. The reformulated

model is always mathematically equivalent to the original formulation, but it is structured in such a

way that it is best suited for solution by the branch-and-bound integer programming algorithm.

WINDOWS COMMANDS 223

The integer pre-solver operates only with linear integer models (i.e., models that make use of the

@BIN and @GIN functions to restrict one or more variables to integer values). Integer pre-solver

option settings have no effect on nonlinear integer models.

Heuristics
The Heuristics box on the Integer Pre-Solver tab:

controls the level of integer programming heuristics used by the integer solver. These heuristics use the

continuous solution at each node in the branch-and-bound tree to attempt to quickly find a good integer

solution.

The Cutoff Criterion is used to control the criterion for terminating heuristics. Choices here are Solver

Decides, Time, and Iterations. Under the Time setting, LINGO terminates heuristics after a certain

amount of elapsed time. The Iterations option terminates heuristics after a certain number of

iterations. In general, the Time setting results in the fastest performance. However, due to shifting

computational loads on a machine, solution paths may change under the Time setting from one solve to

the next, potentially resulting in non-reproducible solutions. If reproducibility of a runs is a concern,

then the Iterations option should be selected. Under the Solver Decides setting, LINGO chooses the

most appropriate strategy.

The Min Seconds field specifies the minimum amount of time to spend on heuristics at each node.

The default settings are 3 for Level, Solver Decides for Cutoff Criterion, and 0 for Min Seconds.

224 CHAPTER 5

Constraint Cuts Box
The tolerances contained in the Constraint Cuts box on the Integer Pre-Solver tab:

can be used to control the solver’s cut generation phase on linear models.

LINGO’s integer programming pre-solver performs extensive evaluation of your model in order to add

constraint cuts. Constraint cuts are used to “cut” away sections of the feasible region of the continuous

model (i.e., the model with integer restrictions dropped) that are not contained in the feasible region to

the integer model.

On most integer models, this will accomplish two things. First, solutions to the continuous problem

will tend to be more naturally integer. Thus, the branch-and-bound solver will have to branch on fewer

variables. Secondly, the bounds derived from intermediate solutions will tend to be tighter, allowing

the solver to “fathom” (i.e., drop from consideration) branches higher in the branch-and-bound tree.

These improvements should dramatically speed solution times on most integer models.

Note: Cuts are not applied to nonlinear models. Thus, modifying any of the tolerances in the

Constraint Cuts box will have no bearing on nonlinear models.

Application
In the Application drop-down box of the Constraint Cuts box:

you can control the nodes in the solution tree where the branch-and-bound solver adds cuts.

WINDOWS COMMANDS 225

If you pull down the selection list, you will find three options:

 Root Only,

 All Nodes, and

 Solver Decides.

Under the Root Only option, the solver appends cuts only at the first node, or root node, in the solution

tree. With the All Nodes option, cuts are appended at each node of the tree. The Solver Decides option

causes the solver to dynamically decide when it is best to append cuts at a node.

The default is to let the solver decide when to append cuts. In general, this will offer superior

performance. There may be instances, however, where one of the other two options prevails.

Relative Limit
In the Relative Limit field of the Constraint Cuts box:

you can control the number of constraint cuts that are generated by the integer pre-solver. Most integer

programming models benefit from the addition of some constraint cuts. However, at some point

additional cuts take more time to generate than they save in solution time. For this reason, LINGO

imposes a relative limit on the number of constraint cuts.

The default limit is set to .75 times the number of true constraints in the original formulation. This

relative limit may be overridden by changing it in the Relative Limit field.

Max Passes
In the Max Passes box of the Constraint Cuts box:

you can control the number of iterative passes the integer pre-solver makes through a model to

determine appropriate constraint cuts to append to the formulation. In general, the benefits of each

successive pass decline. At some point, additional passes will only add to the total solution time. Thus,

LINGO imposes a limit on the maximum number of passes.

The default limit is 100 passes at the root node of the branch-and-bound tree, and 2 passes at all

subsequent nodes. You can override these limits by changing the values in the Root and Tree fields.

226 CHAPTER 5

Types
The Types box of the Constraint Cuts box:

is used to enable or disable the different strategies LINGO uses for generating constraint cuts. LINGO

uses twelve different strategies for generating constraint cuts. The default is for all cut generation

strategies to be enabled with the exception of Objective cuts.

It is beyond the scope of this manual to go into the details of the various strategies. Interested readers

may refer to any good text on integer programming techniques. In particular, see Nemhauser and

Wolsey (1988).

Probing Level
The Probing Level option on the Integer Pre-Solver tab can be used on mixed integer linear programs

to perform an operation known as probing. Probing involves taking a close look at the integer

variables in a model and deducing tighter variable bounds and right-hand side values. In many cases,

probing can tighten an integer model sufficiently to speed overall solution times. In other cases,

however, probing may not be able to do much tightening, and the overall solution time will increase

due to the extra time spent probing.

Pulling down the selection list for the Probing Level field:

you will see that you can choose one of eight different probing levels. A probing level of 1 means

probing is disabled, while levels 2 through 7 indicate successively higher degrees of probing. The

default setting for this option, Solver Decides, leaves the decision up to LINGO to select the probing

level.

WINDOWS COMMANDS 227

Integer Solver Tab
The Integer Solver tab on the Options dialog box, pictured here:

can be used to control several tolerances for tailoring the operation of LINGO’s branch-and-bound

solver used on integer models (i.e., models making use of the @BIN and @GIN functions to restrict

one or more variables to integer values).

228 CHAPTER 5

Branching Box
The Branching box on the Integer Solver tab:

contains the following two options for controlling the branching strategy used by LINGO’s branch-

and-bound solver:

 Direction, and

 Priority.

Direction
LINGO uses a branch-and-bound solution procedure when solving integer programming models. One

of the fundamental operations involved in the branch-and-bound algorithm is branching on variables.

Branching involves forcing an integer variable that is currently fractional to either the next greatest or

the next lowest integer value. As an example, suppose there is a general integer variable that currently

has a value of 5.6. If LINGO were to branch on this variable, it would have to choose whether to set

the variable first to 6 or 5. The Direction field controls how LINGO makes this branching decision.

If you pull down the drop-down box for the Direction option, you’ll find the following:

The default, Both, involves LINGO making an intelligent guess as to whether it should branch up or

down first on each individual variable. If Up is selected, LINGO will always branch up first. If Down

is selected, LINGO will always branch down first. In most cases, the Both option will result in the best

performance.

Priority
When branching on variables, the branch-and-bound procedure can give priority to branching on the

binary variables first, or it can make an intelligent guess as to the next best variable to branch on,

regardless of whether it is binary or general. The Priority field controls how LINGO makes this

branching decision.

If you pull down the drop-down box for Priority, you’ll find the following:

WINDOWS COMMANDS 229

Select Binary to have LINGO give branching priority to the binary variables. Select LINGO Decides to

have LINGO select the next integer variable for branching based on an intelligent guess, regardless of

whether it is binary or general.

The default is LINGO Decides, which should generally give the best results.

Integrality Box
Due to the potential for round-off error on digital computers, it is not always possible for LINGO to

find exact integer values for the integer variables. The Integrality box on the Integer Solver tab:

contains the following three options for controlling the amount of deviation from integrality that will

be tolerated:

 Absolute Integrality,

 Relative Integrality, and

 BigM Threshhold.

Absolute Integrality
The Absolute Integrality tolerance is used by LINGO as a test for integrality in integer programming

models. Due to round-off errors, the “integer” variables in a solution may not have values that are

precisely integer. The absolute integrality tolerance specifies the absolute amount of violation from

integrality that is acceptable. Specifically, if X is an "integer" variable and I is the closest integer to X,

then X would be accepted as being integer valued if:

| X – I | <= Absolute Integrality Tolerance.

The default value for the absolute integrality tolerance is .000001. Although one might be tempted to

set this tolerance to 0, this may result in feasible models being reported as infeasible.

Relative Integrality
The Relative Integrality tolerance is used by LINGO as a test for integrality in integer programming

models. Due to round-off errors, the “integer” variables in a solution may not have values that are

precisely integer. The relative integrality tolerance specifies the relative amount of violation from

integrality that is acceptable. Specifically, if I is the closest integer value to X, X will be considered an

integer if:

| X – I | <= Relative Integrality Tolerance.

 | X |

The default value for the relative integrality tolerance is .000008. Although one might be tempted to

set this tolerance to 0, this may result in feasible models being reported as infeasible.

BigM Threshold
Many integer programming models have constraints of the form:

230 CHAPTER 5

f(x) ≤ M * z

where f(x) is some function of the decision variables, M is a large constant term, and z is a binary

variable. These types of constraints are called forcing constraints and are used to force the binary

variable, z, to 1 when f(x) is nonzero. In many instances, the binary variable is multiplied by a fixed

cost term in the objective; a fixed cost that is incurred when a particular activity, represented by f(x),

occurs. The large constant term, M, Is frequently referred to as being a BigM coefficient.

Setting BigM too small can lead to infeasible or suboptimal models. Therefore, the BigM value will

typically have to be rather large in order to exceed the largest activity level of f(x). When BigM is

large, the solver may discover that by setting z slightly positive (within normal integrality tolerances),

it can increase f(x) to a significant level and thereby improve the objective. Although such solutions

are technically feasible to tolerances, they are invalid in that the activity is occurring without incurring

its associated fixed cost.

The BigM threshold is designed to avoid this problem by allowing LINGO to identify the binary

variables that are being set by forcing constraints. Any binary variable with a coefficient larger than

the BigM threshold will be subject to a much tighter integrality tolerance.

The default value for the BigM Threshold is 1.e8.

LP Solver Box
In a mixed linear integer programming model, LINGO’s branch-and-bound solver solves a linear

programming model at each node of the solution tree. LINGO has a choice of using the primal

simplex, dual simplex, or barrier solver (assuming the barrier option was purchased with your license)

for handling these linear programs. The LP Solver box on the Integer Solver tab:

contains the following two options for controlling this choice of linear program solver:

 Warm Start, and

 Cold Start

Warm Start
The Warm Start option controls the linear solver that is used by the branch-and-bound solver at each

node of the solution tree when a previous solution is present to use as a “warm start”. The cold start

option, discussed below, determines the solver to use when a previous solution does not exist.

If you pull down the drop-down box for Warm Start, you’ll find the following:

WINDOWS COMMANDS 231

The available options are:

 LINGO Decides – LINGO chooses the most appropriate solver.

 Barrier – LINGO uses the barrier method, assuming you have purchased a license for the

barrier solver. Otherwise, the dual solver will be used.

 Primal – LINGO uses the primal solver exclusively.

 Dual – LINGO uses the dual solver exclusively.

In general, LINGO Decides will yield the best results. The barrier solver can’t make use of a

pre-existing solution, so Barrier usually won’t give good results. In general, Dual will be faster than

Primal for reoptimization in branch-and-bound.

Cold Start
The Cold Start option controls the linear solver that is used by the branch-and-bound solver at each

node of the solution tree when a previous solution is not present to use as a “warm start”. The Warm

Start option, discussed above, determines the solver to use when a previous solution does exist.

If you pull down the drop-down box for Cold Start, you’ll find the following:

The available options are:

 LINGO Decides – LINGO chooses the most appropriate solver at each node.

 Barrier – LINGO uses the barrier method, assuming you have purchased a license for the

barrier solver. Otherwise, the dual solver will be used.

 Primal – LINGO uses the primal solver exclusively.

 Dual – LINGO uses the dual solver exclusively.

In general, LINGO Decides will yield the best results. However, experimentation with the other

options may be fruitful.

232 CHAPTER 5

Optimality Box
The Optimality Box on the Integer Solver tab:

is used to control three tolerances: Absolute, Relative, and Time to Relative. These tolerances control

how close you want the solver to come to the optimal solution. Ideally, we’d always want the solver to

find the best solution to a model. Unfortunately, integer programming problems are very complex, and

the extra computation required to seek out the absolute best solution can be prohibitive. On large

integer models, the alternative of getting a solution within a few percentage points of the true optimum

after several minutes of runtime, as opposed to the true optimum after several days, makes the use of

these tolerances quite attractive.

Absolute
The Absolute Optimality tolerance is a positive value r, indicating to the branch-and-bound solver that

it should only search for integer solutions with objective values at least r units better than the best

integer solution found so far. In many integer programming models, there are huge numbers of

branches with roughly equivalent potential. This tolerance helps keep the branch-and-bound solver

from being distracted by branches that can’t offer a solution significantly better than the incumbent

solution.

In general, you shouldn’t have to set this tolerance. Occasionally, particularly on poorly formulated

models, you might need to increase this tolerance slightly to improve performance. In most cases, you

should experiment with the relative optimality tolerance, discussed below, rather than the absolute

optimality tolerance in order to improve performance.

The default value for the absolute optimality tolerance is 8e-8.

Relative
The Relative Optimality tolerance is a value r, ranging from 0 to 1, indicating to the branch-and-bound

solver that it should only search for integer solutions with objective values at least 100*r% better than

the best integer solution found so far.

The end results of modifying the search procedure in this way are twofold. First, on the positive side,

solution times can be improved tremendously. Second, on the negative side, the final solution obtained

by LINGO may not be the true optimal solution. You will, however, be guaranteed the solution is

within 100*r% of the true optimum.

Typical values for the relative optimality tolerance would be in the range .01 to .05. In other words,

you would be happy to get a solution within 1% to 5% of the true optimal value. On large integer

models, the alternative of getting a solution within a few percentage points of the true optimum after

several minutes of runtime, as opposed to the true optimum after several days, makes the use of an

optimality tolerance quite attractive.

WINDOWS COMMANDS 233

Note: Generally speaking, the relative optimality tolerance is the tolerance that will most likely

improve runtimes on integer models. You should be sure to set this tolerance whenever near

optimal solutions are acceptable. Do keep in mind that when you set this option, LINGO may

not return the true global optimum. However, you will be guaranteed the solution is within

100*r% of the true optimum.

The default for the relative optimality tolerance is 5e-8.

Time to Relative
If an integer programming model is relatively easy to solve, then we would like to have the solver

press on to the true optimal solution without immediately resorting to a relative optimality tolerance,

discussed above. On the other hand, if, after running for a while, it becomes apparent that the optimal

solution won’t be immediately forthcoming, then you might want the solver to switch to using a

relative optimality tolerance.

The Time to Relative tolerance can be used in this manner. This tolerance is the number of seconds

before the branch-and-bound solver begins using the relative optimality tolerance. For the first n

seconds, where n is the value of the time to relative tolerance, the branch-and-bound solver will not

use the relative optimality tolerance and will attempt to find the true optimal solution to the model.

Thereafter, the solver will use the relative optimality tolerance in its search.

The default value for the time to relative tolerance is 100 seconds.

Tolerances Box
The Tolerances box on the Integer Solver tab:

contains three miscellaneous tolerances for controlling the branching strategy used by the

branch-and-bound solver on integer programming models. The three tolerances are Hurdle, Node

Selection, and Strong Branch.

Hurdle
If you know the objective value of a solution to a model, you can enter it as the Hurdle tolerance. This

value is used in the branch-and-bound solver to narrow the search for the optimum. More specifically,

LINGO will only search for integer solutions in which the objective is better than the hurdle value.

This comes into play when LINGO is searching for an initial integer solution. LINGO can ignore

branches in the search tree with objective values worse than the hurdle value, because a better solution

exists (i.e., the solution whose objective value equals the hurdle tolerance) on some alternate branch.

Depending on the problem, a good hurdle value can greatly reduce solution time. Once LINGO finds

an initial integer solution, however, the hurdle tolerance no longer has an effect. At this point, the

Relative Optimality tolerance comes into play.

234 CHAPTER 5

Note: Be sure when entering a hurdle value that a solution exists that is at least as good or better

than your hurdle. If such a solution does not exist, LINGO will not be able to find a feasible

solution to the model.

The default hurdle value is None. In other words, the solver does not use a hurdle value.

Node Selection
The branch-and-bound solver has a great deal of freedom in deciding how to span the

branch-and-bound solution tree. The Node Selection option allows you to control the order in which

the solver selects branch nodes in the tree.

If you examine the pull down list for Node Selection, you will see the following:

The four choices function as follows:

 LINGO Decides – This is the default option. LINGO makes an educated guess as to the

best node to branch on next.

 Depth First – LINGO spans the branch-and-bound tree using a depth first strategy.

 Worst Bound – LINGO picks the node with the worst bound.

 Best Bound – LINGO picks the node with the best bound.

In general, LINGO Decides will offer the best results. Experimentation with the other three choices

may be beneficial with some classes of models.

Strong Branch
The Strong Branch field uses a more intensive branching strategy during the first n levels of the

branch-and-bound tree, where n is the value in Strong Branch. During these initial levels, LINGO

picks a subset of the fractional variables as branching candidates. LINGO then performs a tentative

branch on each variable in the subset, selecting as the final candidate the variable that offers the

greatest improvement in the bound on the objective. Although strong branching is useful in tightening

the bound quickly, it does take additional computation time. Therefore, you may want to try different

settings to determine what works best for your model.

The default strong branch setting is 10 levels.

WINDOWS COMMANDS 235

K-Best Solutions Box
The K-Best Solutions box on the Integer Solver tab:

is used to set the number of solutions desired as part of the K-Best solutions feature of LINGO's mixed

integer solver. Whenever this value is greater than 1, say K, LINGO will will return up to K unique

solutions to the model. These solutions will have the property that they are the next best solutions

available in terms of their objective values. Less than K solutions may be returned if a sufficient

number of feasible solutions do not exist. An example of the K-Best feature follows.

K-Best Solutions Example
In order to illustrate the K-Best feature, we will be using a variant of the knapsack model discussed

above in the Binary Integer Variables section. You may want to refer back to the earlier discussion if

you are not familiar with the knapsack model.

236 CHAPTER 5

Here's our model:

MODEL:

SETS:

 ITEMS: INCLUDE, WEIGHT, RATING;

 MYFAVORITES(ITEMS);

ENDSETS

DATA:

 KNAPSACK_CAPACITY = 15;

 ITEMS WEIGHT RATING =

 BRATS 3 1

 BROWNIES 3 1

 BEER 3 1

 ANT_REPEL 7 1

 BLANKET 4 6

 FRISBEE 1 6

 SALAD 5 10

 WATERMELON 7 9;

 MYFAVORITES = BRATS BROWNIES BEER;

ENDDATA

MAX = @SUM(ITEMS: RATING * INCLUDE);

@SUM(ITEMS: WEIGHT * INCLUDE) <=

 KNAPSACK_CAPACITY;

@FOR(ITEMS: @BIN(INCLUDE));

NUMFAVE = @SUM(MYFAVORITES: INCLUDE);

END

Model: KBEST

In this example, we are packing a picnic basket for a picnic we will be taking with a friend. Our

friend's ratings of the candidate picnic items is given in the data section above. It turns out that our

friend is health conscious and does not care much for bratwurst, brownies nor beer. This is

unfortunate, because these happen to be our favorite items, which we indicate with a new subset of

ITEMS called MYFAVORITES.

WINDOWS COMMANDS 237

If we solve the model as is, thus solely maximizing our friend's preferences, we get the following

solution:

Global optimal solution found.

Objective value: 25.00000

 Variable Value

 NUMFAVE 0.000000

 INCLUDE(BRATS) 0.000000

 INCLUDE(BROWNIES) 0.000000

 INCLUDE(BEER) 0.000000

 INCLUDE(ANT_REPEL) 0.000000

 INCLUDE(BLANKET) 0.000000

 INCLUDE(FRISBEE) 1.000000

 INCLUDE(SALAD) 1.000000

INCLUDE(WATERMELON) 1.000000

As indicated by the NUMFAVE variable, none of our favorite items are included in the optimal basket.

Now, we like our friend a lot, and we want him to be happy. However, we are wondering if there isn't

another combination of items that our friend might like almost as much that includes at least one of our

favorite items. To investigate this question, we set the Desired Number parameter of the K-Best

Solutions box on the LINGO|Options Integer Solver tab to 4:

This means that we would like LINGO to generate the 4 best solutions to the model. We then click

OK and then run the LINGO|Solve command. At which point, the integer solver sees that the K-Best

feature is being requested, and it automatically generates the 4 best solutions to the model. At which

point, we are presented with the following dialog box:

238 CHAPTER 5

In the Candidate Solutions window we see that the solver was able to find 4 feasible next-best

solutions to the model. The solutions are ranked in order by their objective values.

There is also a column labeled Tradeoff, which lists the value in each solution of a designated tradeoff

variable. Any scalar variable in a model can be selected as the tradeoff variable. In this example,

there is only one scalar variable, NUMFAVE, so it is automatically selected as the tradeoff variable.

The idea behind the tradeoff variable is that it allows you to weigh the tradeoffs in a model's objective

value with a secondary goal. In this case, our secondary goal is the number of our favorite items in the

picnic basket. In particular, we see that there are three solutions with slightly worse objective values

(23 vs. 25) that include one of our favorite items. For example, if we selected solution 2 and pressed

the View button, we'd see the following solution containing one of our favorite items, bratwurst:

Objective value: 23.00000

 Variable Value

 KNAPSACK_CAPACITY 15.00000

 NUMFAVE 1.000000

 INCLUDE(BRATS) 1.000000

 INCLUDE(BROWNIES) 0.000000

 INCLUDE(BEER) 0.000000

 INCLUDE(ANT_REPEL) 0.000000

 INCLUDE(BLANKET) 1.000000

 INCLUDE(FRISBEE) 1.000000

 INCLUDE(SALAD) 1.000000

 INCLUDE(WATERMELON) 0.000000

WINDOWS COMMANDS 239

The following buttons are available along the bottom edge of the K-Best dialog box:

Help Displays online help regarding the K-Best feature.

Cancel Cancels out of K-Best mode, closing the dialog box.

View Displays any solutions selected in the Candidate Solutions box.

Select Allow you to select one of the candidate solutions as the final solution to the model.

These buttons allow you to examine selected solutions returned by the K-Best solver. Once you find a

solution you believe to be the best, you can select it as the final solution. Once a final solution is

selected, all subsequent solution reports will be based on that particular solution.

BNP Solver
The BNP Solver box on the Integer Solver tab:

contains two parameters - Blocks and Heuristic - for controlling the branch-and-price (BNP) solver.

The BNP solver is a mixed integer programming solver for solving models with block structures like

the following:

Minimize: c(k) * x(k)

Subject To:

 A(k) * x(k) = d (linking constraints)

x(k) in X(k), for all k (decomposition structure)

where d, c(k) and x(k) are vectors and A(k) is a matrix with appropriate dimensions. x(k) contains

decision variables and X(k) denotes a linear feasible domain for x(k).

The BNP solver is a hybrid of branch-and-bound, column generation, and Lagrangean relaxation

methods. It can help to find either the optimal solution or a better lower bound (the Lagrangean bound)

for a minimization problem. Based on the decomposition structure, the solver divides the original

problem into several subproblems, or blocks, and solves them (almost) independently, exploiting

parallel processing if multiple cores are available.

BNP may perform better than the default MIP solver if: a) the number of linking constraints is small,

b) the number of blocks is large and they are of approximately the same size, and c) the number of

available processors (or cores) is large, e.g., 4 or more. Also, there may be some models for which

BNP finds a good solution and good bound more quickly than the default MIP algorithm, although it

may take longer to prove optimality.

240 CHAPTER 5

The Blocks option for the BNP solver controls the number of subproblems, or blocks, that the model

will be partitioned into. Possible setting for the Blocks parameter are:

 Row Names - Row names are constructed in such a way as to specify each row's block (an

example is given below).

 Off - This will disable the BNP solver, in which case, the standard MIP solver will be used to

solve all mixed integer linear programs.

 Specified - The user explicitly specifies each row's block using the @BLOCKROW function.

 N - A positive integer, greater-than-or-equal-to 2, indicating the number of independent

blocks to try and partition the model into via one of the graph partitioning algorithms

provided by LINGO. The actual heuristic used is chosen with the Heuristic parameter.

The default setting for Blocks is Off, i.e., the BNP solver will not be used on integer programming

models.

The Block Heuristic parameter controls the heuristic used to partition the model into blocks. You may

currently select from two graph partitioning algorithms named simply GP1 and GP2, with the default

setting being GP1.

As an example, consider the following model:

MIN = x1 + x2 + x3 + x4 + x5 + x6;

[c1] x1 + x2 + x3 + x4 + x5 + x6 >=3; !linking

constraint;

[c2] x1 + x2 <=1; !block 1;

[c3] x2 + x3 <=1; !block 1;

[c4] x4 + x5 + x6 <=2; !block 2;

[c5] x4 + x6 <=1; !block 2;

@bin(x1); @bin(x2); @bin(x3);

@bin(x4); @bin(x5); @bin(x6);

The above model has six variables and five constraints. Constraint 1 will be the only linking constraint,

with linking constraints referred to as being in block 0. Constraints 2 and 3 constitute the first

independent subproblem, or block 1. Constraints 4 and 5 form block 2. Thus, for this particular model,

you would want to set the Blocks parameter to be 2, corresponding to the two independent subproblem

blocks. For the partitioning heuristic, you may choose either GP1 or GP2. When we solve this model,

note that the beginning of the solution report returned by LINGO contains the following information:

Global optimal solution found.

Objective value: 3.000000

Objective bound: 3.000000

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 14

Number of branch-and-price blocks: 2

The interesting feature to note is the line:

Number of branch-and-price blocks: 2

WINDOWS COMMANDS 241

indicating that LINGO partitioned the model in to two independent blocks and invoked the BNP

solver.

Note: Note that in some cases the number of blocks listed in the solution report may be less than the

number of blocks requested. This occurs when the partitioning heuristic is unable to find a

partition with the full number of desired blocks.

Note: The BNP solver can run the independent subproblems on separate threads to improve

performance. So, if your machine has multiple cores, be sure to set the thread limit to at least

the number of blocks. Refer to the Threads parameter on the General Solver Tab, discussed

above. For this particular small example with its two independent blocks, you'd want to set

the thread limit to at least 2.

The graph partitioning algorithms provided by LINGO can generally determine good partitioning

schemes, however, for larger models, they may not be able to determine an optimal partitioning. In this

case, you may prefer to explicitly specify a model's block structure. LINGO provides two ways to do

this by either a) specifying the block structure as part of a model's row names, or b) specifying the

block structure using the @BLOCKROW function. Examples of both follow.

To specify a row's block using its row name, you should begin the row name with the string "BNP_N",

where N is the row's block number. The block number should be some non-negative integer, with a

value of 0 indicating that the row belongs to the set of linking constraints. For example, using the

model above, we could have specified the block structure in the row names as follows:

MIN = x1 + x2 + x3 + x4 + x5 + x6;

!linking constraint

[bnp_0_c1] x1 + x2 + x3 + x4 + x5 + x6 >=3;

[bnp_1_c2] x1 + x2 <=1; !block 1;

[bnp_1_c3] x2 + x3 <=1; !block 1;

[bnp_2_c4] x4 + x5 + x6 <=2; !block 2;

[bnp_2_c5] x4 + x6 <=1; !block 2;

@bin(x1); @bin(x2); @bin(x3);

@bin(x4); @bin(x5); @bin(x6);

You will also need to select the Row Names option for the Blocks parameter. When specifying block

structure in row names, the Heuristic parameter is not relevant and will be grayed out.

Alternatively, you could use the @BLOCKROW(BLOCK_NUMBER, ROW_NAME) function to

specify block structure. Again, using our same sample model, we would enter:

242 CHAPTER 5

MIN = x1 + x2 + x3 + x4 + x5 + x6;

[c1] x1 + x2 + x3 + x4 + x5 + x6 >=3; !linking constraint;

[c2] x1 + x2 <=1; !block 1;

[c3] x2 + x3 <=1; !block 1;

[c4] x4 + x5 + x6 <=2; !block 2;

[c5] x4 + x6 <=1; !block 2;

@bin(x1); @bin(x2); @bin(x3);

@bin(x4); @bin(x5); @bin(x6);

@blockrow(0, c1);

@blockrow(1, c2);

@blockrow(1, c3);

@blockrow(2, c4);

@blockrow(2, c5);

In this case, you will need to select the Specified option for the Blocks parameter. When specifying

block structure via @BLOCKROW, the Heuristic parameter is not relevant and will be grayed out.

WINDOWS COMMANDS 243

Global Solver Tab
The Global Solver tab on the Options dialog box, pictured here:

can be used to control the operation of LINGO’s global solver capabilities. Please keep in mind that

the global solver toolkit is an add-on option to LINGO. You must specifically purchase the global

solver option as part of your LINGO license in order to make use of its capabilities.

244 CHAPTER 5

LINGO exploits the convex nature of linear models to find globally optimal solutions. However, we

aren’t as fortunate with nonlinear models. LINGO’s default NLP solver uses a local search procedure.

This can lead to LINGO stopping at locally optimal points when a model is non-convex and perhaps

missing a global point lying elsewhere. You may refer to Chapter 15, On Mathematical Modeling, for

more information on how and why this can happen. The global solver toolkit contains features

designed to sift through the local points in search of the globally optimal point.

The two primary features in LINGO’s global toolkit are a global solver and a multistart solver. The

global solver uses range bounding and reduction techniques within a branch-and-bound framework to

convert a non-convex model into a series of smaller, convex models. This divide-and-conquer strategy

ultimately results in convergence to the guaranteed globally optimal point. The multistart solver, on the

other hand, uses a heuristic approach of restarting the NLP solver several times from different initial

points. It is not uncommon for a different starting point to lead to a different local solution point. Thus,

if we restart from enough unique points, saving the best local solution as we go, we stand a much

better chance of finding the true global solution.

Use Global Solver
If the Use Global Solver box is checked, LINGO will invoke the global solver when you solve a

nonlinear model. Many nonlinear models are non-convex and/or non-smooth (for more information

see Chapter 15, On Mathematical Modeling.) Nonlinear solvers that rely on local search procedures (as

does LINGO’s default nonlinear solver) will tend to do poorly on these types of models. Typically,

they will converge to a local, sub-optimal point that may be quite distant from the true, global optimal

point. Global solvers overcome this weakness through methods of range bounding (e.g., interval

analysis and convex analysis) and range reduction techniques (e.g., linear programming and constraint

propagation) within a branch-and-bound framework to find global solutions to non-convex models.

The following example illustrates the usefulness of the global solver. Consider the simple, yet highly

nonlinear, model:

MODEL:

 MIN = X * @COS(3.1416 * X);

 @BND(0, X, 6);

END

The graph of the objective function is as follows:

WINDOWS COMMANDS 245

The objective function has three local minimal points over the feasible range. These points are

summarized in the following table:

Point X Objective

1 1.09 -1.05

2 3.03 -3.02

3 5.02 -5.01

Clearly, the third local point is also the globally best point, and we would like the NLP solver to

converge to this point. Below is the solution LINGO produces if the default nonlinear solver is

invoked:

 Local optimal solution found at step: 11

 Objective value: -1.046719

 Variable Value Reduced Cost

 X 1.090405 0.1181082E-07

 Row Slack or Surplus Dual Price

 1 -1.046719 -1.000000

246 CHAPTER 5

Unfortunately, as you can see, we converged to the least preferable of the local minimums. However,

after enabling the global solver by checking the Use Global Solver box, we do obtain the global

solution:

 Global optimal solution found at step: 35

 Objective value: -5.010083

 Variable Value Reduced Cost

 X 5.020143 -0.7076917E-08

 Row Slack or Surplus Dual Price

 1 -5.010083 -1.000000

Note: There is one drawback to using the global solver; it runs considerably slower than the default

nonlinear solver. Therefore, the preferred option is to always try and write smooth, convex

nonlinear models. By doing this, the faster, default local solver can be successfully invoked.

Keep in mind that the global solver supports most, but not all, of the functions available in the LINGO

language. The following is a list of the nonlinear functions not currently supported by the global

solver:

 All probability distributions — cumulative, inverse and pdf, with the exception of

the normal distribution, which is fully supported

 @PFS() — Poisson finite source

 @PPL() — Poisson linear loss

 @USER()— User supplied function

Note: The global solver will not operate on models containing one or more unsupported nonlinear

operations that reference optimizable quantities; the default NLP solver will be called in this

case.

Note: The global solver can run on multiple cores to improve performance. So, if your machine has

multiple cores, be sure to set the thread limit to something higher than 1, with the ideal setting

being N, where N is the number of available cores on your machine. Refer to the Threads

parameter on the General Solver Tab, discussed above, for more information on setting the

thread limit.

The global solver is disabled by default.

WINDOWS COMMANDS 247

Variable Upper Bound Box
The Variable Upper Bound box:

sets the default variable bounds while the global solver is running. If this parameter is set to d, then

variables will not be permitted to assume values outside the range of [-d, d]. Setting this parameter as

tightly as possible in the Value Field restricts the global solver from straying into uninteresting regions

and will reduce run times. The default value for the Value Field is 1.e10.

The Application list box has three options available: None, All and Selected. Selecting None removes

the variable bounds entirely, and is not recommended. The All setting applies the bound to all

variables. Finally, the Selected setting causes the global solver to apply the bound after an initial

solver pass to find the first local solution. The bound will only be applied to a variable if it does not

cutoff the initial local solution. LINGO defaults to the Selected setting.

Tolerances Box
The Tolerances box:

contains two tolerances used by the global solver: Optimality and Delta.

The Optimality tolerance specifies by how much a new solution must beat the objective value of the

incumbent solution in order to become the new incumbent. The default value for Optimality 1.e-6.

The Delta tolerance specifies how closely the additional constraints, added as part of the global

solver’s convexification process, must be satisfied. The default value for Delta is 1.e-7.

Strategies Box
The Strategies box:

allows you to control three strategies used by the global solver: Branching, Box Selection and

Reformulation.

248 CHAPTER 5

The Branching strategy consists of six options to use when branching on a variable for the first time:

 Absolute Width,

 Local Width,

 Global Width,

 Global Distance,

 Absolute Violation, and

 Relative Violation.

The default setting for Branching is Relative Violation.

The Box Selection option specifies the strategy to use for choosing between all active nodes in the

global solver’s branch-and-bound tree. The choices are: Depth First and Worst Bound, with the

default being Worst Bound.

The Reformulation option sets the degree of algebraic reformulation performed by the global solver.

Algebraic reformulation is critical for construction of tight, convex sub-regions to enclose the

nonlinear and nonconvex functions. The available settings are None, Low, Medium and High, with

High being the default.

Multistart Solver
LINGO exploits the convex nature of linear models to find globally optimal solutions. However, we

aren’t as fortunate with nonlinear models. With NLP models, LINGO’s default NLP solver uses a local

search procedure. This can lead to LINGO stopping at locally optimal points, perhaps missing a global

point lying elsewhere. You may refer to On Mathematical Modeling for more information on how and

why this can happen.

A strategy that has proven successful in overcoming this problem is to restart the NLP solver several

times from different initial points. It is not uncommon for a different starting point to lead to a

different local solution point. Thus, if we restart from enough unique points, saving the best local

solution as we go, then we stand a much better chance of finding the true global solution. We refer to

this solution strategy as multistart.

The Multistart Solver Attempts box on the Global Solver tab:

is used to set the number of times the multistart solver restarts the standard NLP solver in its attempt to

find successively better local solutions. Each new starting point is intelligently generated to maximize

the chances of finding a new local point.

The default option, Solver Decides, entails restarting 5 times on small NLPs and disabling multistart

on larger models. Setting multistart to 1 causes the NLP solver to be invoked only once, effectively

disabling multistart. Setting multistart to any value greater than 1 will cause the NLP solver to restart

that number of times on all NLPs. In general, we have found that setting the number of multistarts to

around 5 tends to be adequate for most models. Highly nonlinear models may require a larger setting.

WINDOWS COMMANDS 249

Note: Keep in mind that multistart will dramatically increase runtimes, particularly if a large

number of restarts is selected. Thus, one should avoid using multistart unnecessarily on

convex models that will converge to a global point in a single pass without any additional

prodding.

The following example illustrates the usefulness of multistart. Consider the simple, yet highly

nonlinear, model:

MODEL:

 MIN = X * @COS(3.1416 * X);

 @BND(0, X, 6);

END

250 CHAPTER 5

The graph of the objective function is as follows:

The objective function has three local minimal points over the feasible range. These points are

summarized in the following table:

Point X Objective

1 1.09 -1.05

2 3.03 -3.02

3 5.02 -5.01

Clearly, the third local point is also the globally best point, and we would like the NLP solver to

converge to this point. Below is the solution you will get from LINGO if the multistart option is

disabled:

 Local optimal solution found at step: 11

 Objective value: -1.046719

 Variable Value Reduced Cost

 X 1.090405 0.1181082E-07

 Row Slack or Surplus Dual Price

 1 -1.046719 -1.000000

WINDOWS COMMANDS 251

Unfortunately, as you can see, we converged to the least preferable of the local minimums. However,

after setting the number of multistarts to five and re-solving, we do obtain the global solution:

 Local optimal solution found at step: 39

 Objective value: -5.010083

 Variable Value Reduced Cost

 X 5.020143 -0.7076917E-08

 Row Slack or Surplus Dual Price

 1 -5.010083 -1.000000

Note: Unlike the global solver, the multistart solver can only claim its solution to be locally optimal.

This is because there may always be a better solution out there that the multistart solver may,

or may not, be able to find with additional runs. The global solver, on the other hand, can

claim global optimality by having partitioned the original model into a series of smaller,

convex models.

Note: The multistart solver can run on multiple cores to improve performance. So, if your machine

has multiple cores, be sure to set the thread limit to something higher than 1, with the ideal

setting being N, where N is the number of available cores on your machine. Refer to the

Threads parameter on the General Solver Tab, discussed above, for more information on

setting the thread limit.

252 CHAPTER 5

SP Solver Tab
The SP Solver tab on the Options dialog box:

is used to control the operation of LINGO's SP (Stochastic Programming) solver. For more

information on SP, refer to Chapter 14, Stochastic Programming. Please keep in mind that the SP

solver is an add-on option to LINGO. You must specifically purchase the SP solver option as part of

your LINGO license in order to make use of its capabilities.

WINDOWS COMMANDS 253

Default Sample Size/Stage
The Default Sample Size/Stage parameter on the SP Solver tab:

is used to control the default sample size for random variables in stochastic programming (SP) whose

outcomes are determined via sampling.

In many SP models, LINGO will generate a set of sample values for the some or all of the random

variables. This is particularly true when you have one or more continuous random variables, which

have an infinite number of possible outcomes. In such a case, sampling is the only viable alternative.

One way to specify the desired sample size for each stage is via the @SPSAMPSIZE function used

directly in the model's text. If, on the other hand, all or most stages should have the same sample size,

then you can use the Default Sample Size/Stage parameter to control the default sample size. Any

stage which has not had its sample size specified with @SPSAMPSIZE will default to a sample size

equal to the Default Sample Size/Stage parameter.

Note: In general, we prefer larger sample sizes to smaller ones in order to reduce sampling error.

However, SP models can become quite large if sample sizes aren't kept reasonably small.

This is particularly true for multiperiod models. For example, suppose we have a model with

just one random variable and ten periods/stages. If the default sample size is set to 3, then

there will be 3^10=59,049 possible scenarios. With this many scenarios, it would only take a

handful of decision variables to end up with an underlying deterministic equivalent model

approaching one million variables.

The Default Sample Size/Stage parameter defaults to a value of 2.

Random Generator Seed
The Random Generator Seed parameter on the SP Solver tab:

is used to establish the seed for the random number generator used in generating samples for random

variables in stochastic programming (SP) models.

In many SP models, LINGO will generate a set of sample values for the random variables. This is

particularly true when you have one or more continuous random variables, which leads to an infinite

number of possible outcomes. In such a case, sampling is the only viable alternative.

The Random Generator Seed parameter defaults to a value of 1031.

Note: The seed parameter has no effect when running demo versions of LINGO. Demo versions

always use the default seed value, regardless of this parameter's setting.

254 CHAPTER 5

Sample Continuous Only
The Sample Continuous Only option on the SP Solver tab:

is used to control whether LINGO samples continuous distributions only for the random variables in

stochastic programs, or if it samples both continuous and discrete random variables. Obviously,

continuous random variables must be subject to sampling, given the infinite number of possible

outcomes. On the other hand, we have a choice when it comes to discretely distributed random

variables. If this option is enabled, then LINGO will generate one outcome for each density point in

the discrete distribution of the random variable. These outcomes will be weighted by their

corresponding probabilities.

Note: If there are many density points in the distributions for the discrete random variables, the

deterministic equivalent generated to solve the SP may become exceedingly large, in which

case, disabling this option may be required. Once this option is disabled, discrete random

variables will be sampled in the same way as the continuous random variables.

The Sample Continuous Only option defaults to being on.

SP Solver Method
The SP Solver Method option:

on the SP Solver Tab is used to select the solution method for a stochastic programming (SP) model.

Presently, the available choices are:

 Solver Decides LINGO decides the most appropriate method for solving the SP model.

 Deterministic Equivalent LINGO generates and directly solves the deterministic

equivalent (DE) of the SP model.

 Nested Benders The DE for realistic SP models can get to be quite large, in that the core

model is replicated once for every scenario. Fortunately, the DE displays strong block-

angular structure, which makes it adaptable to decomposition techniques, such as nested

Bender decomposition (NBD). Note that the model must be entirely linear to use NBD.

The default setting for the SP Solver Method option is Solver Decides.

WINDOWS COMMANDS 255

Max Scenarios Limit
The Max Scenarios Limit parameter on the SP Solver tab:

is used to establish a limit on the maximum number of scenarios in a stochastic programming (SP)

model before forcing automatic sampling of the random variables.

The Max Scenarios Limit defaults to a value of 40,000.

SP Big M Coefficient
The Big M Coefficient parameter on the SP Solver tab:

is used by the SP solver in constructing forcing constraints that may be required in the deterministic

models generated by the solver. Forcing constraints are generally added to force binary variables to 1

when some activity occurs. For example, suppose x is a continuous variable and z is a binary variable.

A forcing constraint that would drive z to 1 whenever x is positive would be:

 x M * z

where M is some large number. M in this case is the Big M coefficient.

There are two things to note about M. First, if M is too small, a forcing constraint can become

infeasible, making the entire model infeasible. In general, M should be at least as large as the largest

possible value for x so as not to introduce an infeasibility. However, from an algorithmic point of

view, M should not be too large. If M is unrealistically large, it will be tougher for the integer solver to

converge, plus it also introduces the potential round off error.

The default setting for M should be sufficient for most models. However, if your SP model is

infeasible for no known reason, you may want to try increasing M. On the other hand, if your SP is

running slow, you may want to try reducing M.

The Big M Coefficient defaults to a value of 100,000,000.

256 CHAPTER 5

Calculate All Expected Value Statistics
The Calculate All Expected Value Statistics option on the SP Solver tab:

controls whether LINGO displays information regarding the expected values for a number of statistics

when solving stochastic programming (SP) models. To illustrate, when solving the SPGAS.LG4 model

when this option is enabled, you will see the following expected values at the top of the solution

report:
Expected value of:

 Objective (EV): 1400.000

 Wait-and-see model's objective (WS): 1326.667

 Perfect information (EVPI = |EV - WS|): 73.33333

 Policy based on mean outcome (EM): 1479.444

 Modeling uncertainty (EVMU = |EM - EV|): 79.44444

These values are a guide as to how the stochastic nature of the model is impacting the objective

value. The following is a brief description of these expected values:

Expected Value of Objective (EV) - is the expected value for the model's

objective over all the scenarios, and is the same as the reported objective

value for the model.

Expected Value of Wait-and-See Model's Objective (WS) - reports the

expected value of the objective if we could wait and see the outcomes of

all the random variables before making our decisions. Such a policy

would allow us to always make the best decision regardless of the

outcomes for the random variables, and, of course, is not possible in

practice. For a minimization, it's true that WS <= EV, with the converse

holding for a maximization. Technically speaking, WS is a relaxation of

the true SP model, obtained by dropping the nonanticipativity

constraints.

Expected Value of Perfect Information (EVPI) - is the absolute value of

the difference between EV and WS. This corresponds to the expected

improvement to the objective were we to obtain perfect information

about the random outcomes. As such, this is a expected measure of how

much we should be willing to pay to obtain perfect information

regarding the outcomes of the random variables.

Expected Value of Policy Based On Mean Outcome (EM) - is the

expected true objective value if we (mistakenly) assume that all random

variables will always take on exactly their mean values. EM is

computed using a two-step process. First, the values of all random

variables are fixed at their means, and the resulting deterministic model

is solved to yield the optimal values for the stage 0 decision variables.

Next, a) the stage 0 variables are fixed at their optimal values from the

previous step, b) the random variables are freed up, c) the

WINDOWS COMMANDS 257

nonanticipativity constraints are dropped, and d) this wait-and-see model

is solved. EM is the objective value from this WS model.

Expected Value of Modeling Uncertainty (EVMU) - is the absolute value

of the difference EV - EM. It is a measure of what we can expect to

gain by taking into account uncertainty in our modeling analysis, as

opposed to mistakenly assuming that random variables always take on

their mean outcomes.

Note: The above approach for computing EM and EVMU makes unambiguous sense only for

models with a stage 0 and a stage 1. If there are later random variables in stages 2, 3, etc.,

then there are complications. For example, for decisions in later stages, we have seen the

outcomes from the random variables in earlier stages, so considering these random variables

to take on their mean value does not make sense. For models with additional stages beyond 0

and 1, EVMU will merely be an approximation of the true expected value of modeling

uncertainty.

Note: Computing these expected value statistics can be very time consuming for large models. If

speed is an issue, you may wish to disable this feature on the LINGO|Options|SP Solver tab.

The Calculate All Expected Value Statistics option is enabled by default.

LINGO|Generate... Ctrl+G
Once you remove all the syntax errors from your LINGO model, there is still one very important step

required: model verification. LINGO’s set-based modeling capabilities are very powerful, and they

allow you to generate large, complex models quickly and easily. However, when you first develop a

model you will need to verify that the model being generated matches up to the model you actually

intended to generate. Many set-based models can be quite complex, and it is highly likely that logic

errors may creep into one or more expressions, thereby causing your generated model to be flawed.

The LINGO|Generate command is very useful for debugging such errors. It expands all of the model's

compact set-based expressions and then writes out the full scalarbased equivalent of the LINGO

model. The expanded model report explicitly lists all the generated constraints and variables in your

model. You will find that the Generate report can be an invaluable tool in tracking down errors.

When selecting the Generate command, you will be presented with a pop-up menu prompting you for

one of the following options:

 Display model,

 Don’t display model,

 Display nonlinear rows,

 Dual model,

 Explicit Deteq, and

 Scenario.

258 CHAPTER 5

Display Model
If you choose the Display model option of the LINGO|Generate command, LINGO will place a copy

of the generated model in a new window, which you may scroll through to examine, print, or save to

disk.

As an example of the output from the Generate command, consider the transportation model

developed in Chapter 1:

MODEL:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

 WAREHOUSES: CAPACITY;

 VENDORS: DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

DATA:

 !set members;

 WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WH6;

 VENDORS = V1 V2 V3 V4 V5 V6 V7 V8;

 !attribute values;

 CAPACITY = 60 55 51 43 41 52;

 DEMAND = 35 37 22 32 41 32 43 38;

 COST = 6 2 6 7 4 2 5 9

 4 9 5 3 8 5 8 2

 5 2 1 9 7 4 3 3

 7 6 7 3 9 2 7 1

 2 3 9 5 7 2 6 5

 5 5 2 2 8 1 4 3;

ENDDATA

! The objective;

 [OBJECTIVE] MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J): [DEMAND_ROW]

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I): [CAPACITY_ROW]

 @SUM(VENDORS(J): VOLUME(I, J)) <=

 CAPACITY(I));

END

Model: WIDGETS

WINDOWS COMMANDS 259

The objective will generate one expression, there should be one demand constraint generated for each

of the eight vendors and one supply constraint generated for each of the six warehouses, for a grand

total of 15 rows in the expanded model. Running the generate command to verify this reveals the

following report:

MODEL:

 [OBJECTIVE] MIN= 6 * VOLUME_WH1_V1 + 2 * VOLUME_WH1_V2 + 6 *

 VOLUME_WH1_V3 + 7 * VOLUME_WH1_V4 + 4 * VOLUME_WH1_V5 + 2 *

 VOLUME_WH1_V6 + 5 * VOLUME_WH1_V7 + 9 * VOLUME_WH1_V8 + 4 *

 VOLUME_WH2_V1 + 9 * VOLUME_WH2_V2 + 5 * VOLUME_WH2_V3 + 3 *

 VOLUME_WH2_V4 + 8 * VOLUME_WH2_V5 + 5 * VOLUME_WH2_V6 + 8 *

 VOLUME_WH2_V7 + 2 * VOLUME_WH2_V8 + 5 * VOLUME_WH3_V1 + 2 *

 VOLUME_WH3_V2 + VOLUME_WH3_V3 + 9 * VOLUME_WH3_V4 + 7 *

 VOLUME_WH3_V5 + 4 * VOLUME_WH3_V6 + 3 * VOLUME_WH3_V7 + 3 *

 VOLUME_WH3_V8 + 7 * VOLUME_WH4_V1 + 6 * VOLUME_WH4_V2 + 7 *

 VOLUME_WH4_V3 + 3 * VOLUME_WH4_V4 + 9 * VOLUME_WH4_V5 + 2 *

 VOLUME_WH4_V6 + 7 * VOLUME_WH4_V7 + VOLUME_WH4_V8 + 2 *

 VOLUME_WH5_V1 + 3 * VOLUME_WH5_V2 + 9 * VOLUME_WH5_V3 + 5 *

 VOLUME_WH5_V4 + 7 * VOLUME_WH5_V5 + 2 * VOLUME_WH5_V6 + 6 *

 VOLUME_WH5_V7 + 5 * VOLUME_WH5_V8 + 5 * VOLUME_WH6_V1 + 5 *

 VOLUME_WH6_V2 + 2 * VOLUME_WH6_V3 + 2 * VOLUME_WH6_V4 + 8 *

 VOLUME_WH6_V5 + VOLUME_WH6_V6 + 4 * VOLUME_WH6_V7 + 3 *

 VOLUME_WH6_V8 ;

 [DEMAND_ROW_V1] VOLUME_WH1_V1 + VOLUME_WH2_V1 +

 VOLUME_WH3_V1 + VOLUME_WH4_V1 + VOLUME_WH5_V1 +

 VOLUME_WH6_V1 = 35 ;

 [DEMAND_ROW_V2] VOLUME_WH1_V2 + VOLUME_WH2_V2 +

 VOLUME_WH3_V2 + VOLUME_WH4_V2 + VOLUME_WH5_V2 +

 VOLUME_WH6_V2 = 37 ;

 [DEMAND_ROW_V3] VOLUME_WH1_V3 + VOLUME_WH2_V3 +

 VOLUME_WH3_V3 + VOLUME_WH4_V3 + VOLUME_WH5_V3 +

 VOLUME_WH6_V3 = 22 ;

 [DEMAND_ROW_V4] VOLUME_WH1_V4 + VOLUME_WH2_V4 +

 VOLUME_WH3_V4 + VOLUME_WH4_V4 + VOLUME_WH5_V4 +

 VOLUME_WH6_V4 = 32 ;

 [DEMAND_ROW_V5] VOLUME_WH1_V5 + VOLUME_WH2_V5 +

 VOLUME_WH3_V5 + VOLUME_WH4_V5 + VOLUME_WH5_V5 +

 VOLUME_WH6_V5 = 41 ;

 [DEMAND_ROW_V6] VOLUME_WH1_V6 + VOLUME_WH2_V6 +

 VOLUME_WH3_V6 + VOLUME_WH4_V6 + VOLUME_WH5_V6 +

 VOLUME_WH6_V6 = 32 ;

 [DEMAND_ROW_V7] VOLUME_WH1_V7 + VOLUME_WH2_V7 +

 VOLUME_WH3_V7 + VOLUME_WH4_V7 + VOLUME_WH5_V7 +

 VOLUME_WH6_V7 = 43 ;

 [DEMAND_ROW_V8] VOLUME_WH1_V8 + VOLUME_WH2_V8 +

 VOLUME_WH3_V8 + VOLUME_WH4_V8 + VOLUME_WH5_V8 +

 VOLUME_WH6_V8 = 38 ;

 [CAPACITY_ROW_WH1] VOLUME_WH1_V1 + VOLUME_WH1_V2 +

 VOLUME_WH1_V3 + VOLUME_WH1_V4 + VOLUME_WH1_V5 +

 VOLUME_WH1_V6 + VOLUME_WH1_V7 + VOLUME_WH1_V8 <= 60 ;

 [CAPACITY_ROW_WH2] VOLUME_WH2_V1 + VOLUME_WH2_V2 +

 VOLUME_WH2_V3 + VOLUME_WH2_V4 + VOLUME_WH2_V5 +

260 CHAPTER 5

 VOLUME_WH2_V6 + VOLUME_WH2_V7 + VOLUME_WH2_V8 <= 55 ;

 [CAPACITY_ROW_WH3] VOLUME_WH3_V1 + VOLUME_WH3_V2 +

 VOLUME_WH3_V3 + VOLUME_WH3_V4 + VOLUME_WH3_V5 +

 VOLUME_WH3_V6 + VOLUME_WH3_V7 + VOLUME_WH3_V8 <= 51 ;

 [CAPACITY_ROW_WH4] VOLUME_WH4_V1 + VOLUME_WH4_V2 +

 VOLUME_WH4_V3 + VOLUME_WH4_V4 + VOLUME_WH4_V5 +

 VOLUME_WH4_V6 + VOLUME_WH4_V7 + VOLUME_WH4_V8 <= 43 ;

 [CAPACITY_ROW_WH5] VOLUME_WH5_V1 + VOLUME_WH5_V2 +

 VOLUME_WH5_V3 + VOLUME_WH5_V4 + VOLUME_WH5_V5 +

 VOLUME_WH5_V6 + VOLUME_WH5_V7 + VOLUME_WH5_V8 <= 41 ;

 [CAPACITY_ROW_WH6] VOLUME_WH6_V1 + VOLUME_WH6_V2 +

 VOLUME_WH6_V3 + VOLUME_WH6_V4 + VOLUME_WH6_V5 +

 VOLUME_WH6_V6 + VOLUME_WH6_V7 + VOLUME_WH6_V8 <= 52 ;

 END

Model: Generated Model Report for WIDGETS

As expected, there are 15 rows in the generated model: [OBJECTIVE], [DEMAND_ROW_V1]

through [DEMAND_ROW_V8], and [CAPACITY_ROW_WH1] through

[CAPACITY_ROW_WH6].

As a side note, it’s interesting to compare the generated model to the original, set-based model. The

generated model is the expanded version of the model, and has all sets and vector variables removed,

resulting in a fully scalar model. The scalar-based, generated model is mathematically equivalent to

the original vector-based model. However, we think most would agree that the set-based model is

much easier to comprehend, thereby illustrating one of the primary benefits of modern algebraic

languages over more traditional, scalar-based languages.

In addition to verifying that the correct number of rows is being generated, you should also examine

each of the rows to determine that the correct variables are appearing in each row along with their

correct coefficients.

Note: The reports generated by the LINGO|Generate command are valid LINGO models. You may

load Generate reports into a model window and solve them as you would any other LINGO

model.

One thing to keep in mind when examining generated model reports is that the LINGO model

generator performs fixed variable reduction. This means that any variables that are fixed in value are

substituted out of the generated model. For example, consider the simple model:

MODEL:

 MAX = 200 * WS + 300 * NC;

 WS = 60;

 NC <= 40;

 WS + 2 * NC <= 120;

END

WINDOWS COMMANDS 261

If we generate this model we get the following, reduced model:

MODEL:

 MAX= 300 * NC + 12000 ;

 NC <= 40 ;

 2 * NC <= 60 ;

 END

At first glance, it seems as if both the first constraint and the variable WS are missing from the

generated model. Note that by the first constraint in the original model (WS = 60), WS is fixed at a

value of 60. The LINGO model generator exploits this fact to reduce the size of the generated model

by substituting WS out of the formulation. The final solution report will still contain the values for all

the fixed variables, however, the fixed variables will not appear in the generated model report. If you

would like to suppress fixed variable reduction so that all variables appear in your generated model,

you may do so via the Fixed Var Reduction option.

Don't Display Model
If you choose the Don’t display model option, LINGO will generate the model without displaying it,

but will store the generated model for later use by the appropriate solver. This is a useful command for

verifying that your model contains no errors, while not actually having to pass it to the solver to be

optimized.

Display Nonlinear Rows
If you choose the Display Nonlinear Rows option of the Generate command, then LINGO will

generate the model and then display only those rows that contain nonlinearities. Please refer to the

Types of Constraints section for a discussion of linear vs. nonlinear expressions.

In general, one would prefer to always have purely linear models. Linear models solve faster and will

always converge to a global solution. Therefore, when developing a model, you will be interested in

carefully evaluating nonlinearities to see if they can either be eliminated or rewritten in a linear

fashion. The Display Nonlinear Rows is helpful in tracking down a model's nonlinearities.

Dual Model
The third option of the LINGO|Generate command, Dual Model, displays the dual formulation of the

current model. Every linear programming model has a corresponding, mirror-image formulation

called the dual. If the original model has M constraints and N variables, then its dual will have N

constraints and M variables.

Some interesting properties of the dual are that any feasible solution to the dual model provides a

bound on the objective to the original, primal model, while the optimal solution to the dual has the

same objective value as the optimal solution to the primal problem. It's also true that the dual of the

dual model is, once again, the original primal model. You may wish to refer to any good linear

programming text for a further discussion of duality theory.

262 CHAPTER 5

If you run the LINGO|Generate|Dual Model command on the Widgets model shown above, you will

receive the following formulation:

MODEL:

MAX = 35 * DEMAND_ROW_V1 + 37 * DEMAND_ROW_V2 + 22 *

DEMAND_ROW_V3 + 32 * DEMAND_ROW_V4 + 41 * DEMAND_ROW_V5

+ 32 * DEMAND_ROW_V6 + 43 * DEMAND_ROW_V7 + 38 *

DEMAND_ROW_V8 + 60 * CAPACITY_ROW_WH1 + 55 *

CAPACITY_ROW_WH2 + 51 * CAPACITY_ROW_WH3 + 43 *

CAPACITY_ROW_WH4 + 41 * CAPACITY_ROW_WH5 + 52 *

CAPACITY_ROW_WH6;

 [VOLUME_WH1_V1] DEMAND_ROW_V1 + CAPACITY_ROW_WH1 <= 6;

 [VOLUME_WH1_V2] DEMAND_ROW_V2 + CAPACITY_ROW_WH1 <= 2;

 [VOLUME_WH1_V3] DEMAND_ROW_V3 + CAPACITY_ROW_WH1 <= 6;

 [VOLUME_WH1_V4] DEMAND_ROW_V4 + CAPACITY_ROW_WH1 <= 7;

 [VOLUME_WH1_V5] DEMAND_ROW_V5 + CAPACITY_ROW_WH1 <= 4;

 [VOLUME_WH1_V6] DEMAND_ROW_V6 + CAPACITY_ROW_WH1 <= 2;

 [VOLUME_WH1_V7] DEMAND_ROW_V7 + CAPACITY_ROW_WH1 <= 5;

 [VOLUME_WH1_V8] DEMAND_ROW_V8 + CAPACITY_ROW_WH1 <= 9;

 [VOLUME_WH2_V1] DEMAND_ROW_V1 + CAPACITY_ROW_WH2 <= 4;

 [VOLUME_WH2_V2] DEMAND_ROW_V2 + CAPACITY_ROW_WH2 <= 9;

 [VOLUME_WH2_V3] DEMAND_ROW_V3 + CAPACITY_ROW_WH2 <= 5;

 [VOLUME_WH2_V4] DEMAND_ROW_V4 + CAPACITY_ROW_WH2 <= 3;

 [VOLUME_WH2_V5] DEMAND_ROW_V5 + CAPACITY_ROW_WH2 <= 8;

 [VOLUME_WH2_V6] DEMAND_ROW_V6 + CAPACITY_ROW_WH2 <= 5;

 [VOLUME_WH2_V7] DEMAND_ROW_V7 + CAPACITY_ROW_WH2 <= 8;

 [VOLUME_WH2_V8] DEMAND_ROW_V8 + CAPACITY_ROW_WH2 <= 2;

 [VOLUME_WH3_V1] DEMAND_ROW_V1 + CAPACITY_ROW_WH3 <= 5;

 [VOLUME_WH3_V2] DEMAND_ROW_V2 + CAPACITY_ROW_WH3 <= 2;

 [VOLUME_WH3_V3] DEMAND_ROW_V3 + CAPACITY_ROW_WH3 <= 1;

 [VOLUME_WH3_V4] DEMAND_ROW_V4 + CAPACITY_ROW_WH3 <= 9;

 [VOLUME_WH3_V5] DEMAND_ROW_V5 + CAPACITY_ROW_WH3 <= 7;

 [VOLUME_WH3_V6] DEMAND_ROW_V6 + CAPACITY_ROW_WH3 <= 4;

 [VOLUME_WH3_V7] DEMAND_ROW_V7 + CAPACITY_ROW_WH3 <= 3;

 [VOLUME_WH3_V8] DEMAND_ROW_V8 + CAPACITY_ROW_WH3 <= 3;

 [VOLUME_WH4_V1] DEMAND_ROW_V1 + CAPACITY_ROW_WH4 <= 7;

 [VOLUME_WH4_V2] DEMAND_ROW_V2 + CAPACITY_ROW_WH4 <= 6;

 [VOLUME_WH4_V3] DEMAND_ROW_V3 + CAPACITY_ROW_WH4 <= 7;

 [VOLUME_WH4_V4] DEMAND_ROW_V4 + CAPACITY_ROW_WH4 <= 3;

 [VOLUME_WH4_V5] DEMAND_ROW_V5 + CAPACITY_ROW_WH4 <= 9;

 [VOLUME_WH4_V6] DEMAND_ROW_V6 + CAPACITY_ROW_WH4 <= 2;

 [VOLUME_WH4_V7] DEMAND_ROW_V7 + CAPACITY_ROW_WH4 <= 7;

 [VOLUME_WH4_V8] DEMAND_ROW_V8 + CAPACITY_ROW_WH4 <= 1;

 [VOLUME_WH5_V1] DEMAND_ROW_V1 + CAPACITY_ROW_WH5 <= 2;

 [VOLUME_WH5_V2] DEMAND_ROW_V2 + CAPACITY_ROW_WH5 <= 3;

 [VOLUME_WH5_V3] DEMAND_ROW_V3 + CAPACITY_ROW_WH5 <= 9;

 [VOLUME_WH5_V4] DEMAND_ROW_V4 + CAPACITY_ROW_WH5 <= 5;

 [VOLUME_WH5_V5] DEMAND_ROW_V5 + CAPACITY_ROW_WH5 <= 7;

 [VOLUME_WH5_V6] DEMAND_ROW_V6 + CAPACITY_ROW_WH5 <= 2;

 [VOLUME_WH5_V7] DEMAND_ROW_V7 + CAPACITY_ROW_WH5 <= 6;

 [VOLUME_WH5_V8] DEMAND_ROW_V8 + CAPACITY_ROW_WH5 <= 5;

 [VOLUME_WH6_V1] DEMAND_ROW_V1 + CAPACITY_ROW_WH6 <= 5;

 [VOLUME_WH6_V2] DEMAND_ROW_V2 + CAPACITY_ROW_WH6 <= 5;

WINDOWS COMMANDS 263

 [VOLUME_WH6_V3] DEMAND_ROW_V3 + CAPACITY_ROW_WH6 <= 2;

 [VOLUME_WH6_V4] DEMAND_ROW_V4 + CAPACITY_ROW_WH6 <= 2;

 [VOLUME_WH6_V5] DEMAND_ROW_V5 + CAPACITY_ROW_WH6 <= 8;

 [VOLUME_WH6_V6] DEMAND_ROW_V6 + CAPACITY_ROW_WH6 <= 1;

 [VOLUME_WH6_V7] DEMAND_ROW_V7 + CAPACITY_ROW_WH6 <= 4;

 [VOLUME_WH6_V8] DEMAND_ROW_V8 + CAPACITY_ROW_WH6 <= 3;

 @FREE(DEMAND_ROW_V1); @FREE(DEMAND_ROW_V2);

 @FREE(DEMAND_ROW_V3); @FREE(DEMAND_ROW_V4);

 @FREE(DEMAND_ROW_V5); @FREE(DEMAND_ROW_V6);

 @FREE(DEMAND_ROW_V7); @FREE(DEMAND_ROW_V8);

 @BND(-0.1E+31, CAPACITY_ROW_WH1, 0);

 @BND(-0.1E+31, CAPACITY_ROW_WH2, 0);

 @BND(-0.1E+31, CAPACITY_ROW_WH3, 0);

 @BND(-0.1E+31, CAPACITY_ROW_WH4, 0);

 @BND(-0.1E+31, CAPACITY_ROW_WH5, 0);

 @BND(-0.1E+31, CAPACITY_ROW_WH6, 0);

 END

Dual Formulation: WIDGETS

You will notice that in the dual formulation the variables from the primal model become the rows of

the dual. Similarly, the rows in the primal become the variables in the dual.

Note: The row names from the primal problem will become the variable names in the dual

formulation. For this reason, it is strongly recommended that you name all the rows in the

primal model. If a row is unnamed, then a default name will be generated for the

corresponding dual variable. The default name will consist of an underscore followed by the

row's internal index. These default names will not be very meaningful, and will make the

dual formulation difficult to interpret.

Explicit Deteq
The fourth option of the LINGO|Generate command, Explicit Deteq, displays the explicit deterministic

equivalent (DE) for the current model, assuming the current model is a stochastic program (SP).

Viewing the DE can be very helpful in determining if you have properly set up the SP components of

your model. You can refer to Chapter 14, Stochastic Programming, for more information on SP.

When LINGO solves an SP model, it is really solving the deterministic equivalent of the original SP.

The DE contains one instance of the original core model for each scenario, where the random variables

in each instance are replaced by their sampled values for the particular scenario. These core instances

are tied together by a probabilistically weighted objective of all the objectives form the individual

scenarios, plus a set of nonanticipativity constraints. The nonanticipativity constraints enforce the

condition that all scenarios with the same history must implement the same decisions, otherwise, the

DE would have the ability to anticipate future events.

264 CHAPTER 5

As an example, if you were to load the SP gas buying sample model, SPGAS1.LG4, into LINGO and

run the LINGO|Generate|Explicit Deteq command, you will receive the following report, containing

the model's DE:

MODEL:

TITLE _DETEQ;

[_1] MIN = 0.3333333333333333 * PURCHASE_COST_SC1

+ 0.3333333333333333 * HOLD_COST_SC1 + 0.3333333333333333 *

PURCHASE_COST_SC2 + 0.3333333333333333 * HOLD_COST_SC2

+ 0.3333333333333333 * PURCHASE_COST_SC3 +

0.3333333333333333

* HOLD_COST_SC3;

[_2_SC01] PURCHASE_COST_SC1 - 5 * PURCHASE_1_SC1 - 5 *

PURCHASE_2_SC1 = 0;

[_3_SC01] HOLD_COST_SC1 - INVENTORY_1_SC1 -

INVENTORY_2_SC1 = 0;

[_4_SC01] INVENTORY_1_SC1 - PURCHASE_1_SC1 = - 100;

[_5_SC01] - INVENTORY_1_SC1 + INVENTORY_2_SC1 -

PURCHASE_2_SC1 = - 100;

[_2_SC02] PURCHASE_COST_SC2 - 5 * PURCHASE_1_SC2 - 6 *

PURCHASE_2_SC2 = 0;

[_3_SC02] HOLD_COST_SC2 - INVENTORY_1_SC2 -

INVENTORY_2_SC2 = 0;

[_4_SC02] INVENTORY_1_SC2 - PURCHASE_1_SC2 = - 100;

[_5_SC02] - INVENTORY_1_SC2 + INVENTORY_2_SC2 -

PURCHASE_2_SC2 = - 150;

[_2_SC03] PURCHASE_COST_SC3 - 5 * PURCHASE_1_SC3 - 7.5 *

PURCHASE_2_SC3 = 0;

[_3_SC03] HOLD_COST_SC3 - INVENTORY_1_SC3 -

INVENTORY_2_SC3 = 0;

[_4_SC03] INVENTORY_1_SC3 - PURCHASE_1_SC3 = - 100;

[_5_SC03] - INVENTORY_1_SC3 + INVENTORY_2_SC3 -

PURCHASE_2_SC3 = - 180;

[_NAC01] INVENTORY_1_SC1 - INVENTORY_1_SC2 = 0;

[_NAC02] PURCHASE_1_SC1 - PURCHASE_1_SC2 = 0;

[_NAC03] INVENTORY_1_SC1 - INVENTORY_1_SC3 = 0;

[_NAC04] PURCHASE_1_SC1 - PURCHASE_1_SC3 = 0;

END

Deterministic Equivalent: SPGAS1

The first row of the DE is the probabilistically weighted objective over the three scenarios (Normal,

Cold and Very Cold). Note that in the original core model, we had a variable called

PURCHASE_COST, which was used to compute the cost of the gas purchases. In the DE we now

have three PURCHASE_COST variables, or one for each of the three scenarios. LINGO appends the

strings _SC1, _SC2 or _SC3 to PUCHASE_COST so as to indicate the appropriate scenario. Each of

the constraints from the core model are also replicated across each of the scenarios with the

appropriate scenario tag appended to each row's name. Finally, at the bottom of the model, there are

four constraints beginning with the string: _NAC, which are the nonanticipativity constraints.

It's worthwhile pointing out that this report on the DE for SPGAS1 is a valid LINGO model. In fact,

you can copy this report into a new model window and solve it directly, in which case, you will get the

optimal solution to the original SP model.

WINDOWS COMMANDS 265

Scenario
As mentioned in the previous section, the ability to generate the deterministic equivalent (DE) of a

stochastic programming (SP) model can be very useful when initially formulating and debugging an

SP model. The only problem is that the DE can become quite unwieldy for all but the simplest SPs.

For example, if the core model has 500 variables and there are 1,000 scenarios, then the DE will have

500,000 variables. Tracking down problems in such a large model can be difficult. Fortunately, in

most cases when an SP is either infeasible or unbounded, LINGO will report the index of the first

scenario that is causing the problem. With such information, we can focus our attention on the isolated

scenario that's causing the problem. This is where the Scenario command comes in it allows us to

generate the formulation for an individual scenario, as opposed to the entire DE, which should

substantially cut down on the burden of our debugging task.

As an example, we will work again with the SPGAS.LG4 gas buying model. After loading the model

and issuing the LINGO|Generate|Scenario command, we are prompted for the index of the scenario

we wish to view:

For our purposes, suppose we are interested in viewing scenario 2, in which case, we enter a 2 in the

edit box and then press the OK button. LINGO the displays the following report:

MODEL:

TITLE Scenario 2;

[_1] MIN = PURCHASE_COST + HOLD_COST;

[_2] PURCHASE_COST - 5 * PURCHASE_1 - 6 * PURCHASE_2 = 0;

[_3] HOLD_COST - INVENTORY_1 - INVENTORY_2 = 0;

[_4] INVENTORY_1 - PURCHASE_1 = - 100;

[_5] - INVENTORY_1 + INVENTORY_2 - PURCHASE_2 = - 150;

END

You will note that this is the core model, with the period 2 random variable DEMAND replaced by its

sampled value of 150 in row 5. Nonanticipativity constraints are not generated as part of individual

scenario models.

266 CHAPTER 5

LINGO|Picture Ctrl+K
The LINGO|Picture command displays a model in matrix form. Viewing the model in matrix form can

be helpful in a couple of instances. First and perhaps most importantly, is the use of nonzero pictures

in debugging formulations. Most models have strong repetitive structure. Incorrectly entered sections

of the model will stand out in a model’s matrix picture. Secondly, a nonzero picture can be helpful

when you are attempting to identify special structure in your model. As an example, if your model

displays strong block angular structure, then algorithms that decompose the model into smaller

fragments might prove fruitful.

As an example, we loaded the DNRISK.LG4 model from LINGO’s sample model set. Issuing the

Picture command, we see the following:

Positive coefficients are represented with blue tiles, negatives with red, and variables that appear in a

row nonlinearly show up as black tiles.

You can zoom in on a selected range in the matrix for closer viewing. To do this, place the cursor on

the upper left corner of the range you wish to view, press and hold down the left mouse button. Next,

drag the mouse to the lower right-hand corner of the desired range. Now, release the left mouse button

and LINGO will zoom in on the selected range. As an example, here is a view of the matrix after

zooming in on a 4x4 range:

WINDOWS COMMANDS 267

Note, we have zoomed in far enough to be able see the actual coefficient values, row names, and

variable names. Scroll bars have also appeared to allow scrolling through the matrix.

The matrix picture window supports a number of additional interactive features. To access these

features, place the cursor over the matrix picture, and press and hold the right mouse button. This will

bring up the following menu:

268 CHAPTER 5

A brief description of these features follows:

 Unpermuted - Displays the matrix in its original form

 Lower Triangular - Displays the matrix picture to lower triangular, or almost lower triangular

form

 Block Triangular - GP1 - The matrix is displayed in block triangular form using LINGO'S

GP1 graph partitioning heuristic

 Block Triangular - GP2 - The matrix is displayed in block triangular form using LINGO'S

GP1 graph partitioning heuristic

 Block Triangular - Row Names - The matrix is displayed using a block structure specified by

the user as part of the row names

 Block Triangular - User Specified - The matrix is displayed using a block structure specified

by the user via the @BLKROW function

 Zoom In - Zooms the view in centered around the current cursor position

 Zoom Out - Zooms the view out centered around the current cursor position

 View All - Zooms all the way out to give a full view of the matrix

 Row Names - Toggles the display of row names on and off

 Var Names - Toggles the display of variable names on and off

 Scroll Bars - Toggles scroll bars on and off

 Print - Prints the matrix picture

 Close - Closes the matrix picture window

The Lower Triangular option is an interesting feature. The rows and columns are automatically

permuted to place the matrix into mostly lower-triangular form. If a matrix is mostly lower triangular,

then, in general, the model should prove relatively easier to solve. This is opposed to a model that

contains a high degree of simultaneity that can't be permuted into lower triangular form.

Refer to the BNP Solver section above for more information on the various Block Triangular options

(GP1, GP2, Row Names and User Specified).

LINGO|Debug
In the ideal world, all models would return an optimal solution. Unfortunately, this is not the case.

Sooner or later, you are bound to run across either an infeasible or unbounded model. This is

particularly true in the development phase of a project when the model will tend to suffer from

typographical errors.

Tracking down an error in a large model can prove to be a daunting task. The Debug command is

useful in narrowing the search for problems in both infeasible and unbounded linear programs. A small

portion of the original model is isolated as the source of the problem. This allows you to focus your

attention on a subsection of the model in search of formulation or data entry errors.

The Debug command identifies two types of sets: sufficient and necessary. Removing any sufficient

set object from the model is sufficient to fix the entire model. Not all models will have a sufficient set.

In which case, they will have a necessary set with the property that removing any object from this set

fixes the remaining objects within that set.

WINDOWS COMMANDS 269

As an example, suppose you have an infeasible model. If the complete model would be feasible except

for a bug in a single row, that row will be listed as part of the sufficient set. If the model has a

necessary set, then, as long as all of them are present, the model will remain infeasible.

The following example illustrates. The coefficient .55 in row 4 should have been 5.5:

When we attempt to solve this formulation, we get the following error:

270 CHAPTER 5

Next, if we run the LINGO|Debug command, we are presented with the following report:

The Debug command has correctly identified that the erroneous ROW4, when eliminated, is sufficient

to make the entire model feasible.

Debug operates in a similar manner for unbounded models. In the following example, we introduced

an error by placing a minus sign instead of a plus sign in front of variable Z3 in ROW3. A look at

ROW3 reveals that Z3 can be increased indefinitely, leading to an unbounded objective.

The resulting model is unbounded and, when issuing the LINGO|Solve command, we receive the

unbounded error message:

WINDOWS COMMANDS 271

Issuing the Debug command, we receive the following breakdown:

The Debug command has successfully determined that bounding Z3 is sufficient to bound the entire

model.

Typically, the Debug command helps to substantially reduce the search effort. The first version of this

feature was implemented in response to a user who had an infeasible model. The user had spent a day

searching for a bug in a model with 400 constraints. The debug feature quickly found a necessary set

with 55 constraints, as well as one sufficient set constraint. The user immediately noticed that the

right-hand side of the sufficient set constraint was incorrect.

Note: Prior to release 10.0 of LINGO, the debugger was only capable of processing linear models.

Starting with release 10.0, all classes of models (LP, QP, IP and NLP) may now be debugged.

LINGO|Model Statistics
The Model Statistics command lists summary statistics for your model. The statistics vary slightly

depending on whether the model you’re working with is linear or nonlinear.

In the following example, we open the linear transportation model, TRAN.LG4, issue the Model

Statistics command, and then discuss some of the details of the report. Here is the output generated by

Model Statistics for TRAN.LG4:

The statistics report consists of five lines.

In line one, the number of rows (constraints), variables (columns), and integer variables are shown.

The report also specifies when the model is linear by stating that all variables are linear.

272 CHAPTER 5

Line two of the report gives a count of the number of nonzero coefficients appearing in the model. The

first count is the number of nonzero coefficients in the entire model. The Constraint nonz count is the

number of coefficients on the left-hand sides of all the constraints, excluding the nonzero objective and

right-hand side coefficients. Next, is a count of the number of constraint coefficients that are plus or

minus one. In general, a linear programming model is easier to solve when the number of percentage

of +/- 1 coefficient increases. Finally, LINGO reports a Density figure, which is defined as:

(total nonzeros) / [(number of rows) * (number of columns + 1)]. For large models, densities under .01

are common. High densities can mean that a problem will take longer to solve.

Line three lists the smallest and largest coefficients in the model in absolute value. For stability

reasons, the ratio of the largest coefficient to the smallest should, ideally, be close to 1. Also, in

absolute terms, it is best to keep coefficient values in the range of 0.0001 to 100,000. Values outside

this range can cause numerical difficulties for the solver.

Line four lists the number of constraints by type (<, =, and >), the sense of the objective, and an upper

bound on the number of Generalized Upper Bound (GUB) constraints. A GUB constraint is a

constraint that does not intersect with the remainder of the model. Given this, the GUB statistic is a

measure of model simplicity. If all the constraints were nonintersecting, the problem could be solved

by inspection by considering each constraint as a separate problem.

Line five lists the number of variables that appear in only one row. Such a variable is effectively a

slack. If you did not explicitly add slack variables to your model and the single column count is greater

than zero, then it suggests a misspelled variable name.

The following report was generated by the Model Statistics command for the nonlinear model,

DNRISK.LG4:

The statistics report for nonlinear models drops information about the range of coefficient values, the

number of +/- 1 coefficient, and the GUB upper bound. A count of the number of nonlinear variables

and rows is added in line two. The nonlinear rows count includes the objective, while the nonlinear

constraint count does not.

WINDOWS COMMANDS 273

LINGO|Look... Ctrl+L
Use the Look command to generate a report containing your model’s formulation. The Look

command’s dialog box, pictured below, lets you choose All or Selected rows for viewing from the

Rows to View:

When you choose Selected rows, the Beginning Row and Ending Row text boxes are available for entry

in the Selected Rows box. You must enter the indices of the range of rows you wish displayed. LINGO

will display the requested lines with line numbers in a new window.

4. Window Menu

The Window menu, pictured at left,

contains commands that generally

pertain to managing open windows.

274 CHAPTER 5

Window|Command Window Ctrl+1
In addition to the pull down menu commands, LINGO’s features can also be accessed through a

command language. For more details on the command language, refer to the following chapter,

Command-line Commands. A script file that contains LINGO commands may be run using the

File|Take Commands command. Alternatively, you can interactively enter script commands into

LINGO’s command window. The Window|Command Window command opens LINGO’s command

window. The following window should appear on your screen:

WINDOWS COMMANDS 275

You may enter any valid LINGO script commands to the colon prompt in the upper left corner of the

window. In the following example, we enter a small model with the MODEL command, display the

formulation with the LOOK ALL command, and then solve it using the GO command (user input is

shown in bold type):

In general, you will probably prefer to use the pull down menus and toolbar when using LINGO

interactively. The command window interface is primarily provided for users wishing to interactively

test command scripts.

276 CHAPTER 5

Window|Status Window Ctrl+2
When you invoke LINGO’s Solve command, a status window is displayed on your screen that

resembles the following:

This window allows you to monitor the progress of the solver. You can close the status window at any

time. If you close the status window, it may be reopened with the Window|Status Window command.

If you would like to prevent LINGO from opening a status window, see the LINGO|Options command

above. For more information on the interpretation and use of the status window, see page 7.

Window|Send To Back Ctrl+B
The Window|Send To Back command sends the active window behind all others on the screen. This

command is useful when switching between a model and a solution window.

Window|Close All Ctrl+3
The Window|Close All command closes all open windows. If you made a change to a model window

without saving it, you will be prompted to save the model before it is closed.

WINDOWS COMMANDS 277

Window|Tile Ctrl+4
The Window|Tile command arranges all the open windows in a tiled pattern. Each window is resized,

so all windows appear on the screen and are of roughly the same size.

When you issue the Window|Tile command, you will see the dialog box:

You have the choice of tiling the windows horizontally or vertically. If you tile Horizontally (or

Vertically), LINGO will maximize the horizontal (or vertical) dimension of each window.

If there are more than three open windows, LINGO will tile the windows, but the choice of horizontal

or vertical will no longer make a difference.

Window|Cascade Ctrl+5
The Window|Cascade command arranges all open windows in a cascade pattern starting in the upper

left corner of the mainframe window. The currently active window remains on top.

Window|Arrange Icons Ctrl+6
If you have minimized any open windows, so they appear as icons on the screen, you can issue the

Window|Arrange Icons command to line all the icons up in the lower left-hand corner of the frame

window.

5. Help Menu

The Help menu, pictured at left, contains

commands that generally pertain to

LINGO’s Help system, copyright notice,

and version specific information.

278 CHAPTER 5

Help|Help Topics
A portion of the dialog box displayed by the Help Topics command is displayed below:

Select the Contents tab to display a table of contents for the Help system. You can select any of the

topics that are of interest by double clicking on them.

Select the Index tab to display an index of topics for the Help system. Select an item for viewing by

double clicking on it.

Go to the Find tab to search the Help system for a particular item.

WINDOWS COMMANDS 279

Help|Register
Use the Help|Register command to register your version of LINGO online. You will need a

connection to the Internet open for this command to work. When you issue the Register command,

you will be presented with the following dialog box:

280 CHAPTER 5

Enter your personal information and select the Register button. Your information will be sent directly

to LINDO Systems via the Internet.

Once your registration is complete, the following dialog box will appear on your screen:

Select the OK button to be returned to the main LINGO environment.

LINDO Systems is constantly working to make our products faster and easier to use. Registering your

software with LINDO ensures that you will be kept up-to-date on the latest enhancements and other

product news. You can also register through the mail or by fax using the registration card included

with your software package.

Help|AutoUpdate
Turn the Help|AutoUpdate command on to have LINGO automatically check every time you start the

LINGO software whether there is a more recent version of LINGO available for download on the

LINDO Systems website. You will need a connection to the internet open for this command to work.

When you issue the AutoUpdate command or start a version of LINGO with AutoUpdate enabled,

LINGO will search the Internet to see if an updated version of the LINGO software is available for

download. If you currently have the most recent version, then you will be returned to the main LINGO

environment. If you have an outdated version of the software, you will be presented with the following

dialog box:

at which point, you may wish to go to the LINDO Systems Web site, www.lindo.com, to download the

latest build of the software.

If you want to disable the AutoUpdate feature, then select the Disable AutoUpdate button from the

AutoUpdate dialog box. The AutoUpdate feature is disabled by default.

http://www.lindo.com/

WINDOWS COMMANDS 281

Help|About LINGO
When you issue the About LINGO command, you will be presented with a dialog box resembling the

following:

The first box lists size and release information of your copy of LINGO.

282 CHAPTER 5

The second box tells you where you can get in touch with LINDO Systems.

The third box, titled Limits for this Installation, lists various capacity limits of your version and the

current number of bytes allocated to LINGO's model generator. The maximum sized problem your

LINGO software can handle depends on the version you have. The current limits for the various

versions are:

Version Total

Variables

Integer

Variables

Nonlinear

 Variables

Global

 Variables

Constraints

Demo/Web 300 30 30 5 150

Solver Suite 500 50 50 5 250

Super 2,000 200 200 10 1,000

Hyper 8,000 800 800 20 4,000

Industrial 32,000 3,200 3,200 50 16,000

Extended Unlimited Unlimited Unlimited Unlimited Unlimited

For more information on the definitions of these limits see section Maximum Problem Dimensions. In

addition to the maximum problem limits, this box also lists the amount of memory allocated to

LINGO’s model generator. You can adjust the size of generator memory allocation on the General

Solver tab of the LINGO|Options dialog box.

The fourth box titled License Expiration lists the date at which your license expires. If your license

does not have an expiration date, this field will display Perpetual.

The box labeled License Usage lists whether your license is for commercial or educational use.

Educational licenses are restricted to use by faculty, staff, and students of educational institutions for

instructional or research purposes. Commercial licenses are not restricted to any particular use.

The box titled Licenses lists the number of users licensed to use your copy of LINGO.

The API Version box lists the version number of the LINDO API in use by your copy of LINGO. The

LINDO API is the library of solver tools used by LINGO to optimize your models.

The License Location box displays the location of the license file in effect for the current LINGO

session, while the Config Location box gives the location of LINGO's configuration file. The

configuration file is where LINGO stores non-default option settings, which are controlled by the

LINGO|Options command.

The final box, Additional License Information, contains information relevant to your particular license.

In most cases, your LINGO serial number can be found in this field. Scrolling through this field, you

will also find information as to the optional features included with your license (e.g., the barrier, conic,

nonlinear, global and stochastic solvers.)

Help|Pointer
Press this button to switch the cursor into Help mode. Once the cursor is in Help mode, you can select

a menu command or a toolbar button and LINGO will display help information on the selected item.

283

6 Command-Line
Commands

This chapter discusses all of the command-line commands available to the LINGO user. On platforms

other than Windows based PC’s, the user interfaces with LINGO entirely through text commands

issued to LINGO’s command-line colon prompt.

If you are using a Windows version of LINGO, you will primarily be interested in the previous

chapter, Windows Commands, which details the commands available in the pull down menus of

LINGO’s Windows version. However, in Windows versions, LINGO command-line commands may

be entered using the command window (see the Window|Command Window section in Chapter 5,

Windows Commands) and may also be used to build command scripts. Command scripts may be run

automatically at startup or whenever the user desires. Command scripts are useful to both the Windows

user and users on other platforms. Thus, the Windows user may find this chapter of interest, too.

We will begin by briefly listing all the command-line commands according to their general function.

This will be followed up by an in-depth explanation of the commands.

The Commands In Brief

1. Information
CAT lists categories of available commands

COM lists available commands by category

HELP provides brief help on commands

MEM provides statistics about model generator memory usage

2. Input
FRMPS retrieves a model in free MPS format

MODEL begins input of a new model

RLPF retrieves a model in LP format

RMPI retrieves a model in MPI format

RMPS retrieves a model in fixed MPS format

TAKE runs a command script from an external file

284 CHAPTER 6

3. Display
DUAL generates and displays the dual formulation for the model

GEN generates the algebraic formulation for the model

HIDE password protects the current model

LOOK displays the current model

PICTURE displays a picture of the model’s nonzero structure

SCENE generates the algebraic formulation for a specified scenario of a

larger stochastic program

SHOWNL generates the entire model, but only displays rows containing

nonlinearities

STATS gives summary statistics about the properties of a generated model

XDETEQ generates the algebraic formulation for a explicit deterministic

equivalent of a stochastic program

4. File Output
DIVERT opens a file for receiving output

RVRT closes a file previously opened with DIVERT

SAVE saves the current model to disk

SMPI exports a model in MPI format

SMPS sends a copy of the current model to a file in MPS format

5. Solution
DEBUG tracks down formulation errors in infeasible and unbounded

models

GO solves the current model

NONZ generates a nonzeros only solution report

RANGE generates a range analysis report

SOLU generates a solution report

6. Problem Editing
ALTER edits the contents of the model

DELETE deletes a selected row from the model

EXTEND adds rows to the end of the current model

7. Conversational Parameters
PAGE sets the page/screen length

PAUSE pauses for keyboard input

TERSE output level

VERBOSE switches to verbose output mode

WIDTH sets terminal display and input width

COMMAND-LINE COMMANDS 285

8. Tolerances
APISET allows access to advanced parameters in the LINDO API, which is

the solver library used by LINGO

DBPWD sets the password for database access via @ODBC

DBUID sets your user id for database access via @ODBC

FREEZE saves current tolerance settings to disk

SET overrides a number of LINGO defaults and tolerances

9. Miscellaneous
! inserts a comment

QUIT exits LINGO

TIME displays current elapsed time since start of session

The Commands In Depth
Each LINGO command-line command is discussed in detail in this section. Commands are grouped by

category based upon their general function.

Note: User input in the examples below is indicated through the use of bold typeface.

1. Information
The Information category contains commands related to on-line information.

CAT
The CAT command displays the nine categories of commands available in LINGO. You will be

prompted to input a number corresponding to one of the categories. If you input a number, LINGO

will display the commands available under the corresponding category. To exit out of the command,

input a blank line.

COM
The COM command lists all the command-line commands available in LINGO by category.

HELP
The HELP command combined with another LINGO command gives you information on the

command specified. The information is usually quite brief, but is often all that is needed.

The HELP command without an argument will give you general information about your version of

LINGO, along with the maximum number of constraints and variables that your version of LINGO can

handle.

286 CHAPTER 6

MEM
The MEM command displays statistics about the model generator's memory usage. The following is

some sample output from the MEM command:

: MEM

 Total generator memory 5242880

 Peak generator memory usage 12048

 Current generator memory usage 1312

 Total handles 96

 Peak handle usage 9

 Current handle usage 5

 Total bytes moved 1552

 Total blocks moved 6

 Total heap compacts 0

 Fragmentation ratio 0.002

:

The Total generator memory figure is the amount of memory LINGO has allocated for a working

memory heap for model generation. You can control the size of the heap using the SET command.

Peak generator memory usage refers to the maximum amount of memory the model generator used

during the current session. Current memory usage lists the amount of working memory currently in use

by the model generator.

Total handles is the maximum number of memory blocks LINGO can allocate. Peak handle usage lists

the maximum number of memory blocks LINGO allocated at any one time during this session. Current

handle usage represents the number of memory blocks currently in use by the model generator.

Total bytes moved lists the number of memory bytes the generator has had to move so far in order to

reallocate memory. Total blocks moved lists the number of memory blocks moved due to reallocation.

Total heap compacts lists the number of times the generator has had to compact the heap to make room

for growing memory needs. If the number of heap compacts is abnormally large, you should allocate

more working memory using the SET command.

The Fragmentation ratio is a statistic measuring how fragmented the memory heap is. A value of 1

would indicate high fragmentation, whereas a value of 0 indicates no fragmentation

2. Input
The Input category contains commands that initiate input into LINGO

FRMPS / RMPS
The FRMPS and RMPS commands are used to read MPS formatted models. The MPS file format is an

industry standard format developed by IBM, and is useful for passing models from one solver or

platform to another. FRMPS reads an MPS file in free format, while RMPS reads fixed format MPS

files.

COMMAND-LINE COMMANDS 287

When LINGO reads an MPS file, it converts the formulation to an equivalent LINGO model. As an

example, consider the following, simple model:

ObjRow) Maximize 20X + 30Y
Subject To:
 Row1) X < 50
 Row2) Y < 60
 Row3) X + 2Y < 120

An equivalent MPS file for this model is:

NAME SAMPLE

OBJSENSE

 MAX

ROWS

 N OBJROW

 L ROW1

 L ROW2

 L ROW3

COLUMNS

 X ROW3 1.0000000

 X OBJROW 20.0000000

 X ROW1 1.0000000

 Y OBJROW 30.0000000

 Y ROW2 1.0000000

 Y ROW3 2.0000000

RHS

 RHS ROW1 50.0000000

 RHS ROW2 60.0000000

 RHS ROW3 120.0000000

ENDATA

As an aside, one thing to notice about the MPS representation is that it is not a very compact method

for storing a model.

In the following session, we read this MPS file into LINGO and then display the model with the

LOOK command. Note how the model is automatically converted from MPS format to LINGO format:

: rmps c:\sample.mps

: look all

 1] TITLE SAMPLE;

 2] [OBJROW] MAX = 20 * X + 30 * Y;

 3] [ROW1] X <= 50;

 4] [ROW2] Y <= 60;

 5] [ROW3] X + 2 * Y <= 120;

:

Should you wish to save the file again using MPS format rather than LINGO format, you may use the

SMPS command.

When it comes to acceptable constraint and variable names, MPS format is less restrictive than

LINGO. MPS allows for embedded blanks and other additional characters in names. To compensate

for this fact, LINGO attempts to patch names when reading an MPS file so that all the incoming names

288 CHAPTER 6

are compatible with its syntax. LINGO does this by substituting an underscore for any character in a

name that is not admissible. In most cases, this will work out OK. However, there is a chance for name

collisions where two or more names get mapped into one. For instance, the variable names X.1 and

X%1 would both get mapped into the single LINGO name X_1. Of course, situations such as this

entirely alter the structure of the model rendering it incorrect.

You will be warned whenever LINGO has to patch a name with the following error message:

 [Error Code: 179]

 The model translator had to patch names to make them compatible:

 var names patched: 1

 row names patched: 0

 Name collisions may have occurred.

This message displays the number of variable and row names that were patched to get them to conform

to LINGO syntax.

If name collisions are a problem, then LINGO has an option that will ensure that all names remain

unique. This option involves using RC format for names encountered during MPS I/O. RC format

involves renaming each row (constraint) in a model to be Rn, where n is the row’s index. Similarly,

each column (variable) is renamed to Cn. In addition, LINGO renames the objective row to be ROBJ.

To switch to RC format for MPS names, you will need to use the SET command as follows:

: SET RCMPSN 1

This will cause LINGO to use RC naming conventions for all MPS reads and saves. To cancel the use

of RC names, type:

: SET RCMPSN 0

As an example, we will once again read the same MPS format model we read above, but this time we

will switch to RC naming conventions.

: set rcmpsn 1

 Parameter Old Value New Value

 RCMPSN 0 1

: rmps c:\sample.mps

: look all

 1] TITLE SAMPLE;

 2] [ROBJ] MAX = 20 * C1 + 30 * C2;

 3] [R1] C1 <= 50;

 4] [R2] C2 <= 60;

 5] [R3] C1 + 2 * C2 <= 120;

Notice how the variable names now use RC format, guaranteeing that name collisions will not occur.

Another potential conflict is that MPS allows variable names to be duplicated as constraint names, and

vice versa. LINGO does not allow for this. When you go to solve the model, you will either receive

error message 28 (Invalid use of a row name), or error message 37 (Name already in use). However,

once again, you can switch to using RC format for names to avoid this conflict.

COMMAND-LINE COMMANDS 289

MODEL
Use the MODEL command to begin inputting a new model into LINGO. LINGO prompts for each

new line of the model with a question mark. When you are through entering the model, enter END on a

single line by itself. LINGO will then return to normal command mode (indicated by the colon

prompt).

In the following example, we enter a small model with the MODEL command, display it with the

LOOK command, and then solve it with the GO command:

: MODEL

? !How many years does it take

? to double an investment growing

? 10% per year?;

? 1.1 ^ YEARS = 2;

? END

: LOOK ALL

 1]!How many years does it take

 2]to double an investment growing

 3]10% per year?;

 4]1.1 ^ YEARS = 2;

: GO

 Feasible solution found at step: 0

 Variable Value

 YEARS 7.272541

 Row Slack or Surplus

 1 0.000000

:

RMPI
The RMPI command is used to read MPI (Math Programmming Interface) formatted models. The

MPI file format was developed by LINDO Systems as a portable format for storing arbitrary math

programming models.

When LINGO reads an MPI file, it converts the formulation to an equivalent LINGO model. As an

example, consider the following, simple model:

ObjRow) Maximize 20X + 30Y
Subject To:
 Row1) X < 50
 Row2) Y < 60
 Row3) X + 2Y < 120

290 CHAPTER 6

The equivalent MPI file for this model is:

BEGINMODEL SAMPLE

! Number of Objective Functions: 1

! Number of Constraints : 3

! Number of Variables : 2

VARIABLES

! Name Lower Bound Initial Point

Upper Bound Type

 X 0 1.23457

1e+030 C

 Y 0 1.23457

1e+030 C

OBJECTIVES

 OBJROW MAXIMIZE

 EP_USRCOD -101

 EP_PUSH_NUM 20

 EP_PUSH_VAR X

 EP_MULTIPLY

 EP_PUSH_NUM 30

 EP_PUSH_VAR Y

 EP_MULTIPLY

 EP_PLUS

CONSTRAINTS

 ROW1 L

 EP_USRCOD -101

 EP_PUSH_VAR X

 EP_PUSH_NUM 50

 EP_MINUS

 ROW2 L

 EP_USRCOD -101

 EP_PUSH_VAR Y

 EP_PUSH_NUM 60

 EP_MINUS

 ROW3 L

 EP_USRCOD -101

 EP_PUSH_VAR X

 EP_PUSH_NUM 2

 EP_PUSH_VAR Y

 EP_MULTIPLY

 EP_PLUS

 EP_PUSH_NUM 120

 EP_MINUS

ENDMODEL

As an aside, one thing to notice about the MPI representation is that it is not a very compact method

for storing a modelMPI is designed for portability, as opposed to efficiency.

COMMAND-LINE COMMANDS 291

In the following session, we read this MPI file into LINGO and then display the model with the LOOK

command. Note how the model is automatically converted from MPI format to native LINGO format:

: rmpi c:\sample.mpi

: look all

 1] TITLE SAMPLE;

 2] [OBJROW] MAX = 20 * X + 30 * Y;

 3] [ROW1] X <= 50;

 4] [ROW2] Y <= 60;

 5] [ROW3] X + 2 * Y <= 120;

:

Should you wish to save the file again using MPI format rather than LINGO format, you may use the

SMPI command.

Note: The MPI file format is intended primarily for exporting models to other applications or

platforms. The MPI format is purely scalar in nature—all set-based information is lost upon

converting a LINGO model to MPI format. Thus, when saving copies of a model on your

own machine, you should always use the SAVE command in order to save models in native

LINGO format in order to preserve your model in its entirety.

When it comes to acceptable constraint and variable names, MPI format is less restrictive than

LINGO. MPI allows for embedded blanks and other additional characters in names. To compensate

for this fact, LINGO attempts to patch names when reading an MPI file so that all the incoming names

are compatible with its syntax. LINGO does this by substituting an underscore for any character in a

name that is not admissible. In most cases, this will work out OK. However, there is a chance for

name collisions where two or more names get mapped into one. For instance, the variable names X.1

and X%1 would both get mapped into the single LINGO name X_1. Of course, situations such as this

entirely alter the structure of the model rendering it incorrect.

You will be warned whenever LINGO has to patch a name with the following error message:

 [Error Code: 179]

 The model translator had to patch names to make them compatible:

 var names patched: 1

 row names patched: 0

 Name collisions may have occurred.

This message displays the number of variable and row names that were patched to get them to conform

to LINGO syntax.

If name collisions are a problem, then LINGO has an option that will ensure that all names remain

unique. This option involves using RC format for names when translating non-native file formats. RC

format involves renaming each row (constraint) in a model to be Rn, where n is the row’s index.

Similarly, each column (variable) is renamed to Cn. In addition, LINGO renames the objective row to

be ROBJ. To switch to RC format for MPS names mode, you will need to use the SET command as

follows:

: SET RCMPSN 1

292 CHAPTER 6

This will cause LINGO to use RC naming conventions for all MPI reads and saves. To cancel the use

of RC names, type:

: SET RCMPSN 0

As an example, we will once again read the same MPI format model we read above, but this time we

will switch to RC naming conventions.

: set rcmpsn 1

 Parameter Old Value New Value

 RCMPSN 0 1

: rmpi c:\sample.mpi

: look all

 1] TITLE SAMPLE;

 2] [ROBJ] MAX = 20 * C1 + 30 * C2;

 3] [R1] C1 <= 50;

 4] [R2] C2 <= 60;

 5] [R3] C1 + 2 * C2 <= 120;

Notice how the variable names now use RC format, guaranteeing that name collisions will not occur.

Another potential conflict is that MPI allows variable names to be duplicated as constraint names, and

vice versa. LINGO does not allow for this. When you go to solve the model, you will either receive

error message 28 (Invalid use of a row name), or error message 37 (Name already in use). However,

once again, you can switch to using RC format for names to avoid this conflict.

RLPF Command
The RLPF command is used to read LP formatted models. The LP file format is an industry standard,

and is useful for passing models from one solver or platform to another.

When LINGO reads an LP format file, it converts the formulation to an equivalent LINGO model. As

an example, consider the following, simple model:

ObjRow) Maximize 20X + 30Y
Subject To:
 Row1) X < 50
 Row2) Y < 60
 Row3) X + 2Y < 120

An equivalent LP format file for this model is:

\ LP format example

Maximize

 objrow: 20x + 30y

Subject To

 row1: x <= 50

 row2: y <= 60

 row3: x + 2y <= 120

End

In the following session, we read this LP file into LINGO and then display the model with the LOOK

command. Note how the model is automatically converted from LP format to LINGO format:

COMMAND-LINE COMMANDS 293

: rlpf c:\sample.lp

: look all

 MODEL:

 MAX= 20 * X + 30 * Y;

 [ROW1] X <= 50;

 [ROW2] Y <= 60;

 [ROW3] X + 2 * Y <= 120;

 END

:

Note: Unlike with MPS and MPI formats, LINGO does not currently support exporting/saving files

in LP format.

When it comes to acceptable constraint and variable names, LP format is less restrictive than LINGO.

To compensate for this fact, LINGO attempts to patch names when reading an LP file so that all the

incoming names are compatible with its syntax. LINGO does this by substituting an underscore for any

character in a name that is not admissible. In most cases, this will work out OK. However, there is a

chance for name collisions where two or more names get mapped into one. For instance, the variable

names X.1 and X%1 would both get mapped into the single LINGO name X_1. Of course, situations

such as this entirely alter the structure of the model rendering it incorrect.

You will be warned whenever LINGO has to patch a name with the following error message:

 [Error Code: 179]

 The model translator had to patch names to make them compatible:

 var names patched: 1

 row names patched: 0

 Name collisions may have occurred.

This message displays the number of variable and row names that were patched to get them to conform

to LINGO syntax.

If name collisions are a problem, then LINGO has an option that will ensure that all names remain

unique. This option involves using RC format for names when translating non-native file formats. RC

format involves renaming each row (constraint) in a model to be Rn, where n is the row’s index.

Similarly, each column (variable) is renamed to Cn. In addition, LINGO renames the objective row to

be ROBJ. To switch to the RC format for MPS names mode, you will need to use the SET command as

follows:

: SET RCMPSN 1

This will cause LINGO to use RC naming conventions for all names in an LP format file. To cancel

the use of RC names, type:

: SET RCMPSN 0

As an example, we will once again read the same LP format format model we read above, but this time

we will switch to RC naming conventions.

: set rcmpsn 1

 Parameter Old Value New Value

294 CHAPTER 6

 RCMPSN 0 1

: rmps c:\sample.lp

: look all

 1] TITLE SAMPLE;

 2] [ROBJ] MAX = 20 * C1 + 30 * C2;

 3] [R1] C1 <= 50;

 4] [R2] C2 <= 60;

 5] [R3] C1 + 2 * C2 <= 120;

Notice how the variable names now use RC format, guaranteeing that name collisions will not occur.

Another potential conflict is that LP format allows variable names to be duplicated as constraint

names, and vice versa. LINGO does not allow for this. When you go to solve the model, you will

either receive error message 28 (Invalid use of a row name), or error message 37 (Name already in

use). However, once again, you can switch to using RC format for names to avoid this conflict.

TAKE
The TAKE command is used to 1) read models saved to disk using the SAVE command, and 2) execute

command scripts contained in external files. The syntax for the TAKE command is:

TAKE [filename]

If you omit a filename, LINGO will prompt you for one.

As an example, suppose you used the SAVE command to save a model to the file

C:\LINGOMOD\MYMODEL.LNG. You can read it back into LINGO by giving the command:

: TAKE C:\LINGOMOD\MYMODEL.LNG

COMMAND-LINE COMMANDS 295

As a second example, we will use the TAKE command to execute a LINGO command script. A

command script is simply a text file that contains a series of LINGO commands. Suppose we have

built the following command script in an editor and have saved it in the text file

D:\LNG\MYSCRIPT.LTF:

MODEL:

!For a given probability P, this

 model returns the value X such

 that the probability that a unit

 normal random variable is less

 than or equal to X is P;

! Here is the probability;

 P = .95;

! Solve for X;

 P = @PSN(X);

END

!Terse output mode;

TERSE

!Solve the model;

GO

!Report X;

SOLU X

We can use the TAKE command to run the script as follows:

: TAKE D:\LNG\MYSCRIPT.LTF

 Feasible solution found at step: 0

 Variable Value

 X 1.644854

:

3. Display
This category contains commands that display information.

DUAL
The DUAL command displays the dual formulation of the current model. Every linear programming

model has a corresponding, mirror-image formulation called the dual. If the original model has M

constraints and N variables, then its dual will have N constraints and M variables.

Some interesting properties of the dual are that any feasible solution to the dual model provides a

bound on the objective to the original, primal model, while the optimal solution to the dual has the

same objective value as the optimal solution to the primal problem. It's also true that the dual of the

dual model is, once again, the original primal model. You may wish to refer to any good linear

programming text for a further discussion of duality theory.

296 CHAPTER 6

As an example, consider the following small transportation model:

MODEL:

! A 3 Warehouse, 4 Customer

 Transportation Problem;

SETS:

 WAREHOUSE / WH1, WH2, WH3/ : CAPACITY;

 CUSTOMER / C1, C2, C3, C4/ : DEMAND;

 ROUTES(WAREHOUSE, CUSTOMER) : COST, VOLUME;

ENDSETS

! The objective;

 [OBJ] MIN = @SUM(ROUTES: COST * VOLUME);

! The demand constraints;

 @FOR(CUSTOMER(J): [DEM]

 @SUM(WAREHOUSE(I): VOLUME(I, J)) >=

 DEMAND(J));

! The supply constraints;

 @FOR(WAREHOUSE(I): [SUP]

 @SUM(CUSTOMER(J): VOLUME(I, J)) <=

 CAPACITY(I));

! Here are the parameters;

DATA:

 CAPACITY = 30, 25, 21 ;

 DEMAND = 15, 17, 22, 12;

 COST = 6, 2, 6, 7,

 4, 9, 5, 3,

 8, 8, 1, 5;

ENDDATA

END

Model: TRAN.LNG

COMMAND-LINE COMMANDS 297

If the sample session below, we load the sample model TRAN.LNG and use the DUAL command to

generate its dual formulation:

: take \lingo\samples\tran.lng

: dual

 MODEL:

 MAX = 15 * DEM_C1 + 17 * DEM_C2 + 22 * DEM_C3 + 12 * DEM_C4

 + 30 * SUP_WH1 + 25 * SUP_WH2 + 21 * SUP_WH3;

 [VOLUME_WH1_C1] DEM_C1 + SUP_WH1 <= 6;

 [VOLUME_WH1_C2] DEM_C2 + SUP_WH1 <= 2;

 [VOLUME_WH1_C3] DEM_C3 + SUP_WH1 <= 6;

 [VOLUME_WH1_C4] DEM_C4 + SUP_WH1 <= 7;

 [VOLUME_WH2_C1] DEM_C1 + SUP_WH2 <= 4;

 [VOLUME_WH2_C2] DEM_C2 + SUP_WH2 <= 9;

 [VOLUME_WH2_C3] DEM_C3 + SUP_WH2 <= 5;

 [VOLUME_WH2_C4] DEM_C4 + SUP_WH2 <= 3;

 [VOLUME_WH3_C1] DEM_C1 + SUP_WH3 <= 8;

 [VOLUME_WH3_C2] DEM_C2 + SUP_WH3 <= 8;

 [VOLUME_WH3_C3] DEM_C3 + SUP_WH3 <= 1;

 [VOLUME_WH3_C4] DEM_C4 + SUP_WH3 <= 5;

 @BND(-0.1E+31, SUP_WH1, 0); @BND(-0.1E+31, SUP_WH2, 0);

 @BND(-0.1E+31, SUP_WH3, 0);

 END

:

You will notice that in the dual formulation the variables from the primal model become the rows of

the dual. Similarly, the rows in the primal become the variables in the dual.

Note: The row names from the primal problem will become the variable names in the dual

formulation. For this reason, it is strongly recommended that you name all the rows in the

primal model. If a row is unnamed, then a default name will be generated for the

corresponding dual variable. The default name will consist of an underscore followed by the

row's internal index. These default names will not be very meaningful, and will make the

dual formulation difficult to interpret.

GEN
Once you remove all the syntax errors from your LINGO model, there is still one very important step

required: model verification. LINGO’s set-based modeling capabilities are very powerful, and they

allow you to generate large, complex models quickly and easily. However, when you first develop a

model you will need to verify that the model being generated matches up to the model you actually

intended to generate. Many set-based models can be quite complex, and it is highly likely that logic

errors may creep into one or more expressions, thereby causing your generated model to be flawed.

The GEN (short for generate) command is very useful for debugging such errors. It expands all of the

model's compact set-based expressions and then writes out the full scalar-based equivalent of the

LINGO model. The expanded model report explicitly lists all the generated constraints and variables in

your model. You will find that the Generate report can be an invaluable tool in tracking down errors.

298 CHAPTER 6

As an example of the output from the generate command, consider the transportation model developed

in Chapter 1:

MODEL:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

 WAREHOUSES: CAPACITY;

 VENDORS: DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

DATA:

 !set members;

 WAREHOUSES = WH1 WH2 WH3 WH4 WH5 WH6;

 VENDORS = V1 V2 V3 V4 V5 V6 V7 V8;

 !attribute values;

 CAPACITY = 60 55 51 43 41 52;

 DEMAND = 35 37 22 32 41 32 43 38;

 COST = 6 2 6 7 4 2 5 9

 4 9 5 3 8 5 8 2

 5 2 1 9 7 4 3 3

 7 6 7 3 9 2 7 1

 2 3 9 5 7 2 6 5

 5 5 2 2 8 1 4 3;

ENDDATA

! The objective;

 [OBJECTIVE] MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J): [DEMAND_ROW]

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I): [CAPACITY_ROW]

 @SUM(VENDORS(J): VOLUME(I, J)) <=

 CAPACITY(I));

END

Model: WIDGETS

COMMAND-LINE COMMANDS 299

The objective will generate one expression; there should be one demand constraint generated for each

of the eight vendors and one supply constraint generated for each of the six warehouses, for a grand

total of 15 rows in the expanded model. Running the generate command to verify this reveals the

following report:

MODEL:

 [OBJECTIVE] MIN= 6 * VOLUME_WH1_V1 + 2 * VOLUME_WH1_V2 + 6 *

 VOLUME_WH1_V3 + 7 * VOLUME_WH1_V4 + 4 * VOLUME_WH1_V5 + 2 *

 VOLUME_WH1_V6 + 5 * VOLUME_WH1_V7 + 9 * VOLUME_WH1_V8 + 4 *

 VOLUME_WH2_V1 + 9 * VOLUME_WH2_V2 + 5 * VOLUME_WH2_V3 + 3 *

 VOLUME_WH2_V4 + 8 * VOLUME_WH2_V5 + 5 * VOLUME_WH2_V6 + 8 *

 VOLUME_WH2_V7 + 2 * VOLUME_WH2_V8 + 5 * VOLUME_WH3_V1 + 2 *

 VOLUME_WH3_V2 + VOLUME_WH3_V3 + 9 * VOLUME_WH3_V4 + 7 *

 VOLUME_WH3_V5 + 4 * VOLUME_WH3_V6 + 3 * VOLUME_WH3_V7 + 3 *

 VOLUME_WH3_V8 + 7 * VOLUME_WH4_V1 + 6 * VOLUME_WH4_V2 + 7 *

 VOLUME_WH4_V3 + 3 * VOLUME_WH4_V4 + 9 * VOLUME_WH4_V5 + 2 *

 VOLUME_WH4_V6 + 7 * VOLUME_WH4_V7 + VOLUME_WH4_V8 + 2 *

 VOLUME_WH5_V1 + 3 * VOLUME_WH5_V2 + 9 * VOLUME_WH5_V3 + 5 *

 VOLUME_WH5_V4 + 7 * VOLUME_WH5_V5 + 2 * VOLUME_WH5_V6 + 6 *

 VOLUME_WH5_V7 + 5 * VOLUME_WH5_V8 + 5 * VOLUME_WH6_V1 + 5 *

 VOLUME_WH6_V2 + 2 * VOLUME_WH6_V3 + 2 * VOLUME_WH6_V4 + 8 *

 VOLUME_WH6_V5 + VOLUME_WH6_V6 + 4 * VOLUME_WH6_V7 + 3 *

 VOLUME_WH6_V8 ;

 [DEMAND_ROW_V1] VOLUME_WH1_V1 + VOLUME_WH2_V1 +

 VOLUME_WH3_V1 + VOLUME_WH4_V1 + VOLUME_WH5_V1 +

 VOLUME_WH6_V1 = 35 ;

 [DEMAND_ROW_V2] VOLUME_WH1_V2 + VOLUME_WH2_V2 +

 VOLUME_WH3_V2 + VOLUME_WH4_V2 + VOLUME_WH5_V2 +

 VOLUME_WH6_V2 = 37 ;

 [DEMAND_ROW_V3] VOLUME_WH1_V3 + VOLUME_WH2_V3 +

 VOLUME_WH3_V3 + VOLUME_WH4_V3 + VOLUME_WH5_V3 +

 VOLUME_WH6_V3 = 22 ;

 [DEMAND_ROW_V4] VOLUME_WH1_V4 + VOLUME_WH2_V4 +

 VOLUME_WH3_V4 + VOLUME_WH4_V4 + VOLUME_WH5_V4 +

 VOLUME_WH6_V4 = 32 ;

 [DEMAND_ROW_V5] VOLUME_WH1_V5 + VOLUME_WH2_V5 +

 VOLUME_WH3_V5 + VOLUME_WH4_V5 + VOLUME_WH5_V5 +

 VOLUME_WH6_V5 = 41 ;

 [DEMAND_ROW_V6] VOLUME_WH1_V6 + VOLUME_WH2_V6 +

 VOLUME_WH3_V6 + VOLUME_WH4_V6 + VOLUME_WH5_V6 +

 VOLUME_WH6_V6 = 32 ;

 [DEMAND_ROW_V7] VOLUME_WH1_V7 + VOLUME_WH2_V7 +

 VOLUME_WH3_V7 + VOLUME_WH4_V7 + VOLUME_WH5_V7 +

 VOLUME_WH6_V7 = 43 ;

 [DEMAND_ROW_V8] VOLUME_WH1_V8 + VOLUME_WH2_V8 +

 VOLUME_WH3_V8 + VOLUME_WH4_V8 + VOLUME_WH5_V8 +

 VOLUME_WH6_V8 = 38 ;

 [CAPACITY_ROW_WH1] VOLUME_WH1_V1 + VOLUME_WH1_V2 +

 VOLUME_WH1_V3 + VOLUME_WH1_V4 + VOLUME_WH1_V5 +

 VOLUME_WH1_V6 + VOLUME_WH1_V7 + VOLUME_WH1_V8 <= 60 ;

 [CAPACITY_ROW_WH2] VOLUME_WH2_V1 + VOLUME_WH2_V2 +

 VOLUME_WH2_V3 + VOLUME_WH2_V4 + VOLUME_WH2_V5 +

300 CHAPTER 6

 VOLUME_WH2_V6 + VOLUME_WH2_V7 + VOLUME_WH2_V8 <= 55 ;

 [CAPACITY_ROW_WH3] VOLUME_WH3_V1 + VOLUME_WH3_V2 +

 VOLUME_WH3_V3 + VOLUME_WH3_V4 + VOLUME_WH3_V5 +

 VOLUME_WH3_V6 + VOLUME_WH3_V7 + VOLUME_WH3_V8 <= 51 ;

 [CAPACITY_ROW_WH4] VOLUME_WH4_V1 + VOLUME_WH4_V2 +

 VOLUME_WH4_V3 + VOLUME_WH4_V4 + VOLUME_WH4_V5 +

 VOLUME_WH4_V6 + VOLUME_WH4_V7 + VOLUME_WH4_V8 <= 43 ;

 [CAPACITY_ROW_WH5] VOLUME_WH5_V1 + VOLUME_WH5_V2 +

 VOLUME_WH5_V3 + VOLUME_WH5_V4 + VOLUME_WH5_V5 +

 VOLUME_WH5_V6 + VOLUME_WH5_V7 + VOLUME_WH5_V8 <= 41 ;

 [CAPACITY_ROW_WH6] VOLUME_WH6_V1 + VOLUME_WH6_V2 +

 VOLUME_WH6_V3 + VOLUME_WH6_V4 + VOLUME_WH6_V5 +

 VOLUME_WH6_V6 + VOLUME_WH6_V7 + VOLUME_WH6_V8 <= 52 ;

 END

Model: WIDGETS

As expected, there are 15 rows in the generated model: [OBJECTIVE], [DEMAND_ROW_V1]

through [DEMAND_ROW_V8], and [CAPACITY_ROW_WH1] through

[CAPACITY_ROW_WH6].

As a side note, it’s interesting to compare the generated model to the original, set-based model. We

think most would agree that the set-based model is much easier to comprehend, thereby illustrating one

of the primary benefits of modern algebraic languages over more traditional, scalar-based languages.

In addition to verifying that the correct number of rows is being generated, you should also examine

each of the rows to determine that the correct variables are appearing in each row along with their

correct coefficients.

Note: The reports generated by the GEN command are valid LINGO models. You may load

Generate reports into LINGO and solve them as you would any other model.

One thing to keep in mind when examining generated model reports is that the LINGO model

generator performs fixed variable reduction. This means that any variables that are fixed in value are

substituted out of the generated model. For example, consider the simple model:

MODEL:

 MAX = 200 * WS + 300 * NC;

 WS = 60;

 NC <= 40;

 WS + 2 * NC <= 120;

END

If we generate this model we get the following, reduced model:

MODEL:

 MAX= 300 * NC + 12000 ;

 NC <= 40 ;

 2 * NC <= 60 ;

 END

At first glance, it seems as if both the first constraint and the variable WS are missing from the

generated model. Note that by the first constraint in the original model (WS = 60), WS is fixed at a

COMMAND-LINE COMMANDS 301

value of 60. The LINGO model generator exploits this fact to reduce the size of the generated model

by substituting WS out of the formulation. The final solution report will still contain the values for all

the fixed variables; however, the fixed variables will not appear in the generated model report. If you

would like to suppress fixed variable reduction so that all variables appear in your generated model,

you may do so via the Fixed Var Reduction option.

Note: To capture the results of the GEN command in a file, use the DIVERT command to open an

output file before issuing the GEN command.

HIDE
The HIDE command hides the text of a model from viewing by the user. This may be useful if you are

trying to protect proprietary ideas contained in your model.

When you enter the HIDE command, you’ll be prompted for a password. You may enter any password

with up to eight characters. LINGO will prompt you for this password once more for verification.

LINGO is sensitive to the case of the alphabetic characters in the password.

Once a model is hidden, commands allowing the user to view the model text (GEN, GENL, LOOK,

SMPS) are disabled. All other commands, however, will function as normal with the exception of

ALTER. If a model is hidden, ALTER will perform modifications, but they will not be echoed to the

screen.

When a hidden model is saved to disk, its text will be encrypted. This prevents the user from viewing

the model from outside of LINGO as well. You will want to distribute the encrypted version of the

model to those using your application. However, you should always keep an unhidden version of the

model at your site for safekeeping in the event you forget the password.

A hidden model may be returned to the normal unhidden state by once again issuing the HIDE

command with the correct password.

302 CHAPTER 6

A sample session illustrating the use of the HIDE command follows:

: TAKE TRAN.LNG !Read in a model

: LOOK 4 6 !Display some rows

 4] SUPPLY / WH1, WH2, WH3/ : CAP;

 5] DEST / C1, C2, C3, C4/ : DEM;

 6] LINKS(SUPPLY, DEST) : COST, VOL;

: HIDE !Now hide the model

Password?

TIGER

Please reenter password to verify:

TIGER

Model is now hidden.

: ! Model is hidden so LOOK will fail

: LOOK ALL

 [Error Code: 111]

 Command not available when model is hidden.

: ! We can still solve it though

: TERSE

: GO

 Global optimal solution found at step: 6

 Objective value: 161.0000

: !And get a solution report

: NONZ VOL

 Variable Value Reduced Cost

VOL(WH1, C1) 2.000000 0.000000

VOL(WH1, C2) 17.00000 0.000000

VOL(WH1, C3) 1.000000 0.000000

VOL(WH2, C1) 13.00000 0.000000

VOL(WH2, C4) 12.00000 0.000000

VOL(WH3, C3) 21.00000 0.000000

: !Now, unhide the model

: HIDE

Password?

TIGER

Model is no longer hidden.

: !Once again, we can view the model

: LOOK 4 6

 4] SUPPLY / WH1, WH2, WH3/ : CAP;

 5] DEST / C1, C2, C3, C4/ : DEM;

 6] LINKS(SUPPLY, DEST) : COST, VOL;

:

COMMAND-LINE COMMANDS 303

LOOK
The LOOK command displays all or part of the current model. The syntax of the LOOK command is:

LOOK row_index|beg_row_index end_row_index|ALL

Thus, you can specify the index of a single row to view, a range of rows, or ALL to view the entire

model.

In this next example, we use several forms of the LOOK command to view the current model:

: LOOK ALL

 1]!For a given probability P, this

 2] model returns the value X such

 3] that the probability that a unit

 4] normal random variable is less

 5] than or equal to X is P;

 6]

 7]! Here is the probability;

 8] P = .95;

 9]

 10]! Solve for X;

 11]P = @PSN(X);

 12]

: LOOK 8

 8] P = .95;

: LOOK 10 11

 10]! Solve for X;

 11]P = @PSN(X);

:

304 CHAPTER 6

PICTURE
The PICTURE command displays the model in matrix form. For small to medium sized models, the

PICTURE command is a useful way to obtain a visual impression of the model and to hunt for

formulation errors.

The following letter codes are used to represent the linear coefficients in the PICTURE output:

Letter Code Coefficient Range

Z (.000000, .000001)

Y (.000001, .00001)

X (.00001, .0001)

W (.0001, .001)

V (.001, .01)

U (.01, .1)

T (.1, 1)

A (1, 10)

B (10, 100)

C (100, 1000)

D (1000, 10000)

E (10000, 100000)

F (100000, 1000000)

G > 1000000

Single digit integers are shown explicitly rather than being displayed as a code. This is especially

handy, because many models have a large number of coefficients of positive or negative 1, which can

affect the solution procedure. If a variable appears nonlinearly in a row, then the PICTURE command

will represent its coefficient with a question mark.

COMMAND-LINE COMMANDS 305

In this example, we read in a copy of the small transportation model supplied with LINGO and use the

PICTURE command to view the logical structure of the model:

: take \lingo\samples\tran.lng

: pic

 V V V V V V V V V V V V

 O O O O O O O O O O O O

 L L L L L L L L L L L L

 U U U U U U U U U U U U

 M M M M M M M M M M M M

 E E E E E E E E E E E E

 ((((((((((((

 W W W W W W W W W W W W

 H H H H H H H H H H H H

 1 1 1 1 2 2 2 2 3 3 3 3

 , , , , , , , , , , , ,

 C C C C C C C C C C C C

 1 2 3 4 1 2 3 4 1 2 3 4

))))))))))))

 OBJ: 6 2 6 7 4 9 5 3 8 8 1 5 MIN

 DEM(C1): 1 ' 1 ' 1 ' > B

 DEM(C2): ' 1' ' '1 ' ' 1 ' > B

 DEM(C3): ' 1 ' 1 ' 1 > B

 DEM(C4): ' 1 ' 1 ' 1 > B

 SUP(WH1): 1 1'1 1 ' ' ' ' ' < B

 SUP(WH2): ' ' 1 1 1 1 ' < B

 SUP(WH3): ' ' ' 1 1 1 1 < B

In this model, all the right-hand side values are in the range [12, 30]. Thus, they are all represented

using the letter B. Row names are displayed running down the left-hand side of the matrix, while

variable names are displayed along the top. The sense of the objective row and each of the constraints

are shown. Spaces stand in for zero coefficients, and single quote marks are inserted to give a grid-like

background.

Note: The PICTURE command is best used on small models. The amount of output generated for

large models can be cumbersome. For larger models, the LINGO|Picture command in

Windows versions of LINGO can compress the matrix picture of large models into a single

screen for easier viewing.

SCENE
The ability to generate the deterministic equivalent (DE) of a stochastic programming (SP) model via

the XDETEQ command can be very useful when initially formulating and debugging an SP model.

The only problem is that the DE can become quite unwieldy for all but the simplest SPs. For example,

if the core model has 500 variables and there are 1,000 scenarios, then the DE will have 500,000

variables. Tracking down problems in such a large model can be difficult. Fortunately, in most cases

when an SP is either infeasible or unbounded, LINGO will report the index of the first scenario that is

causing the problem. With such information, we can focus our attention on the model for the isolated

306 CHAPTER 6

scenario that's causing the problem. This is where the Scenario command comes in it allows us to

generate the formulation for an individual scenario, as opposed to the entire DE, which should

substantially cut down on the burden of our debugging task.

As an example, we will work again with the SPGAS gas buying model. In the following example, we

load the SP model and then use the SCENE command to generate the algebraic formulation of the

second scenario:

: take \lingo\samples\spgas.lng

: scene 2

MODEL:

TITLE Scenario 2;

[_1] MIN = PURCHASE_COST + HOLD_COST;

[_2] PURCHASE_COST - 5 * PURCHASE_1 - 6 * PURCHASE_2 = 0;

[_3] HOLD_COST - INVENTORY_1 - INVENTORY_2 = 0;

[_4] INVENTORY_1 - PURCHASE_1 = - 100;

[_5] - INVENTORY_1 + INVENTORY_2 - PURCHASE_2 = - 150;

END

:

You will note that this is the core model, with the period 2 random variable DEMAND replaced by its

sampled value of 150 in row 5. Nonanticipativity constraints are not generated as part of individual

scenario models.

SHOWNL
The SHOWNL command will cause LINGO to generate the model and then display only those rows

that contain nonlinearities. Please refer to the Types of Constraints section for a discussion of linear

vs. nonlinear expressions.

In general, one would prefer to always have purely linear models. Linear models solve faster and will

always converge to a global solution. Therefore, when developing a model, you will be interested in

carefully evaluating nonlinearities to see if they can either be eliminated or rewritten in a linear

fashion. The SHOWNL command is helpful in tracking down a model's nonlinearities.

COMMAND-LINE COMMANDS 307

STATS
The STATS command lists summary statistics for your model. The statistics vary slightly depending on

whether the model you’re working with is linear or nonlinear. In this next example, we will read in a

linear transportation model, run the STATS command, and explain some of the details of the report.

: take \lingo\samples\tran.lng

: stats

 Rows= 8 Vars= 12 No. integer vars= 0 (all are linear)

 Nonzeros= 43 Constraint nonz= 24(24 are +- 1) Density=0.413

 Smallest and largest elements in abs value= 1.00000 30.0000

 No. < : 3 No. =: 0 No. > : 4, Obj=MIN, GUBs <= 4

 Single cols= 0

The STATS report for linear models consists of five lines.

In line one, we see the number of rows (constraints), variables (columns), and integer variables. The

STATS command lets us know the model is linear by stating that all the variables are linear.

Line two of the report gives a count of the number of nonzero coefficients appearing in the model. The

first count is the number of nonzero coefficients in the entire model. The Constraint nonz count is the

number of coefficients on the left-hand sides of all the constraints, excluding the nonzero objective and

right-hand side coefficients. Next, STATS gives a count of the number of constraint coefficients that

are plus or minus one. In general, a linear programming model is easier to solve when the number of

unity coefficients increases. Finally, STATS reports a Density figure, defined as:

 (total nonzeros) / [(number of rows) * (number of columns + 1)].

For large models, densities under .01 are common. High densities can mean that a problem will take

longer to solve.

Line three lists the smallest and largest coefficients in the model in absolute value. For stability

reasons, the ratio of the largest coefficient to the smallest should, ideally, be close to 1. Also, in

absolute terms, it is best to keep coefficient values in the range of 0.0001 to 100,000. Values outside

this range can cause numerical difficulties for the linear solver.

Line four lists the number of constraints by type (<, =, and >), the sense of the objective, and an upper

bound on the number of Generalized Upper Bound (GUB) constraints. A GUB constraint is a

constraint that does not intersect with the remainder of the model. Given this, the GUB statistic is a

measure of model simplicity. If all the constraints were nonintersecting, the problem could be solved

by inspection by considering each constraint as a separate problem.

Line five lists the number of variables that appear in only one row. Such a variable is effectively a

slack. If you did not explicitly add slack variables to your model and the single column count is greater

than zero, then it suggests a misspelled variable name.

308 CHAPTER 6

In the next example, we read a nonlinear model, DNRISK.LG4, into LINGO and review it’s model

statistics.

: take c:\lingo\samples\dnrisk.lng

: stats

 Rows= 17 Vars= 17 No. integer vars= 0

 Nonlinear rows= 1 Nonlinear vars= 7 Nonlinear constraints= 0

 Nonzeros= 68 Constraint nonz= 52 Density=0.222

 No. < : 0 No. =: 8 No. > : 8, Obj=MIN Single cols= 0

The nonlinear STATS report drops information about the range of coefficient values, the number of

+/-1 coefficients, and the GUB upper bound. A count of the number of nonlinear rows and variables is

added in line two. The nonlinear rows count includes the objective, while the nonlinear constraint

count does not.

XDETEQ
The XDETEQ command displays the explicit deterministic equivalent (DE) for the current model,

assuming the current model is a stochastic program (SP). Viewing the DE can be very helpful in

determining if you have properly set up the SP components of your model. You can refer to Chapter

14, Stochastic Programming, for more information on SP.

When LINGO solves an SP model, it is really solving the deterministic equivalent of the original SP.

The DE contains one instance of the original core model for each scenario, where the random variables

in each instance are replaced by their sampled values for the particular scenario. These core instances

are tied together by a probabilistically weighted objective of all the objectives form the individual

scenarios, plus a set of nonanticipativity constraints. The nonanticipativity constraints enforce the

condition that all scenarios with the same history must implement the same decisions, otherwise, the

DE would have the ability to anticipate future events.

As an example below, we load the SP gas buying sample model, SPGAS, and run the XDETEQ

command:

COMMAND-LINE COMMANDS 309

: take \lingo\samples\spgas.lng

: xdeteq

MODEL:

TITLE _DETEQ;

[_1] MIN = 0.3333333333333333 * PURCHASE_COST_SC1

+ 0.3333333333333333 * HOLD_COST_SC1 + 0.3333333333333333 *

PURCHASE_COST_SC2 + 0.3333333333333333 * HOLD_COST_SC2

+ 0.3333333333333333 * PURCHASE_COST_SC3 +

0.3333333333333333

* HOLD_COST_SC3;

[_2_SC01] PURCHASE_COST_SC1 - 5 * PURCHASE_1_SC1 - 5 *

PURCHASE_2_SC1 = 0;

[_3_SC01] HOLD_COST_SC1 - INVENTORY_1_SC1 -

INVENTORY_2_SC1 = 0;

[_4_SC01] INVENTORY_1_SC1 - PURCHASE_1_SC1 = - 100;

[_5_SC01] - INVENTORY_1_SC1 + INVENTORY_2_SC1 -

PURCHASE_2_SC1 = - 100;

[_2_SC02] PURCHASE_COST_SC2 - 5 * PURCHASE_1_SC2 - 6 *

PURCHASE_2_SC2 = 0;

[_3_SC02] HOLD_COST_SC2 - INVENTORY_1_SC2 -

INVENTORY_2_SC2 = 0;

[_4_SC02] INVENTORY_1_SC2 - PURCHASE_1_SC2 = - 100;

[_5_SC02] - INVENTORY_1_SC2 + INVENTORY_2_SC2 -

PURCHASE_2_SC2 = - 150;

[_2_SC03] PURCHASE_COST_SC3 - 5 * PURCHASE_1_SC3 - 7.5 *

PURCHASE_2_SC3 = 0;

[_3_SC03] HOLD_COST_SC3 - INVENTORY_1_SC3 -

INVENTORY_2_SC3 = 0;

[_4_SC03] INVENTORY_1_SC3 - PURCHASE_1_SC3 = - 100;

[_5_SC03] - INVENTORY_1_SC3 + INVENTORY_2_SC3 -

PURCHASE_2_SC3 = - 180;

[_NAC01] INVENTORY_1_SC1 - INVENTORY_1_SC2 = 0;

[_NAC02] PURCHASE_1_SC1 - PURCHASE_1_SC2 = 0;

[_NAC03] INVENTORY_1_SC1 - INVENTORY_1_SC3 = 0;

[_NAC04] PURCHASE_1_SC1 - PURCHASE_1_SC3 = 0;

END

:

The first row of the DE is the probabilistically weighted objective over the three scenarios (Normal,

Cold and Very Cold). Note that in the original core model, we had a variable called

PURCHASE_COST, which was used to compute the cost of the gas purchases. In the DE we now

have three PURCHASE_COST variables, or one for each of the three scenarios. LINGO appends the

strings _SC1, _SC2 or _SC3 to PUCHASE_COST so as to indicate the appropriate scenario. Each of

the constraints from the core model are also replicated across each of the scenarios with the

appropriate scenario tag appended to each row's name. Finally, at the bottom of the model, there are

four constraints beginning with the string: _NAC, which are the nonanticipativity constraints.

310 CHAPTER 6

It's worthwhile pointing out that this report on DE for SPGAS is a valid LINGO model, too. In fact,

you can copy this report from into a new model file and solve it directly, in which case, you will get

the optimal solution to the original SP model.

4. File Output
The File Output category contains commands that output model and session information to a file.

DIVERT
The DIVERT command opens a file and causes LINGO to route all subsequent reports (e.g.,

SOLUTION, RANGE, and LOOK commands) from the screen to the file. This command captures the

reports in text format in the file you specify. Since the files created by the DIVERT command are in

text format, they may be read into other programs, such as word processors and spreadsheets, or they

may be queued to your printer.

The syntax for the DIVERT command is:

DIVERT filename

where filename is the name of the file you wish to create.

The RVRT command reverses a DIVERT command by closing the DIVERT file and then rerouting

output back to the screen.

In the following example, we create a small model with the MODEL command, solve it with the GO

command, and then use the DIVERT command to create a file containing the formulation and solution:

: !Enter a small model

: MODEL

? MAX = 20*X + 30*Y;

? X <= 50;

? Y <= 60;

? X + 2*Y <= 120;

? END

: !Solve the model

: TERSE

: GO

 Global optimal solution found at step: 1

 Objective value: 2050.000

: !Create a DIVERT file with

: !the formulation & solution

: DIVERT MYFILE.TXT !Opens the file

: LOOK ALL !Sends model to file

: SOLU !Sends solution to file

: RVRT !Closes DIVERT file

:

COMMAND-LINE COMMANDS 311

Opening the DIVERT file created in this example, we find the following file with the formulation and

solution:

 1]MAX = 20*X + 30*Y;

 2]X <= 50;

 3]Y <= 60;

 4]X + 2*Y <= 120;

 Variable Value Reduced Cost

 X 50.00000 0.000000

 Y 35.00000 0.000000

 Row Slack or Surplus Dual Price

 1 2050.000 1.000000

 2 0.000000 5.000000

 3 25.00000 0.000000

 4 0.000000 15.00000

Note 1: Keep in mind that, when a DIVERT command is in effect, you will see little or no output on

your screen. This is because the majority of output is being routed to the DIVERT file rather

than to the screen.

Note 2: Also, be sure you choose a DIVERT filename different from your model filename. If not, you

will overwrite your model file and will be unable to retrieve it!

RVRT
The RVRT command closes an output file opened with the DIVERT command. For an example of its

use, see the DIVERT command immediately above.

SAVE
The SAVE command saves the current model to a file. The syntax is:

SAVE filename

where filename is the name of the file to save your model in. LINGO saves the model in text format.

You can read the model back into LINGO with the TAKE command. We recommend you use an

extension of .LNG on your model files, so you can readily identify them.

You may want to use your own text editor to modify your model. If you do, be sure to save the LINGO

model in text (ASCII) format. Use the TAKE command to reopen the model in LINGO when you are

through editing it.

312 CHAPTER 6

In the following example, we input a small model and save it in the file titled MYMODEL.LNG:

: !Enter a small model

: MODEL

? MAX = 20*X + 30*Y;

? X <= 50;

? Y <= 60;

? X + 2*Y <= 120;

? END

: !Save model to a file

: SAVE MYMODEL.LNG

:

If you open the model file, MYMODEL.LNG, in a text editor, you should see the following:

MODEL:

 1]MAX = 20*X + 30*Y;

 2]X <= 50;

 3]Y <= 60;

 4]X + 2*Y <= 120;

 END

SMPI
The SMPI command saves your model in a special format called Mathematical Programming

Interface (MPI). MPI is a special format developed by LINDO Systems for representing all classes of

mathematical programs linear, integer, and nonlinear. This format is not intended for permanent

storage of your models. LINDO API users may be interested in this format for exporting models to the

LINDO API.

Note 1: At present, LINGO does not read MPI format files. Thus, it is important that you do not use

this format for permanent storage. Use the SAVE command, discussed above, to permanently

save your files for later retrieval.

Note 2: When exporting a stochastic program to MPI format, LINGO will write a total of four SMPI

format files, consisting of the core model, its stochastic declarations and its time structure.

SMPS
The SMPS command generates the underlying algebraic formulation for the current model and then

writes it to a disk file in MPS format. MPS format is a common format for representing linear

programming models. MPS files can be ported to any solver that reads MPS files—this includes most

commercial linear programming packages.

The syntax for the SMPS command is:

SMPS filename

where filename is the name of the file you wish to save the MPS representation of the model under.

COMMAND-LINE COMMANDS 313

In the following example, we input a small model and then save it in an MPS file:

: !Enter a small model

: MODEL

? MAX = 20*X + 30*Y;

? X <= 50;

? Y <= 60;

? X + 2*Y <= 120;

? END

: !Save model to an MPS file

: SMPS MYMODEL.MPS

:

If you open the MPS file created in a text editor, you should find:

NAME LINGO GENERATED MPS FILE(MAX)

ROWS

 N 1

 L 2

 L 3

 L 4

COLUMNS

 Y 1 30.0000000

 Y 3 1.0000000

 Y 4 2.0000000

 X 1 20.0000000

 X 2 1.0000000

 X 4 1.0000000

RHS

 RHS 2 50.0000000

 RHS 3 60.0000000

 RHS 4 120.0000000

ENDATA

Note 1: Your model must be entirely linear to be able to successfully export it using SMPS. If a model

is nonlinear, the MPS file will contain question marks in place of numbers for coefficients of

nonlinear variables.

Note 2: SMPS truncates all variable names to 8 characters. For instance, the two distinct LINGO

names SHIP(WH1, C1) and SHIP(WH1, C2) would both be truncated to the single 8 character

name SHIPWH1C under SMPS . Either choose names to avoid collisions of truncated names

or enable the RCMPSN option for converting names to RC format when doing MPS I/O.

LINGO will print an error message if potential collisions exist.

Note 3: The MPS file format is intended primarily for exporting models to other applications or

platforms. The MPS format is purely scalar in nature—all set-based information is lost upon

converting a LINGO model to MPS format. Thus, when saving copies of a model on your

own machine, you should always use the SAVE command instead of the SMPS command.

314 CHAPTER 6

Note 4: When exporting a stochastic program to MPS format, LINGO will write a total of three

SMPS format files, consisting of the core model, its stochastic declarations and its time

structure.

5. Solution
The Solution category contains commands for viewing a model’s solution.

DEBUG
In the ideal world, all models would return an optimal solution. Unfortunately, this is not the case.

Sooner or later, you are bound to run across either an infeasible or unbounded model. This is

particularly true in the development phase of a project when the model will tend to suffer from

typographical errors.

Tracking down an error in a large model can prove to be a daunting task. The DEBUG command is

useful in narrowing the search for problems in both infeasible and unbounded linear programs. A small

portion of the original model is isolated as the source of the problem. This allows you to focus your

attention on a subsection of the model in search of formulation or data entry errors.

The DEBUG command identifies two types of sets: sufficient and necessary. Removing any sufficient

set object from the model is sufficient to fix the entire model. Not all models will have a sufficient set.

In which case, they will have a necessary set with the property that removing any object from this set

fixes the remaining objects within that set.

As an example, suppose you have an infeasible model. If the complete model would be feasible except

for a bug in a single row, that row will be listed as part of the sufficient set. If the model has a

necessary set, then, as long as all of them are present, the model will remain infeasible.

COMMAND-LINE COMMANDS 315

The following example illustrates. The coefficient .55 in ROW4 should have been 5.5:

: look all

MODEL:

 1][ROW1] Max = 3*X + 7*Y;

 2][ROW2] X + 2*Y <= 3;

 3][ROW3] 2*X + Y <= 2;

 4][ROW4] 0.55*X + Y >=4;

END

When we attempt to solve this formulation, we get the following error:

: go

 [Error Code: 81]

 No feasible solution found.

 Variable Value Reduced Cost

 X 50.00000 0.000000

 Y -23.50000 0.000000

 Row Slack or Surplus Dual Price

 ROW1 0.000000 -1.000000

 ROW2 0.000000 8.500000

 ROW3 -74.50000 0.000000

 ROW4 0.000000 -10.00000

Next, if we run the DEBUG command, we are presented with the following report:

: debug

 Sufficient Rows:

 ROW4] .55 X + Y >= 4

 Necessary Rows:

 ROW2] X + 2 Y <= 3

 Necessary Variable Bounds:

 Y >= 0

The DEBUG command has correctly identified that the erroneous ROW4, when eliminated, is

sufficient to make the entire model feasible.

The debug feature operates in a similar manner for unbounded models. In the following example, we

introduced an error by placing a minus sign instead of a plus sign in front of variable Z3 in ROW3. A

look at ROW3 reveals that Z3 can be increased indefinitely, leading to an unbounded objective.

316 CHAPTER 6

: look all

 MODEL:

 1][ROW1] Max = 12*X1 + 13*X2 + 22*Y1 + 23*Z1 +

 2] 28*Z2 + X3 + Y3 + Z3;

 3][ROW2] X1 + X2 + X3 <= 400;

 4][ROW3] Y1 + Y2 + Y3 - Z3 <= 500;

 5][ROW4] Z1 + Z2 <= 500;

 END

The resulting model is unbounded and, when issuing the LINGO|Solve command, we receive the

unbounded error message:

: go

 [Error Code: 82]

 Unbounded solution.

Issuing the DEBUG command, we receive the following breakdown:

: debug

 Sufficient Variables:

 Z3

 Necessary Variables:

 Y1

The DEBUG command has successfully determined that bounding Z3 is sufficient to bound the entire

model.

Typically, the DEBUG command helps to substantially reduce the search effort. The first version of

this feature was implemented in response to a user who had an infeasible model. The user had spent a

day searching for a bug in a model with 400 constraints. The debug feature quickly found a necessary

set with 55 constraints, as well as one sufficient set constraint. The user immediately noticed that the

right-hand side of the sufficient set constraint was incorrect.

GO
The GO command compiles and then solves the current model. When LINGO compiles the model, it

produces an internally executable version of the model and then runs it to produce the solution.

When LINGO finishes solving the model, it displays a full solution report on your screen. To suppress

the full solution report, issue the TERSE command before the GO command.

COMMAND-LINE COMMANDS 317

To capture the solution report generated by the GO command in a file, use the DIVERT command

before the GO command.

To set various parameters pertaining to the operation of LINGO’s solver, see the SET command later

in this chapter.

NONZ
The NONZ, or NONZEROS, command displays an abbreviated version of the solution for the current

model. NONZ is identical to the SOLUTION command with the exception that NONZ displays

information only about nonzero variables and binding rows (i.e., the slack or surplus is 0).

The syntax of the NONZ command is:

NONZ ['header_text'] [var_or_row_names]

For a standard NONZ solution report, omit the two optional arguments and enter the NONZ command

by itself. LINGO will print primal and dual values for all nonzero variables and binding rows. LINGO

will label all the columns in the report.

The first optional field, header_text, will be displayed as a title header in the solution report. If the

header_text argument is included, LINGO prints primal values only, omitting all labels in the report.

The second optional field, var_or_row_names, is a variable and/or row name list that, if included, will

limit the report to the given variables or rows. The standard wild card characters (* and %) are

supported in the variable and row names.

As an example, in the following session, we load the Chess Snackfoods example from the Using Sets

section and then generate several solution reports using NONZ:

318 CHAPTER 6

: TAKE CHESS.LNG
: TERSE

: GO

 Global optimal solution found at step: 0

 Objective value: 2692.308

: !Generate a standard NONZ report

: NONZ

 Variable Value Reduced Cost

 SUPPLY(PEANUTS) 750.0000 0.000000

 SUPPLY(CASHEWS) 250.0000 0.000000

 PRICE(PAWN) 2.000000 0.000000

 PRICE(KNIGHT) 3.000000 0.000000

 PRICE(BISHOP) 4.000000 0.000000

 PRICE(KING) 5.000000 0.000000

 PRODUCE(PAWN) 769.2308 0.000000

 PRODUCE(KING) 230.7692 0.000000

 FORMULA(PEANUTS, PAWN) 15.00000 0.000000

 FORMULA(PEANUTS, KNIGHT) 10.00000 0.000000

 FORMULA(PEANUTS, BISHOP) 6.000000 0.000000

 FORMULA(PEANUTS, KING) 2.000000 0.000000

 FORMULA(CASHEWS, PAWN) 1.000000 0.000000

 FORMULA(CASHEWS, KNIGHT) 6.000000 0.000000

 FORMULA(CASHEWS, BISHOP) 10.00000 0.000000

 FORMULA(CASHEWS, KING) 14.00000 0.000000

 Row Slack or Surplus Dual Price

 1 2692.308 1.000000

 2 0.000000 1.769231

 3 0.000000 5.461538

: !Generate a NONZ report for PRODUCE

: NONZ PRODUCE

 Variable Value Reduced Cost

 PRODUCE(PAWN) 769.2308 0.000000

 PRODUCE(KING) 230.7692 0.000000

: !Now add a header and use a wildcard in the name

: NONZ 'NONZERO PRODUCTION VALUES:' PROD*

 NONZERO PRODUCTION VALUES:

 769.2308

 230.7692

If you would like to capture the solution report in a file, use the DIVERT command before the NONZ

command.

For more information on the interpretation of the various fields in the NONZEROS report, see Getting

Started with LINGO.

COMMAND-LINE COMMANDS 319

Note: If the solution report is scrolling off the screen, you can use the PAGEcommand to set the

page length to n lines, so LINGO will pause every time n lines are printed and wait until you

are ready to proceed with the next page.

RANGE
Use the RANGE command to generate a range report for the model in the active window. A range

report shows over what ranges you can: 1) change a coefficient in the objective without causing any of

the optimal values of the decision variables to change, or 2) change a row’s constant term (also

referred to as the right-hand side coefficient) without causing any of the optimal values of the dual

prices or reduced costs to change.

Note: The solver computes range values when you solve a model. Range computations must be

enabled in order for the solver to compute range values. Range computations are not enabled

by default, so you will need to switch them on with the command:

 SET DUALCO 2

 Range computations can take a fair amount of computation time. If speed is a concern, you

don’t want to enable range computations unnecessarily.

The example model below, when solved, yields the range report that follows:

[OBJECTIVE] MAX = 20 * A + 30 * C;

[ALIM] A <= 60;

[CLIM] C <= 50;

[JOINT] A + 2 * C <= 120;

Here is the range report:

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 A 20.00000 INFINITY 5.000000

 C 30.00000 10.00000 30.00000

 Right-hand side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 ALIM 60.00000 60.00000 40.00000

 CLIM 50.00000 INFINITY 20.00000

 JOINT 120.0000 40.00000 60.00000

320 CHAPTER 6

The first section of the report is titled Objective Coefficient Ranges. In the first column, Variable, all

the optimizable variables are listed by name. The next column, Current Coefficient, lists the current

coefficient of the variable in the objective row. The third column, Allowable Increase, tells us the

amount that we could increase the objective coefficient without changing the optimal values for the

variables. The final column, Allowable Decrease, lists the amount that the objective coefficient of the

variable could decrease before the optimal values of the variables would change. Information on the

allowable increases and decreases on objective coefficients can be useful when you need answers to

questions like, “How much more (less) profitable must this activity be before we should be willing to

do more (less) of it?”

Referring to the Objective Coefficient Ranges report for our example, we can say, as long as the

objective coefficient of A is greater-than-or-equal-to 15, the optimal values of the variables will not

change. The same may be said for the objective coefficient of variable C, as long as it falls within the

range of [0-40].

Note: Ranges are valid only if you are planning to alter a single objective or right-hand side

coefficient. The range information provided by LINGO cannot be applied in situations where

one is simultaneously varying two or more coefficients. Furthermore, ranges are only lower

bounds on the amount of change required in a coefficient to actually force a change in the

optimal solution. You can change a coefficient by any amount up to the amount that is

indicated in the range report without causing a change in the optimal solution. Whether the

optimal solution will actually change if you exceed the allowable limit is not certain.

The second section of the range report is titled Right-hand side Ranges. The first column, Row, lists

the names of all the optimizable rows, or constraints, in the model. The second column, Current RHS,

gives the constant term, or right-hand side value, for the row. The next two columns, Allowable

Increase and Allowable Decrease, tell us how far we can either increase or decrease the right-hand

side coefficient of the row without causing a change in the optimal values of the dual prices or reduced

costs. If you recall, the dual prices on rows are, effectively, shadow prices, which tell us at what price

we should be willing to buy (or sell) our resources for. The dual prices do not, however, tell us what

quantity we should be willing to buy (or sell) at the dual price. This information is obtained from the

allowable increases and decreases on the right-hand side coefficients for the row. So, for our example,

the dual prices and reduced costs will remain constant as long as the right-hand side of row ALIM falls

within the range [20-120], the right-hand side of CLIM is greater-than-or-equal-to 30, and the

right-hand side of JOINT is in [60-160].

Note: We preceded all the rows in our model with a name enclosed in square brackets. This is an

important practice if you wish to generate range reports. If you do not name your rows,

LINGO assigns them a name that corresponds to the internal index of the row. This internal

index will not always correspond to the order of the row in the text of the original model. To

make the Right-hand side Ranges section of range reports meaningful, be sure to name all

your rows. For details on assigning names to rows, see page 38.

If a variable is nonlinear in the objective, its value in the Current Coefficient column will be displayed

as NONLINEAR. Similarly, if a row is nonlinear, the value in the Current RHS column will be

displayed as NONLINEAR.

Coefficients that can be increased or decreased indefinitely will display a range of INFINITY.

COMMAND-LINE COMMANDS 321

Fixed variables are substituted out of a model and will not appear in a range report. Rows that contain

only fixed variables are also substituted out of models and will not appear in range reports. As an

example, suppose we changed the following inequality in our sample model from:

[ALIM] A <= 60;

to the equality:

[ALIM] A = 60;

LINGO can now solve directly for the value of A. The variable A is considered fixed; as is the row

ALIM (since it contains no optimizable variables). Given this, the variable A will no longer appear in

the Objective Coefficient Ranges section of the range report, and the row ALIM will not appear in the

Right-hand Side Ranges section. We can verify this by examining the updated range report:

Ranges in which the basis is unchanged:

 Objective Coefficient Ranges

 Current Allowable Allowable

Variable Coefficient Increase Decrease

 C 30.00000 INFINITY 30.00000

 Right-hand Side Ranges

 Row Current Allowable Allowable

 RHS Increase Decrease

 CLIM 50.00000 INFINITY 20.00000

 JOINT 60.00000 40.00000 60.00000

As a final note, if the range report is scrolling off the screen, you can use the PAGE n command to set

the page length to n lines, so LINGO will pause every time n lines are printed and wait until you are

ready to proceed with the next page. In addition, if you would like to capture the solution report in a

file, use the DIVERT command before the SOLU command.

SOLU
The SOLU, or SOLUTION, command displays a solution report for the current model. The syntax of

the SOLU command is:

SOLU ['header_text'] [var_or_row_names]

For a standard solution report, omit the two optional arguments and enter the SOLU command by

itself. LINGO will print primal and dual values for all the variables and rows in the model. LINGO

will label all the columns in the report.

The first optional field, header_text, will be displayed as a title header in the solution report. If the

header_text argument is included, LINGO prints primal values only, omitting all labels in the report.

The second optional field, var_or_row_names, is a variable and/or row name list that, if included, will

limit the report to the given variable or row name. The standard wild card characters (* and %) are

supported in the variable and row names.

As an example, in the following session, we load the Chess Snackfoods example from the Using Sets

section and then generate several solution reports using SOLU:

322 CHAPTER 6

: TAKE CHESS.LNG
: TERSE

: GO

 Global optimal solution found at step: 0

 Objective value: 2692.308

: !Generate a standard SOLU report

: SOLU

 Variable Value Reduced Cost

 SUPPLY(PEANUTS) 750.0000 0.0000000

 SUPPLY(CASHEWS) 250.0000 0.0000000

 PRICE(PAWN) 2.000000 0.0000000

 PRICE(KNIGHT) 3.000000 0.0000000

 PRICE(BISHOP) 4.000000 0.0000000

 PRICE(KING) 5.000000 0.0000000

 PRODUCE(PAWN) 769.2308 0.0000000

 PRODUCE(KNIGHT) 0.000000 0.1538461

 PRODUCE(BISHOP) 0.000000 0.7692297E-01

 PRODUCE(KING) 230.7692 0.0000000

 FORMULA(PEANUTS, PAWN) 15.00000 0.0000000

 FORMULA(PEANUTS, KNIGHT) 10.00000 0.0000000

 FORMULA(PEANUTS, BISHOP) 6.000000 0.0000000

 FORMULA(PEANUTS, KING) 2.000000 0.0000000

 FORMULA(CASHEWS, PAWN) 1.000000 0.0000000

 FORMULA(CASHEWS, KNIGHT) 6.000000 0.0000000

 FORMULA(CASHEWS, BISHOP) 10.00000 0.0000000

 FORMULA(CASHEWS, KING) 14.00000 0.0000000

 Row Slack or Surplus Dual Price

 1 2692.308 1.000000

 2 0.000000 1.769231

 3 0.000000 5.461538

: !Generate a SOLU report for PRODUCE

: SOLU PRODUCE

 Variable Value Reduced Cost

 PRODUCE(PAWN) 769.2308 0.0000000

 PRODUCE(KNIGHT) 0.000000 0.1538461

 PRODUCE(BISHOP) 0.000000 0.7692297E-01

 PRODUCE(KING) 230.7692 0.0000000

: !Now add a header and use a wildcard

: SOLU 'PRODUCTION QUANTITIES' PROD*

 PRODUCTION QUANTITIES

 769.2308

 0.000000

 0.000000

 230.7692

COMMAND-LINE COMMANDS 323

If you would like to capture the solution report in a file, use the DIVERT command before the SOLU

command.

For more information on the interpretation of the various fields in the solution report, see Getting

Started with LINGO.

If the solution report is scrolling off the screen, you can use the PAGE command to set the page length

to n lines, so LINGO will pause every time n lines are printed and wait until you are ready to proceed

with the next page.

6. Problem Editing
The Problem Editing category contains commands used in editing and modifying models.

ALTER
The ALTER command is used to edit the current model. The syntax of ALTER is:

ALTER [line_number|line_range|ALL] 'old_string'new_string'

where,

line_number is the index of a single line to edit,

line_range is a range of lines to edit,

ALL means edit all the lines in the model,

old_string is the old string to search for and replace, and

new_string is the string to replace all occurrences of old_string with in the

specified line range.

324 CHAPTER 6

In the following sample session, we read in a small knapsack model and perform two ALTER

commands to modify the model:

: TAKE ALTER.LNG

: LOOK ALL

 1]SETS:

 2] THINGS /1..4/: VALUE, WEIGHT, X;

 3]ENDSETS

 4]DATA:

 5] VALUE = 8 6 4 3;

 6] WEIGHT = 66 44 35 24;

 7]ENDDATA

 8] MAX = @SUM(THINGS: VALUE * X);

 9] @SUM(THINGS: WEIGHT * X) >= 100;

 10] @FOR(THINGS: @BIN(X));

: !Change the direction of the constraint

: ALTER 9 '>='<='

 9] @SUM(THINGS: WEIGHT * X) <= 100;

: !Change 'THINGS' to 'ITEMS' in ALL rows

: ALTER ALL 'THINGS'ITEMS'

 2] ITEMS /1..4/: VALUE, WEIGHT, X;

 8] MAX = @SUM(ITEMS: VALUE * X);

 9] @SUM(ITEMS: WEIGHT * X) <= 100;

 10] @FOR(ITEMS: @BIN(X));

: LOOK ALL

 1]SETS:

 2] ITEMS /1..4/: VALUE, WEIGHT, X;

 3]ENDSETS

 4]DATA:

 5] VALUE = 8 6 4 3;

 6] WEIGHT = 66 44 35 24;

 7]ENDDATA

 8] MAX = @SUM(ITEMS: VALUE * X);

 9] @SUM(ITEMS: WEIGHT * X) <= 100;

 10] @FOR(ITEMS: @BIN(X));

:

Note: In addition to the single quote character ('), LINGO also allows the use of the double quote

character (") for delimiting the text fields of the ALTER command.

COMMAND-LINE COMMANDS 325

DELETE
The DELETE command is used to delete one or more lines of text from the current model. The syntax

of DELETE is:

DELETE [line_number|line_range|ALL]

where,

line_number is the index of a single line to delete,

line_range is a range of lines to delete, and

ALL means delete the entire model.

Some examples of the DELETE command follow:

Example 1: DELETE 3

deletes line 3 of the model,

Example 2: DEL 2 10

deletes lines 2 through 10 of the model, and

Example 3: DEL ALL

deletes the entire model.

EXTEND
The EXTEND command allows you to append lines to the current model. It puts LINGO in model

input mode just after the last line of the current model. When you use the EXTEND command, you’ll

see LINGO’s question mark prompt. Start entering your new lines of model text. When you’re done,

enter END at the prompt.

In the following sample session, we use the EXTEND command to append an additional constraint to a

small model:

: LOOK ALL

 1]MAX 20*X + 30*Y;

 2]X <= 50;

 3]Y <= 60;

 4]X + 2*Y <=120;

: ! Use EXTEND to add another line

: EXTEND

? X >= 30;

? END

: LOOK ALL

 1]MAX 20*X + 30*Y;

 2]X <= 50;

 3]Y <= 60;

 4]X + 2*Y <=120;

 5]X >= 30;

:

326 CHAPTER 6

7. Conversational Parameters
The Conversational Parameters category contains commands that control how information is

displayed.

PAGE
The PAGE command sets the length of the page or screen size in lines. The syntax for PAGE is:

PAGE n

where n is the desired number of lines per page of output. For instance, PAGE 25 will cause the

display to pause after 25 lines and await a carriage return before displaying the next 25 lines. The

PAGE command is convenient when you wish to page through long reports and not have them scroll

off the top of the screen.

When 0 is entered as the argument to PAGE, paging is turned off entirely. LINGO will no longer stop

output to wait for a carriage return. Entering PAGE 0 at the top of any command script is helpful in

that you generally want command scripts to run uninterrupted.

The PAGE command is equivalent to the SET LENPAG command and is maintained for backward

compatibility

PAUSE
The PAUSE command causes screen display to pause until a carriage return is typed. If you enter text

on the same line as the PAUSE command, the text will be displayed. The PAUSE command is useful in

command scripts for conveying information to the user.

TERSE
The TERSE command causes LINGO to suppress the automatic display of a solution report after a

model is solved with the GO command. When TERSE is enabled, you will need to use the NONZ or

SOLU commands to view the solution.

When LINGO is in terse output mode, export summary reports are also suppressed. Export summary

reports are normally generated each time you export solutions to spreadsheets or databases.

Once you enter the TERSE command, LINGO stays in terse output mode until you enter the VERBOSE

command (see below).

The TERSE command is equivalent to the SET TERSEO 1 command and is maintained for backward

compatibility.

VERBOSE
The VERBOSE command undoes the effects of the TERSE command, and places LINGO in verbose

output mode. Verbose output mode is the default mode. It results in the automatic display of solution

reports after solving a model. Verbose output mode also results in the automatic display of export

summary reports whenever export operations are performed to spreadsheets and databases.

COMMAND-LINE COMMANDS 327

The VERBOSE command is equivalent to the SET TERSEO 0 command and is maintained for

backward compatibility.

WIDTH
Use the WIDTH command to set the terminal width for input and output. The syntax of the WIDTH

command is:

WIDTH n

where n is the desired terminal width. You may set the width between 64 and 200. The default is 76.

When LINGO generates reports, it limits output lines to the terminal width length. In some reports,

lines will be wrapped, so they fall within the line limit. In other reports, lines may be truncated. Since

LINGO concatenates variable names in performing set operations, a variable name, such as

SHIPMENTS(WAREHOUSE1, CUSTOMER2), may result, which may be truncated in a solution report

if too narrow a terminal width is used.

The WIDTH command is equivalent to the SET LINLEN command and is maintained for backward

compatibility.

8. Tolerances
The Tolerances category contains commands for setting system parameters in LINGO.

APISET
The APISET command gives you access to all the parameters in the LINDO API, which is the solver

library used by LINGO. LINGO allows access to most of the important solver parameters through the

SET command and, under Windows, via the LINGO|Options command. However, some of the more

advanced parameters may only be accessed through the APISET command. The syntax for this

command is:

 APISET param_id {int|double} param_value

where param_id is the parameter’s index and param_value is the value you wish to set the parameter

to. You will also need to indicate if the parameter is an integer or double precision quantity.

Some examples of the APISET command follow:

Example 1: APISET 341 INT 10000

 sets the MIP branch limit (LS_IPARAM_MIP_BRANCH_LIMIT=341) to 10000,

Example 2: HELP APISET

 will cause LINGO to display all current APISET settings, and

Example 3: APISET DEFAULT

 removes all custom LINDO API settings, returning to the defaults.

You will need to refer to the LINDO API documentation for a list of available parameters and their

indices. The LINDO API documentation is available at no charge as part of the LINDO API download

on the LINDO Systems Web site. The LINGO installation also comes with a macro definition file,

Lindo.h, which contains all the parameter indices for the LINDO API.

328 CHAPTER 6

Parameter values set with the APISET command are not stored from one LINGO session to the next.

Give the HELP APISET command for a listing of parameters that are currently active. To remove all

APISET parameter settings type the command: APISET DEFAULT.

If there are some LINDO API parameters you wish to permanently set, you may place a series of

APISET commands in an AUTOLG.DAT script file that automatically gets run at the start of each

LINGO session.

DBPWD
The DBPWD command is used to input a password for accessing databases via the @ODBC()

function. Any password input with this command will not be permanently stored. Therefore, at the

start of each session, you will need to reenter your database password. The syntax for the command is:

DBPWD my_password

See the DBUID command below for entering any user id required by your database.

DBUID
The DBUID command is used to input a user id for accessing databases via the @ODBC() function.

Any user id input with this command will not be permanently stored. Therefore, at the start of each

session, you will need to reenter your database user id. The syntax for the command is:

DBUID my_user_id

See the DBPWD command above for entering any password required with your user id.

FREEZE
The FREEZE command saves your current configuration to LINGO’s configuration file, so it may be

automatically restored the next time LINGO starts. Any non-default features of the current

configuration are saved to the LINGO.CNF file in LINGO’s main directory. The LINGO.CNF

configuration file is a text file, and the curious user may examine it by simply opening it in a text

editor. All parameters controlled by the SET command, see below, are stored by the FREEZE

command.

Note: Be careful when saving a non-default configuration. The saved configuration will

automatically be restored next time you start LINGO. Settings of certain parameters will

affect the way models are solved, potentially leading to misleading results when used on a

different set of models. To restore the default configuration, use the following command

sequence:

 : SET DEFAULT

 : FREEZE

COMMAND-LINE COMMANDS 329

SET
The SET command allows you to override LINGO’s default tolerances and settings. All user

configurable options in LINGO are available through the SET command. The syntax for the SET

command is:

SET parameter_name|parameter_index [parameter_value]

where,

parameter_name is the name of the parameter to set,

parameter_index is the index of the parameter to set, and

parameter_value is the new value for the parameter that, if omitted, will cause

LINGO to display the current value for the specified

parameter.

Use the FREEZE command, see above, to save any tolerances modified with the SET command to the

configuration file, so they will be automatically restored the next time LINGO starts. You may also

enter SET DEFAULT to return all parameters to their default values.

Some examples of the SET command follow:

Example 1: SET MXMEMB 128

 FREEZE

 sets the generator memory limit to 128MB and saves parameter settings to

 the configuration file,

Example 2: SET 5 1.E-7

 sets the relative integrality tolerance (RELINT) to 1.e-7,

Example 3: SET DEFAULT

 restores all parameters to their default values, and

Example 4: HELP SET

 causes LINGO to display all parameter settings.

The parameters accessible through the SET command are:

No. Name Default Description

1 ILFTOL 0.3e-5 Initial linear feasibility tolerance

2 FLFTOL 0.1e-6 Final linear feasibility tolerance

3 INFTOL 0.1e-2 Initial nonlinear feasibility tolerance

4 FNFTOL 0.1e-5 Final nonlinear feasibility tolerance

5 RELINT 0.8e-5 Relative integrality tolerance

6 NOPTOL 0.1e-6 NLP optimality tolerance

7 ITRSLW 5 Iteration limit for slow progress

8 DERCMP 0 Derivatives (0:LINGO chooses, 1:backward analytical,

2:forward analytical, 3:central differences, 4:forward

differences)

9 ITRLIM 0 Iteration limit (0:no limit)

10 TIMLIM 0 Solver time limit in seconds (0:no limit)

11 OBJCTS 0 Objective cuts (1:yes, 0:no)

330 CHAPTER 6

12 MXMEMB 32 Memory limit in megabytes for LINGO’s model generator

(N/A on some machines)

13 CUTAPP 2 Cuts application (0:root, 1:all, 2:solver chooses)

14 ABSINT .000001 Absolute integrality tolerance

15 HEURIS 3 IP heuristics (0:none, 100:advanced)

16 HURDLE 0 Use an IP hurdle value (1:yes, 0:no)

17 IPTOLA 0 IP absolute optimality tolerance

18 IPTOLR .1e-4 IP relative optimality tolerance

19 TIM2RL 100 Seconds before switching to IP relative optimality tolerance

20 NODESL 0 0:LINGO decides, 1:depth first, 2:worst bound, 3:best bound

21 LENPAG 0 Terminal page length limit (0:none)

22 LINLEN 85 Terminal page width (0:none)

23 TERSEO 0 Output level (0:verbose, 1:terse, 2:errors only, 3:no output)

24 STAWIN 1 Post status window (1:yes, 0:no, Windows only)

25 SPLASH 1 Display splash screen (1:yes, 0:no, Windows only)

26 OROUTE 0 Route output to command window (1:yes, 0:no, Windows

only)

27 WNLINE 800 Max command window lines (Windows only)

28 WNTRIM 400 Min command window lines (Windows only)

29 STABAR 1 Display status bar (1:yes, 0:no, Windows only)

30 FILFMT 1 File format (0:lng, 1:lg4, 2:ltx, Windows only)

31 TOOLBR 1 Display toolbar (1:yes, 0:no, Windows only)

32 CHKDUP 0 Check for duplicate model names in data (1:yes, 0:no)

33 ECHOIN 0 Echo command input to terminal (1:yes, 0:no)

34 ERRDLG 1 Route error messages to a dialog box (1:yes, 0:no, Windows

only)

35 USEPNM 0 Allow for unrestricted use of primitive set names (1:yes, 0:no)

36 NSTEEP 0 Use steepest edge variable selection in nonlinear solver (1:yes,

0:no)

37 NCRASH 0 Run crash procedure to get an initial starting point in nonlinear

models (1:yes, 0:no)

38 NSLPDR 0 Compute search directions in nonlinear solver using successive

linear programming (1:yes, 0:no)

39 SELCON 0 Use selective constraint evaluation in nonlinear solver (1:yes,

0:no)

40 PRBLVL 0 Specify probing level on MILPs (0:LINGO chooses, 1:none,

7:high)

41 SOLVEL 0 Specify linear solver (0:LINGO chooses, 1:primal, 2:dual,

3:barrier)

42 REDUCE 2 Perform model reduction (2:LINGO chooses, 1:yes, 0:no)

43 SCALEM 1 Scale the model (1:yes, 0:no)

44 PRIMPR 0 Select primal pricing method (0:LINGO chooses, 1:partial,

2:devex)

45 DUALPR 0 Select dual pricing method (0:LINGO chooses, 1:Dantzig,

COMMAND-LINE COMMANDS 331

2:steepest edge)

46 DUALCO 1 Specify dual computations (0:none, 1:prices only, 2:prices and

ranges, 3:prices only on optimizable rows)

47 RCMPSN 0 Use RC format names for MPS I/O (1:yes, 0:no)

48 MREGEN 2 Select model regeneration (0:only on modifications to model,

1:same as 0 plus whenever model has external references,

2:always)

49 BRANDR 0 Select branch direction (0:both, 1:up, 2:down)

50 BRANPR 0 Select branch priority (0:LINGO decides, 1:binary)

51 CUTOFF .1e-8 Cutoff solution values smaller than this

52 STRONG 10 Specify strong branch level

53 REOPTB 0 IP warm start LP (0:LINGO, 1: primal, 2:dual, 3:barrier)

54 REOPTX 0 IP cold start LP (0:LINGO, 1: primal, 2:dual, 3:barrier)

55 MAXCTP 100 Max top cuts passes

56 RCTLIM .75 Relative cuts limit

57 GUBCTS 1 GUB cuts (1:yes, 0:no)

58 FLWCTS 1 Flow cuts (1:yes, 0:no)

59 LFTCTS 1 Lift cuts (1:yes, 0:no)

60 PLOCTS 1 Plant location cuts (1:yes, 0:no)

61 DISCTS 1 Disaggregation cuts (1:yes, 0:no)

62 KNPCTS 1 Knapsack cover cuts (1:yes, 0:no)

63 LATCTS 1 Lattice cuts (1:yes, 0:no)

64 GOMCTS 1 Gomory cuts (1:yes, 0:no)

65 COFCTS 1 Coefficient reduction cuts (1:yes, 0:no)

66 GCDCTS 1 Greatest common divisor cuts (1:yes, 0:no)

67 SCLRLM 1,000 Syntax coloring line limit (Windows only)

68 SCLRDL 0 Syntax coloring delay in seconds (Windows only)

69 PRNCLR 1 Matching parenthesis coloring (1:yes, 0:no, Windows only)

70 MULTIS 0 NLP multistart attempts (0:LINGO, n:number of attempts)

71 USEQPR 0 Use quadratic recognition (1:yes, 0:no)

72 GLOBAL 0 Use global solver on NLPs (1:yes, 0:no)

73 LNRISE 0 Linearization (0:LINGO, 1:none, 2:low, 3:high)

74 LNBIGM 100,000 Linearization BigM coefficient

75 LNDLTA .1e-5 Linearization Delta coefficient

76 BASCTS 1 Basis cuts (1:yes, 0:no)

77 MAXCTR 2 Max tree cuts passes

78 HUMNTM 0 Minimum heuristic time limit (seconds)

79 DECOMP 0 Matrix decomposition (1:yes, 0:no)

80 GLBOPT .1e-4 Global solver optimality tolerance

81 GLBDLT .1e-6 Global solver delta tolerance

82 GLBVBD .1e+11 Global solver variable bound limit

83 GLBUBD 2 Global solver bound use (0:no, 1:all, 2:some)

84 GLBBRN 5 Global solver branch selection (see below)

85 GLBBXS 1 Global solver box selection (0:depth first, 1:worst bound)

332 CHAPTER 6

86 GLBREF 3 Global solver reformulation level (0:none, 3:high)

87 SUBOUT 2 Fixed variable reduction (0:none, 1:max, 2:not when using

global or multistart solvers, 3:linear variables only)

88 NLPVER N/A No longer supported

89 DBGCLD 0 Debugging cold start solver (0:LINGO, 1:primal, 2:dual,

3:barrier)

90 DBGWRM 0 Debug warm start solver (0:LINGO, 1:primal, 2:dual,

3:barrier)

91 LCRASH 0 Use aggressive crashing for NLPs (0:no, 1:yes)

92 BCROSS 1 Perform a basis crossover on LPs when using barrier solver

(0:no, 1:yes)

93 LOWMEM 0 Opt for less memory usage (0:no, 1:yes)

94 FILOUT 0 Fill out workbook output ranges (0:no, 1:yes)

95 DBGLVL 15 Debugger output level (1:low, 15:high)

96 UNARYM 1 Unary minus priority (0:low, 1:high)

97 LINEAR 0 Assume model is linear to reduce memory consumption(0:no,

1:yes)

98 LOPTOL .1e-6 Linear optimality tolerance

99 SECORD 0 Use second order derivatives for NLPs (0:no, 1:yes)

100 NONNEF 1 Variables default to being non-negative (0:no, 1:yes)

101 BIGMVL 1.e8 BigM coefficient threshold value

102 KILLSC 0 Kill scripts on interrupts (0:no, 1:yes)

103 TATSLV 0 @SOLVE time limit in seconds

104 KBESTS 1 Number of K-Best MIP solutions to generate

105 LCORES 1 Number of concurrent LP solvers to run

106 LCORE1 1 LP Solver in Core 1 (1:prm1,2:dual,3:barrier,4:prim2)

107 LCORE2 2 LP Solver in Core 2

108 LCORE3 3 LP Solver in Core 3

109 LCORE4 4 LP Solver in Core 4

110 SCALEW 1.e12 Scaling warning threshold

111 REFRAQ 0 Basis refactor frequency (0:LINGO chooses, iteration count)

112 SPSMSZ 2 Default SP sample size per stage

113 SPSCON 1 Apply SP sampling to continuous random variables only (0:no,

1:yes)

114 SPSEED 1,031 SP sampling random number seed

115 SPMTHD 0 SP solution method (0:LINGO chooses, 1:deterministic

equivalent, 2:nested Benders, 3:augmented Lagrangian)

116 SPXVAL 1 Calculate all SP expected value statistics (0:no, 1:yes)

117 SPMAXS 40,000 Max scenarios allowed in an SP before auto sampling takes

effect

118 PRECIS 7 Precision in digits for standard solution reports

119 LOOPOP 0 Perform loop optimization during model compiles (0:no, 1:yes)

120 HEUCUT 0 Heuristics cutoff criterion (0:LINGO chooses, 1:time,

2:iterations)

COMMAND-LINE COMMANDS 333

121 NUMBIN 0 The NUMBIN parameter determines the number of bins used in

histogram charts. Set this parameter to 0 to have LINGO

automatically determine a sensible bin count.

The default setting for NUMBIN is 0.

122 SPBIGM 1.E8 Stochastic solver Big M coefficient.

123 NSLPSV 0 Use SLP solver for nonlinear models (0:no, 1:yes)

124 FORCEB 0 Enforce variable bounds in calc and data sections (0:no, 1:yes)

125 NTHRDS

1 Max number of executions threads (0:use all cores, 1:single-

threaded, N>1:use up to N threads

126 MTMODE

0 Multithreading mode (0:LINGO chooses, 1:prefer parallel,

2:parallel exclusively, 3:prefer concurrent, 4:concurrent

exclusively)

127 BNPBLK 2 Branch-and-price (BNP) blocks (0:use row names, 1:user

specified, 2:off, >2:max number of blocks)

128 BNPHEU 1 BNP block-finding heuristic (1:GP1, 2:GP2)

129 REPROD 0 Favor reproducibility over speed (0:no, 1:yes)

1. ILFTOL and 2. FLFTOL

Due to the finite precision available for floating point operations on digital computers, LINGO can’t

always satisfy each constraint exactly. Given this, LINGO uses these two tolerances as limits on the

amount of violation allowed on a constraint while still considering it “satisfied”. These two tolerances

are referred to as the initial linear feasibility tolerance (ILFTOL) and the final linear feasibility

tolerance (FLFTOL). The default values for these tolerances are, respectively, 0.000003 and

0.0000001.

ILFTOL is used when the solver first begins iterating. ILFTOL should be greater than FLFTOL. In the

early stages of the solution process, being less concerned with accuracy can boost the performance of

the solver. When LINGO thinks it has an optimal solution, it switches to the more restrictive FLFTOL.

At this stage in the solution process, one wants a relatively high degree of accuracy. Thus, FLFTOL

should be smaller than ILFTOL.

One instance where these tolerances can be of use is when LINGO returns a solution that is almost, but

not quite, feasible. You can verify this by checking the values in the Slack or Surplus column in the

model’s solution report. If there are only a few rows with small, negative values in this column, then

you have a solution that is close to being feasible. Loosening (i.e., increasing the values of) ILFTOL

and FLFTOL may help you get a feasible solution. This is particularly true in a model where scaling is

poor (i.e., very large and very small coefficients are used in the same model), and the units of

measurement on some constraints are such that minor violations are insignificant. For instance,

suppose you have a budget constraint measured in millions of dollars. In this case, a violation of a few

pennies would be of no consequence. Short of the preferred method of rescaling your model, loosening

the feasibility tolerances may be the most expedient way around a problem of this nature.

334 CHAPTER 6

3. INFTOL and 4. FNFTOL

The initial nonlinear feasibility tolerance (INFTOL) and the final nonlinear feasibility tolerance

(FNFTOL) are both used by the nonlinear solver in the same manner the initial linear and final linear

feasibility tolerances are used by the linear solver. For information on how and why these tolerances

are useful, refer to the section immediately above. Default values for these tolerances are, respectively,

0.001 and 0.000001.

5. RELINT

RELINT, the relative integrality tolerance, is used by LINGO as a test for integrality in integer

programming models. Due to round-off errors, the “integer” variables in a solution may not have

values that are precisely integral. The relative integrality tolerance specifies the relative amount of

violation from integrality that is acceptable. Specifically, if I is the closest integer value to X, X will be

considered an integer if:

|X - I| <= Relative Integrality Tolerance.

 |X|

The default value for the relative integrality tolerance is .000008. Although one might be tempted to

set this tolerance to 0, doing so may result in feasible models being reported as infeasible.

6. NOPTOL

While solving a model, the nonlinear solver is constantly computing a gradient. The gradient gives the

rate of improvement of the objective function for small changes in the variables. If the gradient's rate

of improvement computation for a given variable is less-than-or-equal-to NOPTOL, the nonlinear

optimality tolerance, further adjustments to the variable's value are not considered to be beneficial.

The default value for the nonlinear optimality tolerance is .0000001. Decreasing this tolerance towards

a limit of 0 will tend to make the solver run longer and may lead to better solutions to poorly

formulated or poorly scaled models.

7. ITRSLW

LINGO’s nonlinear solver uses the ITRSLW, slow progress iteration limit, as a means of terminating

the solution process if little or no progress is being made in the objective value. Specifically, if the

objective function’s value has not improved significantly in n iterations, where n is the value of

ITRSLW, the nonlinear solver will terminate the solution process. Increasing this tolerance’s value will

tend to force the solver to run longer and may be useful in models that have relatively “flat” objective

functions around the optimal solution. The default value for ITRSLW is 5 iterations. Refer to the

description of ITRLIM below for a definition of iterations.

8. DERCMP

Use this parameter to set the style of derivative computation. Set DERCMP to 0 (Solver Decides) to

allow LINGO to select the method, 1 for backward analytical derivatives, 2 for forward analytical

derivatives, 3 for numerical derivatives using central differences, and 4 for numerical derivatives using

forward differences.

LINGO defaults to the Solver Decides setting, which presently involves using backward analytical

derivatives. However, we suggest you try the various derivative options to see which works best for

your particular models.

COMMAND-LINE COMMANDS 335

9. ITRLIM

Use this tolerance to place an upper limit on the number of iterations the solver will perform. An

iteration is the fundamental operation performed by the solver. At the risk of oversimplification, it is a

process that involves forcing a variable, currently at a zero value, to become nonzero until some other

variable is driven to zero, improving the objective as we go. In general, larger models will take longer

to perform an iteration, and nonlinear models will take longer than linear models. The default iteration

limit is 0, meaning no limit is imposed on the iteration count.

If the solver hits this limit, it returns to normal command mode. If the model contains integer variables,

LINGO will restore the best integer solution found so far. You may need to be patient, however,

because the solver may have to perform a fair amount of work to reinstall the current best solution

after it hits a runtime limit.

Note: Some caution is required when interrupting the solver. There must be an incumbent solution

available if you hope to interrupt the solver and have it return a valid solution. You can

always tell if an incumbent solution is available by examining the Best Obj field in the

Extended Solver Status box of the solver status window. If this field is blank, then an

incumbent solution does not exist, and the solution returned after an interrupt will be invalid.

If, on the other hand, this field contains a numeric value, then you should be able to interrupt

and return to a valid, if not globally optimal, solution.

10. TIMLIM

Use this tolerance to place a limit on the number of seconds the solver runs. If the solver hits this limit,

it will stop and return with the best solution found so far. The default limit is 0, meaning no time limit

is imposed on the solver.

If the solver hits this limit, it returns to normal command mode. If the model contains integer variables,

LINGO will restore the best integer solution found so far. You may need to be patient, however,

because the solver may have to perform a fair amount of work to reinstall the current best solution

after it hits a runtime limit.

Note: Some caution is required when interrupting the solver. There must be an incumbent solution

available if you hope to interrupt the solver and have it return a valid solution. You can

always tell if an incumbent solution is available by examining the Best Obj field in the

Extended Solver Status box of the solver status window. If this field is blank, then an

incumbent solution does not exist, and the solution returned after an interrupt will be invalid.

If, on the other hand, this field contains a numeric value, then you should be able to interrupt

and return to a valid, if not globally optimal, solution.

11. OBJCTS

LINGO generates twelve different types of constraint cuts when solving mixed integer linear

programs. Using the options listed below, these various classes of cuts can be enabled by setting their

parameter value to 1, or disabled by setting their parameter value to 0.

336 CHAPTER 6

The available cut classes are as follows:

Index Parameter Name Cut Type

11 OBJCTS Objective cuts

57 GUBCTS GUB

58 FLWCTS Flow

59 LFTCTS Lift

60 PLOCTS Plant location

61 DISCTS Disaggregation

62 KNPCTS Knapsack cover

63 LATCTS Lattice

64 GOMCTS Gomory

65 COFCTS Coefficient reduction

66 GCDCTS Greatest common divisor

76 BASCTS Basis cuts

By default, all cut classes are enabled with the exception of objective cuts (OBJCTS). Occasionally, on

some poorly formulated models, disabling one or more of the cut forms can help in finding feasible

solutions.

Cuts are not generated for nonlinear integer models. Thus, these options will not affect performance on

nonlinear models.

12. MXMEMB

Use this parameter to set an upper limit on the amount of memory, in megabytes, that LINGO allocates

as workspace for its model generator. When LINGO starts up, it sets aside a fixed amount of memory

to use as a generator workspace. The default workspace size is 32Mb. You can determine the size of

the current workspace and the amount of memory allotted in this workspace by issuing the MEM

command.

Large models may run out of generator memory when attempting to solve them. In this case, you will

receive the error message, “The model generator ran out of memory.” To avoid this error, increase the

value of MXMEMB and issue the FREEZE command to preserve the change. You must then restart

LINGO.

Note: Changes in LINGO’s generator memory limit are not established until you restart the

program.

The model generator is distinct from the actual solver engines. Memory allocated to the generator will

not be available to the solver engines. Thus, you shouldn’t allocate any more memory to the generator

than is required.

If you set MXMEMB to 0, LINGO will allocate all available memory when it starts up. This is not a

recommended practice.

COMMAND-LINE COMMANDS 337

Note: Setting LINGO’s generator memory limit abnormally high can result in poor performance of

LINGO and the operating system. By setting aside excessive amounts of memory for the

model generator, both LINGO and the operating system may have to resort to swapping of

virtual memory to and from the hard drive. Accessing the hard drive for memory swaps can

slow down your machine dramatically.

13. CUTAPP

Use this parameter to control the nodes in the solution tree where the branch-and-bound solver adds

constraint cuts in linear integer models. You have the following three options:

CUTAPP Setting Cuts Application at ...

0 Root only

1 All nodes

2 Solver decides

Under the Root Only option, the solver appends cuts only at the first node, or root node, in the solution

tree. With the All Nodes option, cuts are appended at each node of the tree. Under the Solver Decides

option, the solver dynamically decides when it is best to append cuts at a node.

The default is to let the solver decide when to append cuts. In general, this will offer superior

performance. There may be instances, however, where one of the other two options prevails.

14. ABSINT

 Use this parameter to specify an absolute integrality tolerance. This tolerance is used by LINGO as a

test for integrality in integer programming models. Due to round-off errors, the "integer" variables in a

solution may not have values that are precisely integer. The absolute integrality tolerance specifies the

absolute amount of violation from integrality that is acceptable. Specifically, if X is an "integer"

variable and I is the closest integer to X, then X would be accepted as being integer valued if:

|X - I| <= Absolute Integrality Tolerance.

The default value for the absolute integrality tolerance is .000001. Although one might be tempted to

set this tolerance to 0, this may result in feasible models being reported as infeasible.

15. HEURIS

Use this parameter to control the level of integer programming heuristics used by the integer solver.

These heuristics use the continuous solution at each node in the branch-and-bound tree to attempt to

quickly find a good integer solution. If an integer solution better than the incumbent is found, then it is

used to fix or tighten global and local variable bounds. Heuristics are only applied to linear models.

Requesting heuristics on nonlinear models will result in no benefits.

HEURIS may be set anywhere from 0 (none) to 100 (highest level), with 3 being the default.

16. HURDLE

If you know the objective value of a solution to a model, you can enter it as a hurdle tolerance. This

value is used in the branch-and-bound solver to narrow the search for the optimum. More specifically,

LINGO will only search for integer solutions where the objective is better than the hurdle value. This

comes into play when LINGO is searching for an initial integer solution. LINGO can ignore branches

in the search tree with objective values worse than the hurdle value, because a better solution exists

338 CHAPTER 6

(i.e., the hurdle) on some alternate branch. Depending on the problem, a good hurdle value can greatly

reduce solution time. Once LINGO finds an initial integer solution, however, the Hurdle tolerance no

longer has an effect.

Note: Be sure when entering a hurdle value that a solution exists that is at least as good or better

than your hurdle. If such a solution does not exist, LINGO will not be able to find a feasible

solution to the model.

The default hurdle value is None. In other words, a hurdle value is not used by the solver. To clear an

existing hurdle value, type SET HURDLE NONE.

17. IPTOLA

Use this parameter to specify the absolute optimality tolerance. This tolerance is a positive value r,

indicating to the branch-and-bound solver that it should only search for integer solutions with objective

values at least r units better than the best integer solution found so far. In many integer programming

models, there are huge numbers of branches with roughly equivalent potential. This tolerance can help

to keep the branch-and-bound solver from being distracted by branches that can’t offer a solution

significantly better than the incumbent solution.

In general, you shouldn’t have to set this tolerance. Occasionally, particularly on poorly formulated

models, you might need to increase this tolerance slightly from zero to improve performance. In most

cases, you should experiment with the relative optimality tolerance rather than the absolute optimality

tolerance in order to improve performance.

The default value for the absolute optimality tolerance is 0.

18. IPTOLR

Use this parameter to specify the relative optimality tolerance. This tolerance is a value r, ranging

from 0 to 1, indicating to the branch-and-bound solver that it should only search for integer solutions

with objective values at least 100*r% better than the best integer solution found so far.

The end results of modifying the search procedure in this way are twofold. First, on the positive side,

solution times can be improved tremendously. Second, on the negative side, the final solution obtained

by LINGO may not be the true optimal solution. You will, however, be guaranteed the solution is

within 100*r% of the true optimum.

Typical values for the relative optimality tolerance would be in the range .01 to .05. In other words,

you would be happy to get a solution within 1% to 5% of the true optimal value. On larger integer

models, the alternative of getting a solution within a few percentage points of the true optimum after

several minutes of runtime, as opposed to the true optimum after several days, makes the use of an

optimality tolerance quite attractive.

Note: Generally speaking, the relative integrality tolerance is the tolerance that will most likely

improve runtimes on integer models. You should be sure to set this tolerance whenever

possible.

The default for the relative optimality tolerance is 1e-5.

COMMAND-LINE COMMANDS 339

19. TIM2RL

If an integer programming model is relatively easy to solve, then we would like to have the solver

press on to the true optimal solution without immediately resorting to a relative optimality tolerance

(discussed above). On the other hand, if, after running for a while, it becomes apparent that the optimal

solution won’t be immediately forthcoming, then you might want the solver to switch to using a

relative optimality tolerance. TIM2RL, the time to relative tolerance, can be used in this manner. This

tolerance is the number of seconds before the branch-and-bound solver begins using the relative

optimality tolerance. For the first n seconds, where n is the value of the time to relative tolerance, the

branch-and-bound solver will not use the relative optimality tolerance and will attempt to find the true

optimal solution to the model. Thereafter, the solver will use the relative optimality tolerance in its

search.

The default value for the time to relative tolerance is 100 seconds.

20. NODESL

The branch-and-bound solver has a great deal of freedom in deciding how to span the

branch-and-bound solution tree. NODESL, the node selection option, allows you to control the order in

which the solver selects branch nodes in the tree.

The four choices available for NODESL are as follows:

NODESL Setting Branch Selection

0 LINGO Decides –This is the default option. LINGO makes

an educated guess as to the best node to branch on.

1 Depth First – LINGO spans the branch-and-bound tree

using a depth first strategy.

2 Worst Bound – LINGO picks the node with the worst

bound.

3 Best Bound – LINGO picks the node with the best bound.

In general, LINGO Decides will offer the best results. Experimentation with the other options may be

beneficial with some classes of models.

21. LENPAG

The LENPAG parameter sets the length of the page or screen size in lines. For instance, setting

LENPAG to 25 will cause the display to pause after 25 lines and await a carriage return before

displaying the next 25 lines. This is convenient when you wish to page through long reports and not

have them scroll off the top of the screen.

When LENPAG is set to 0, paging is turned off entirely. LINGO will no longer stop output to wait for

a carriage return. Entering SET LENPAGE 0 at the top of any command script is helpful in that you

generally want command scripts to run uninterrupted.

22. LINLEN

When LINGO generates reports, it limits output lines to a certain width. In some reports, lines will be

wrapped so that they fall within the line length limit. In other reports, lines may be truncated. Since

LINGO concatenates variable names in performing set operations, a variable name such as

SHIPMENTS(WAREHOUSE1, CUSTOMER2) may result, which may be truncated in a solution report

if too narrow an output width is used. You can control this line width limit through the LINLEN

parameter. You may set it anywhere between 64 and 200, with the default being 85.

340 CHAPTER 6

23. TERSEO

You can use the TERSEO parameter to control the amount of output LINGO generates. There are four

settings available:

TERSEO Description

1 Verbose—Causes LINGO to display the maximum amount

of output, including full solution reports.

2 Terse—Less output than Verbose, with full solution reports

suppressed. This is a good output level if you tend to solve

large models. LINGO also suppresses Export Summary

Reports generated when exporting data to spreadsheets or

databases.

3 Errors Only—All output is suppressed, with the exception

of error messages

4 Nothing—LINGO suppresses all output. This level may be

useful when taking advantage of the programming

capabilities in LINGO, in which case, you will add

statements to your model to generate all required output.

The default setting for TERSEO is 1, or verbose mode.

COMMAND-LINE COMMANDS 341

24. STAWIN (Windows Only)

If the STAWIN parameter is set to 1, LINGO displays a solver status window whenever you issue the

GO command. This window resembles the following:

The solver status window is useful for monitoring the progress of the solver and the dimensions of

your model. It is updated every n seconds, where n is the value in the Update interval field in the lower

right corner of the window. LINGO defaults to displaying the solver status window.

This option applies only to Windows versions of LINGO.

For a detailed description of the various fields in the solver status window, see Chapter 1, Getting

Started with LINGO.

25. SPLASH (Windows Only)

If the SPLASH parameter is set to 1, LINGO will display its splash screen each time it starts up. The

splash screen lists the release number of LINGO and the software’s copyright notice. Setting SPLASH

to 0 disables the splash screen. The default is for the splash screen to be displayed.

This option applies only to Windows versions of LINGO.

342 CHAPTER 6

26. OROUTE (Windows Only)

Set this parameter to 1 to send reports generated by LINGO to the command window, or 0 to send

them to individual report windows. Since you can log all output to the command window in a log file,

routing reports to the command window can be a useful way of logging all reports to disk. This may

also be a desirable option when you are using LINGO as part of an automated system where you need

LINGO to run without user input. The default is for LINGO to display reports in individual windows.

This option is available only on Windows versions of LINGO.

27. WNLINE (Windows Only) and 28. WNTRIM (Windows Only)

When LINGO sends output to the command window, it places new lines at the bottom of the window.

All previous output is scrolled up to make way for the new output. The total number of output lines

that can be stored in the command window is limited. When LINGO hits this limit, it begins deleting

lines from the top of the command window. You can control this feature by setting the WNLINE and

WNTRIM parameters.

The WNLINE parameter sets the maximum number of lines allowed in the command window. When

LINGO removes lines from the top of the command window, it stops once there are n lines left in the

command window, where n is the value of the WNTRIM parameter. In general, output to the command

window will become slower as you increase the maximum and minimum line counts.

The default values for WNLINE and WNTRIM are, respectively, 800 and 400. Minimum values are 200

and 100, while there are no upper limits.

These options are relevant only to Windows versions of LINGO.

29. STABAR (Windows Only)

If the STABAR parameter is set to 1, LINGO for Windows displays a status bar along the bottom of the

main frame window. Among other things, the status bar displays the time of day, location of the

cursor, menu tips, and the current status of the program.

To remove the status bar from the screen, set STABAR to 0.

The default is for LINGO to display the status bar.

This option applies only to Windows versions of LINGO.

30. FILFMT (Windows Only)

Use FILFMT to set the default file format LINGO uses when opening a new document. The options

are:

FILFMT File Type Description

0 LNG LINGO text

1 LG4 LINGO binary

2 LTX LINDO text

The LG4 format is the default file format for Windows versions of LINGO. This is a binary format

that is readable only by LINGO. This format enables you to have custom formatting and fonts in your

models, and allows you to use LINGO as an OLE server and container. Files written in LG4 format are

useful only on Windows hardware.

COMMAND-LINE COMMANDS 343

The LNG and LTX formats are text based. Given this, LNG and LTX files may be read into other

applications. However, these formats don’t support custom formatting and embedded objects. In

general, LNG files use LINGO syntax, while LTX files use LINDO syntax.

This option applies only to Windows versions of LINGO.

31. TOOLBR (Windows Only)

In Windows versions, LINGO can display a row of buttons that act as shortcuts to various commands

contained in the LINGO menu. This row of buttons is known as the toolbar. Set TOOLBR to 1 to

display the toolbar or 0 to remove it. The default is for LINGO to display the toolbar.

This option applies only to Windows versions of LINGO.

32. CHKDUP

Prior to release 4.0, LINGO allowed you to use primitive set names in the equations of a model.

Primitive set names in a model’s equations returned the index of the set member. Starting with release

4.0, LINGO required you to use the @INDEX function (see Chapter 7, LINGO's Operators and

Functions) to get the index of a primitive set member. If you would like to test your LINGO models

from releases prior to 4.0 for instances where primitive set members appear in the model’s equations,

set CHKDUP to 1. Whenever you run a model, LINGO will issue an error message if duplicate names

appear as set members and as variables in the model.

33. ECHOIN

When you run a LINGO command script with the TAKE command, the commands LINGO processes

are normally not displayed. If you would like the commands echoed to your screen, set the ECHOIN

parameter to 1. This can be a useful feature when you are trying to develop and debug a LINGO

command script.

34. ERRDLG (Windows Only)

Set the ERRDLG parameter to 1 and LINGO will display error messages issued by the solver in a

modal dialog box. This dialog box must be cleared before LINGO proceeds with any other operation.

In some instances, you may have LINGO embedded in other applications, where it may not be

desirable, or possible, to have users clearing the error dialog boxes. By setting ERRDLG to 0, LINGO

will route the solver’s error messages to the report window, where they will be displayed and no user

intervention will be required to clear the messages. Note that this option allows you to route only those

error messages generated by LINGO’s solver to the report window. Error messages displayed by

LINGO’s interactive front-end (error codes 1000 and above) will always be posted in dialog boxes.

The default is for solver errors to be displayed in dialog boxes.

This option applies only to Windows versions of LINGO.

344 CHAPTER 6

35. USEPNM

In many instances, you will need to get the index of a primitive set member within its set. Prior to

release 4 of LINGO, you could do this by using the primitive set member’s name directly in the

model’s equations. This can create problems when you are importing set members from an external

source. In this case, you will not necessarily know the names of the set members beforehand. When

one of the imported primitive set members happens to have the same name as a variable in your model,

unintended results can occur. More specifically, LINGO would not treat the variable as optimizable. In

fact, LINGO would treat it as if it were a constant equal to the value of the index of the primitive set

member! In short, different primitive set names could potentially lead to different results. Therefore,

starting with release 4.0 of LINGO, models such as the following are no longer permitted:

MODEL:

SETS:

 DAYS /MO TU WE TH FR SA SU/;

ENDSETS

 INDEX_OF_FRIDAY = FR;

END

If you want the index of FR in the DAYS set, you should use the @INDEX function (see Chapter 7,

LINGO's Operators and Functions):

INDEX_OF_FRIDAY = @INDEX(DAYS, FR);

If you are unable to update your models for some reason and you would like to allow for the direct use

of primitive set names, you can enable the USEPNM parameter by setting it to 1. The default is for

LINGO to disable USEPNM.

36. NSTEEP

Setting the NSTEEP parameter to 1 causes LINGO’s nonlinear solver to use steepest-edge variable

selection. When LINGO is not in steepest-edge mode, the nonlinear solver will tend to select variables

that offer the highest absolute rate of improvement to the objective, regardless of how far other

variables may have to move per unit of movement in the newly introduced variable. The problem with

this strategy is that other variables may quickly hit a bound, resulting in little gain to the objective.

With the steepest-edge option, the nonlinear solver spends a little more time in selecting variables by

looking at what rate the objective will improve relative to movements in the other nonzero variables.

Thus, on average, each iteration will lead to larger gains in the objective. In general, the steepest-edge

option will result in fewer iterations. However, each iteration will take longer. LINGO defaults to not

using the steepest-edge option.

37. NCRASH

If you set NCRASH to 1, LINGO’s nonlinear solver will invoke a heuristic for generating a “good”

starting point when you solve a model. If this initial point is relatively good, subsequent solver

iterations should be reduced along with overall runtimes. LINGO defaults to not crashing an initial

solution.

COMMAND-LINE COMMANDS 345

38. NSLPDR

If you set NSLPDR to 1, LINGO’s nonlinear solver will use successive linear programming (SLP) to

compute new search directions. This technique uses a linear approximation in search computations in

order to speed iteration times. In general, the number of total iterations will tend to rise when SLP

directions are used, but on some models overall runtimes may improve. LINGO defaults to not using

SLP directions.

39. SELCON

If you set SELCON to 1, LINGO’s nonlinear solver will only evaluate constraints on an as needed

basis. Thus, not every constraint will be evaluated at each iteration. This generally leads to faster

solution times, but can also lead to problems in models with undefined functions in certain regions.

LINGO may not evaluate a constraint for many iterations only to find that it has moved into a region

where the constraint is no longer defined. In this case, there may not be a valid point for the solver to

retreat to and the solution process terminates with an error. Turning off selective constraint evaluation

eliminates these errors. LINGO defaults to not using selective constraint evaluation.

40. PRBLVL

On a mixed-integer linear program, LINGO can perform an operation known as probing. Probing

involves taking a close look at the integer variables in a model and deducing tighter variable bounds

and right-hand side values. In many cases, probing can tighten an integer model sufficiently, thereby

speed overall solution times. In other cases, however, probing may not be able to do much tightening

and the overall solution time will increase due to the extra time spent probing. You can choose from

seven successive levels of probing ranging from 1 to 7. Level 1 disables probing completely, while

level 7 involves the highest degree of probing. Setting this option to 0 lets LINGO select the level of

probing. LINGO defaults to 0.

41. SOLVEL

This option allows you to choose the type of algorithm invoked by LINGO’s linear solver. At present,

LINGO offers the following four options:

SOLVEL

 Value

Linear Solver

Algorithm

0 LINGO chooses

1 Primal simplex

2 Dual simplex

3 Barrier (only available as an option)

In general, it is difficult to say what algorithm will be fastest for a particular model. A rough guideline

is that primal simplex tends to do better on sparse models with fewer rows than columns; the dual does

well on sparse models with fewer columns than rows; and the barrier works best on densely structured

models or very large models.

The barrier solver is available only as an additional option to the LINGO package.

LINGO defaults to 0, LINGO chooses.

346 CHAPTER 6

42. REDUCE

When this parameter is set to 1, LINGO’s linear solver tries to identify and remove extraneous

variables and constraints from the formulation before solving. In certain cases, this can greatly reduce

the size of the final model to be solved. Setting REDUCE to 1 enables reduction, while 0 disables it.

Setting REDUCE to 2 allows LINGO to choose whether or not to enable reduction. LINGO defaults to

this last option.

43. SCALEM

Setting SCALEM to 1 enables the scaling option in LINGO’s linear solver. This option rescales the

coefficients in the model’s matrix, causing the ratio of the largest to smallest coefficients to be

reduced. By doing this, LINGO reduces the chances of round-off error, which leads to greater

numerical stability and accuracy in the linear solver.

LINGO defaults to using scaling.

44. PRIMPR

Setting this parameter to 2 causes LINGO’s primal simplex linear solver to use devex pricing

techniques. If this parameter is set to 1, the primal simplex solver will use partial pricing. If this

parameter is set to 0, LINGO chooses the primal simplex pricing method.

LINGO defaults to choosing the primal pricing method.

45. DUALPR

If DUALPR is set to 2, LINGO’s dual simplex solver will use steepest edge pricing. If DUALPR is 1,

the dual solver will use Dantzig pricing methods. If DUALPR is 0, LINGO chooses the most

appropriate pricing method.

In Dantzig pricing mode, the dual simplex solver will tend to select variables that offer the highest

absolute rate of improvement to the objective, regardless of how far other variables may have to move

per unit of movement in the newly introduced variable. The problem with this strategy is that other

variables may quickly hit a bound, resulting in little gain to the objective. With the steepest-edge

option, the solver spends a little more time selecting variables by looking at the total improvement in

the objective by adjusting a particular variable. Thus, on average, each iteration will lead to larger

gains in the objective. In general, the steepest-edge option will result in fewer iterations. However,

each iteration will take longer.

LINGO defaults to choosing the pricing method for the dual solver.

46. DUALCO

The DUALCO parameter is used to set the level of dual computations performed by the solver. Setting

DUALCO to 0 will cause LINGO to not compute dual values and ranges. This is the fastest option, but

is suitable only if you don’t need this information. In fact, the RANGE command will not execute

when DUALCO is 0. When DUALCO is 1, LINGO will compute dual values, but not ranges. When

DUALCO is 2, LINGO computes both dual prices and ranges. Setting DUALCO to 3 causes LINGO to

compute the dual values on optimizable rows only (i.e., fixed rows are excluded) and forgo range

computations, LINGO defaults to a DUALCO value of 1.

Note: Range computations can take some time, so, if speed is a concern, you don’t want to enable

range computations unnecessarily.

COMMAND-LINE COMMANDS 347

Note: The barrier crossover option must be enabled if you plan to do range analysis. Range

computations cannot be performed if the final solution is not a basic solution.

47. RCMPSN

Setting RCMPSN to 1 causes LINGO to convert all variable and row names to RC notation when

performing MPS file format I/O. Refer to the RMPS command on page 286 for a discussion of why

this option is useful. By default, LINGO disables the use of RC format names.

48. MREGEN

The MREGEN parameter controls the frequency with which LINGO regenerates a model. With

MREGEN set to 0, LINGO regenerates a model only when a change has been made to the model’s text

since the last generation took place. When MREGEN is 1, LINGO regenerates whenever a change is

made to the model text or if it contains references to external data sources (e.g., text files, databases, or

spreadsheets). If MREGEN is 2, then LINGO always regenerates the model each time information

regarding the generated model is needed. Commands that will trigger a model generation are GO,

GEN, GENL, STATS, RMPS, FRMPS, SMPS, and PICTURE. LINGO defaults to a MREGEN value

of 2.

49. BRANDR

LINGO uses a branch-and-bound solution procedure when solving integer programming models. One

of the fundamental operations involved in the branch-and-bound algorithm is branching on variables.

Branching involves forcing an integer variable that is currently fractional to either the next greatest

integer value or to the next lowest integer value. As an example, suppose there is a general integer

variable that currently has a value of 5.6. If LINGO were to branch on this variable, it would have to

choose whether to set the variable first to 6 or 5. The BRANDR parameter controls how LINGO makes

this branching decision.

There are three possible settings for BRANDR:

BRANDR

Value

Preferred Branching

Direction

0 Both up and down

1 Up

2 Down

The default option, Both up and down, involves LINGO making an intelligent guess as to whether it

should branch up or down first on each individual variable. If the Up option is selected, LINGO will

always branch up to the next highest integer first. If Down is selected, LINGO will always branch

down first. In most cases, the Both up and down option will result in the best performance.

Occasionally, models will benefit from use of one of the other two options.

348 CHAPTER 6

50. BRANPR

When branching on variables, the branch-and-bound procedure can give priority to branching on the

binary variables first, or it can make an intelligent guess as to the next best variable to branch on,

regardless of whether it is binary or general.

There are two possible settings for BRANPR:

BRANPR

Value

Branching

Priority

0 LINGO decides

1 Binary variables first

Select the Binary variables first option to have LINGO give branching priority to the binary variables.

Select LINGO Decides to have LINGO select the next integer variable for branching based on an

intelligent guess regardless of whether it is binary or general. The default for this option is LINGO

Decides, which should generally give the best results. However, on occasion, the Binary option may

prevail.

51. CUTOFF

On occasion, due to round-off error, some of the values returned by LINGO’s solver will be very small

(less than 1e-10). In reality, the true values of these variables are either zero or so small as to be of no

consequence. These tiny values can be distracting when interpreting a solution report. The CUTOFF

parameter can be used to suppress small solution values. Any solution value less-than-or-equal-to

CUTOFF will be reported as being zero. The default value for CUTOFF is 1e-9.

52. STRONG

The strong branch option uses a more intensive branching strategy during the first n levels of the

branch-and-bound tree, where n is the value of the STRONG parameter. During these initial levels,

LINGO picks a subset of the fractional variables as branching candidates. LINGO then performs a

tentative branch on each variable in the subset, selecting as the final candidate the variable that offers

the greatest improvement in the bound on the objective. Although strong branching is useful in

tightening the bound quickly, it does take additional computation time. So, you may want to try

different settings to determine what works best for your model.

The default setting is 10 levels.

COMMAND-LINE COMMANDS 349

53. REOPTB

The warm start option controls the linear solver that is used by the branch-and-bound solver at each

node of the solution tree when a previous solution is present to use as a “warm start”. The cold start

option, discussed below, determines the solver to use when a previous solution does not exist.

There are four possible settings for REOPTB:

REOPTB

Value

Warm Start

Solver

0 LINGO Decides – LINGO chooses the most

appropriate solver.

1 Primal – The primal solver will be used

exclusively.

2 Dual – The dual solver will be used exclusively.

3 Barrier – LINGO uses the barrier method,

assuming you have purchased a license for the

barrier solver. Otherwise, the dual solver will be

used.

In general, LINGO Decides will yield the best results. The barrier solver can’t make use of a

pre-existing solution, so Barrier usually won’t give good results. In general, Dual will be faster than

Primal for reoptimization in branch-and-bound.

54. REOPTX

The cold start option controls the linear solver that is used by the branch-and-bound solver at each

node of the solution tree when a previous solution is not present to use as a “warm start”. The warm

start option, discussed above, determines the solver to use when a previous solution does exist.

There are four possible settings for REOPTX:

REOPTX

Value

Warm Start

Solver

0 LINGO Decides – LINGO chooses the most

appropriate solver.

1 Primal – The primal solver will be used

exclusively.

2 Dual – The dual solver will be used exclusively.

3 Barrier – LINGO uses the barrier method,

assuming you have purchased a license for the

barrier solver. Otherwise, the dual solver will be

used.

In general, LINGO Decides will yield the best results. However, experimentation with the other

options may be fruitful.

350 CHAPTER 6

55. MAXCTP

The integer pre-solver makes iterative passes through a model determining appropriate constraint cuts

to append to the formulation. In general, the marginal benefits of each additional pass declines. At

some point, additional passes will only add to total solution times. Thus, LINGO imposes a limit on

the maximum number of passes.

LINGO applies constraint cuts at both the top, or root, node of the branch-and-bound tree, and at all

subsequent nodes within the tree. The MAXCTP parameter limits the maximum number of cuts at the

top node, while the MAXCTR parameter sets the cut limit on all subsequent nodes in the tree. The

default limit is 100 passes.

56. RCTLIM

Most integer programming models benefit from the addition of some constraint cuts. However, at

some point, additional cuts take more time to generate than they save in solution time. For this reason,

LINGO imposes a relative limit on the number of constraint cuts that are generated. The default limit

is set to .75 times the number of true constraints in the original formulation. You may override this

relative limit by changing the setting of RCTLIM.

Constraint Cut Types

LINGO generates twelve different types of constraint cuts when solving mixed integer linear

programs. Using options listed below, these various classes of cuts can be enabled by setting their

parameter value to 1, or disabled by setting their parameter value to 0.

The available cut classes are as follows:

Index Parameter Name Cut Type

11 OBJCTS Objective cuts

57 GUBCTS GUB

58 FLWCTS Flow

59 LFTCTS Lift

60 PLOCTS Plant location

61 DISCTS Disaggregation

62 KNPCTS Knapsack cover

63 LATCTS Lattice

64 GOMCTS Gomory

65 COFCTS Coefficient reduction

66 GCDCTS Greatest common divisor

76 BASCTS Basis cuts

By default, all cut classes are enabled. Occasionally, on some poorly formulated models, disabling one

or more of the cut forms can help in finding feasible solutions.

Cuts are not generated for nonlinear integer models. Thus, these options will not affect performance on

nonlinear models.

COMMAND-LINE COMMANDS 351

67. SCLRLM (Windows Only)

The LINGO editor in Windows is “syntax aware.” In other words, when it encounters LINGO

keywords, it displays them in blue. Comments are displayed in green, and all remaining text is

displayed in black. Syntax coloring can take a long time if you have very large files. The SCLRLM

parameter sets the maximum acceptable file size for syntax coloring. Files with line counts exceeding

this parameter will not be syntax colored. Setting this parameter to 0 will disable the syntax coloring

feature. The default limit is 1000 lines.

This option applies only to Windows versions of LINGO.

68. SCLRDL (Windows Only)

The LINGO editor in Windows is “syntax aware”. In other words, when it encounters LINGO

keywords it displays them in blue. Comments are displayed in green, and all remaining text is

displayed in black. The SCLRDL parameter sets the number of seconds LINGO waits after the last

keystroke was typed before recoloring modified text. Users on slower machines may want to set this

higher to avoid having syntax coloring interfere with typing. Users on faster machines may want to

decrease this value, so text is recolored more quickly. The default is 0 seconds (i.e., LINGO recolors

modified text immediately).

This option applies only to Windows versions of LINGO.

69. PRNCLR (Windows Only)

The LINGO editor in Windows displays matching parentheses in red when you place the cursor

immediately following a parenthesis. The PRNCLR parameter allows you to disable this feature.

Setting PRNCLR to 0 will disable parenthesis matching, while setting it to 1 will enable it.

This option applies only to Windows versions of LINGO.

70. MULTIS

LINGO exploits the convex nature of linear models to find globally optimal solutions. However, we

aren’t as fortunate with nonlinear models. With nonlinear programming (NLP) models, LINGO’s

default NLP solver uses a local search procedure. This can lead to LINGO stopping at locally optimal

points, perhaps missing a global point lying elsewhere. Refer to Chapter 15, On Mathematical

Modeling, for more information on how and why this can happen.

A strategy that has proven successful in overcoming this problem is to restart the NLP solver several

times from different initial points. It is not uncommon for a different starting point to lead to a

different local solution point. The idea is that, if we restart from enough unique points, saving the best

local solution as we go, then we have a much better chance of finding the true global solution.

The MULTIS parameter allows you to set the number of times you would like the NLP solver to re-

solve your model, starting each time from an intelligently generated, new starting point. We refer to

this feature as multistart. The default value for MULTIS, 0, entails restarting 5 times on small NLPs

and disabling multistart on larger models. Setting MULTIS to 1 disables multistart on all NLPs. Setting

MULTIS to any value greater than 1 will cause the NLP solver to restart that number of times on all

NLPs. We have found that setting MULTIS around 5 tends to be adequate for most models. Highly

nonlinear models may require a larger setting.

352 CHAPTER 6

Keep in mind, however, that multistart will dramatically increase runtimes. Thus, one should avoid

using it unnecessarily on convex models that will converge to a global point in a single pass without

any additional prodding.

The following example illustrates the usefulness of multistart. Consider the simple, yet highly

nonlinear, model:

MODEL:

 MIN = X * @COS(3.1416 * X);

 @BND(0, X, 6);

END

The graph of the objective function is as follows:

The objective function has three local, minimal points over the feasible range. These points are

summarized in the following table:

Point X Objective

1 1.09 -1.05

2 3.03 -3.02

3 5.02 -5.01

COMMAND-LINE COMMANDS 353

Clearly, the third local point is also the globally best point, and we would like the NLP solver to

converge to this point. Below, we attempt this by loading the model, turning off the multistart option,

and then solving:

: take wavy.lng

: look all

 MODEL:

 1] MIN = X * @COS(3.1416 * X);

 2] @BND(0, X, 6);

 END

: set multis 1 !set solver attempts to 1 only (i.e., disable ms)

 Parameter Old Value New Value

 MULTIS 0 1

: go

 Local optimal solution found at step: 11

 Objective value: -1.046719

 Variable Value Reduced Cost

 X 1.090405 0.1181082E-07

 Row Slack or Surplus Dual Price

 1 -1.046719 -1.000000

Unfortunately, as you can see, we converged to the least preferable of the local minimums. Below, we

will do the same as in the previous run. However, this time, we will set the number of multistarts to

five:

: take wavy.lng

: look all

 MODEL:

 1] MIN = X * @COS(3.1416 * X);

 2] @BND(0, X, 6);

 END

: set multis 5

 Parameter Old Value New Value

 MULTIS 0 5

: go

 Local optimal solution found at step: 39

 Objective value: -5.010083

 Variable Value Reduced Cost

 X 5.020143 -0.7076917E-08

 Row Slack or Surplus Dual Price

 1 -5.010083 -1.000000

The extra four restarts allowed LINGO to find the global optimal point.

354 CHAPTER 6

71. USEQPR

The USEQPR parameter controls the Quadratic Recognition option. This option consists of an

algebraic preprocessor that automatically determines if an arbitrary nonlinear model is actually a

quadratic programming (QP) model. If a model is found to be a convex QP, then it can be passed to the

faster quadratic solver. Note that the QP solver is not included with the base version of LINGO, but

comes as part of the Barrier option.

LINGO defaults to using quadratic recognition. You may enable this option with the command: SET
USEQPR 1.

72. GLOBAL

Many nonlinear models are non-convex and/or non-smooth (for more information see Chapter 15, On

Mathematical Modeling). Nonlinear solvers that rely on local search procedures, as does LINGO’s

default nonlinear solver, will tend to do poorly on these types of models. Typically, they will converge

to a local, sub-optimal point that may be quite distant from the true, global optimal point. Global

solvers overcome this weakness through methods of range bounding (e.g., interval analysis and convex

analysis) and range reduction techniques (e.g., linear programming and constraint propagation) within

a branch-and-bound framework to find the global solutions to non-convex models. LINGO has a

global solver capability that is enabled through the GLOBAL parameter. Setting GLOBAL to 1 will

enable the global solver on nonlinear models, while setting it to 0 (the default) will not.

The following example illustrates the power of the global solver on a non-smooth model. Consider the

following model:

model:

sets:

 projects: baths, sqft, beds, cost, est;

endsets

data:

projects, beds, baths, sqft, cost =

p1 5 4 6200 559608

p2 2 1 820 151826

p3 1 1 710 125943

p4 4 3 4300 420801

p5 4 2 3800 374751

p6 3 1 2200 251674

p7 3 2 3400 332426

;

enddata

min = @max(projects: @abs(cost - est));

@for(projects:

 est = a0 + a1 * beds + a2 * baths + a3 * sqft

);

end

Model: COSTING

COMMAND-LINE COMMANDS 355

This model estimates the cost of home construction jobs based on historical data on the number of

bedrooms, bathrooms, and square footage. The objective minimizes the maximum error over the

sample project set. Both the @MAX() and @ABS() functions in the objective are non-smooth, and, as a

result, can present problems for LINGO’s default, local search NLP solver. Running the model under

the default settings with the global solver disabled, we get the following result:

 Local optimal solution found at step: 91

 Objective value: 3997.347

 Variable Value Reduced Cost

 A0 37441.55 0.000000

 A1 27234.51 0.000000

 A2 23416.53 0.000000

 A3 47.77956 0.000000

Enabling the global solver with the SET GLOBAL 1 command and re-optimizing yields the substantially

better solution:

 Global optimal solution found at step: 186

 Objective value: 1426.660

 Variable Value Reduced Cost

 A0 46814.64 0.000000

 A1 22824.18 0.000000

 A2 16717.33 0.000000

 A3 53.74674 0.000000

Note that the maximum error has been reduced from 3,997 to 1,426!

This example illustrates the power of the global solver. Unfortunately, there is a drawback. You will

find the global solver runs considerably slower than the default local solver, and may be swamped

when trying to solve larger models. Therefore, the preferred option is to always try to create smooth,

convex models, so that the faster, default local solver can successfully solve them.

Keep in mind that the global solver supports most, but not all, of the functions available in the LINGO

language. The following is a list of the nonlinear functions not currently supported by the global

solver:

 All probability distributions — cumulative, inverse and pdf, with the exception of

the normal distribution, which is fully supported

 @PFS() — Poisson finite source

 @PPL() — Poisson linear loss

 @USER()— User supplied function

Note: The global solver will not operate on models containing one or more unsupported nonlinear

operations that reference optimizable quantities; the default NLP solver will be called in this

case.

The global solver is disabled by default.

356 CHAPTER 6

73-75. LNRISE, LNBIGM, LNDLTA

The LNRISE, LNBIGM, and LNDLTA parameters control the linearization option in LINGO. Many

nonlinear operations can be replaced by linear operations that are mathematically equivalent. The

ultimate goal is to replace all the nonlinear operations in a model with equivalent linear ones, thereby

allowing use of the faster and more robust linear solvers. We refer to this process as linearization.

The LNRISE parameter determines the extent to which LINGO will attempt to linearize models. The

available options are:

LNRISE Setting Linearization Level

0 Solver Decides

1 None

2 Math

3 Math and Logic

Under the None option, no linearization occurs. With the Math option, LINGO linearizes the

mathematical functions: @ABS(), @MAX(), @MIN(), @SMAX(), and @SMIN() along with any

products of binary and continuous variables. The Math and Logicoption is equivalent to the Math

option, plus LINGO will linearize all logical operators (#LT#, #LE#, #EQ#, #GT#, #GE#, and #NE#).

Under the Solver Decides option, LINGO will do maximum linearization if the number of variables

doesn’t exceed 12. Otherwise, LINGO will not perform any linearization. LINGO defaults to the

Solver Decides setting.

The LNDLTA parameter controls the Delta Coefficient, which is a tolerance indicating how closely you

want the additional constraints added as part of linearization to be satisfied. Most models won’t require

any changes to this parameter. However, some numerically challenging formulations may benefit from

increasing Delta slightly. LINGO defaults to a Delta of 1.e-6.

When LINGO linearizes a model, it adds forcing constraints to the mathematical program generated to

optimize your model. These forcing constraints are of the form:

f(x) ≤ M • y

where M is the BigM Coefficient and y is a 0/1 variable. The idea is that, if some activity in the

variables is occurring, then the forcing constraint will drive y to take on the value of 1. Given this, if

we set the BigM value to be too small, we may end up with an infeasible model. Therefore, the astute

reader might conclude that it would be smart to make BigM quite large, thereby minimizing the chance

of an infeasible model. Unfortunately, setting BigM to a large number can lead to numerical stability

problems in the solver resulting in infeasible or sub-optimal solutions. So, getting a good value for the

BigM Coefficient may take some experimentation. The default value for BigM is 100,000.

COMMAND-LINE COMMANDS 357

As an example of linearization, consider the following model:

model:

sets:

 projects: baths, sqft, beds, cost, est;

endsets

data:

projects, beds, baths, sqft, cost =

p1 5 4 6200 559608

p2 2 1 820 151826

p3 1 1 710 125943

p4 4 3 4300 420801

p5 4 2 3800 374751

p6 3 1 2200 251674

p7 3 2 3400 332426

;

enddata

min = @max(projects: @abs(cost - est));

@for(projects:

 est = a0 + a1 * beds + a2 * baths + a3 * sqft

);

end

Model: COSTING

This model estimates the cost of home construction jobs based on historical data on the number of

bedrooms, bathrooms, and square footage. The objective minimizes the maximum error over the

sample project set. Both the @MAX() and @ABS() functions in the objective are non-smooth nonlinear

functions, and, as a result, can present problems for LINGO’s default, local search NLP solver.

Running the model under the default settings with linearization disabled, we get the following result:

 Local optimal solution found at step: 91

 Objective value: 3997.347

 Variable Value Reduced Cost

 A0 37441.55 0.000000

 A1 27234.51 0.000000

 A2 23416.53 0.000000

 A3 47.77956 0.000000

358 CHAPTER 6

Enabling linearization and re-optimizing yields the substantially better solution:

 Global optimal solution found at step: 186

 Objective value: 1426.660

 Variable Value Reduced Cost

 A0 46814.64 0.000000

 A1 22824.18 0.000000

 A2 16717.33 0.000000

 A3 53.74674 0.000000

Note that the maximum error has been reduced from 3,997 to 1,426!

Linearization will substantially increase the size of your model. The sample model above, in un-

linearized form, has a mere 8 rows and 11 continuous variables. On the other hand, the linearized

version has 51 rows, 33 continuous variables, and 14 binary variables! Although linearization will

cause your model to grow in size, you will tend to get much better solution results if the model can be

converted entirely to an equivalent linear form.

Note: Linearization will be of most use when a nonlinear model can be 100% linearized. If LINGO

can only linearize a portion of your model, then you may actually end up with a more difficult

nonlinear model.

The linearization option is set to Solver Decides by default.

76. BASCTS

Please refer to the Constraint Cut Types section above for information on this parameter.

77. MAXCTR

This parameter controls the number of passes the branch-and-bound solver makes at each node of the

tree for cut generation. There is one exception in that MAXCTR does not control the number of passes

at the root node of the tree. You must use MAXCTP, see above, to control the number of passes at the

root node. The default value for MAXCTR is 2 passes.

78. HUMNTM

This parameter sets the minimum amount of time spent in heuristics at each node of the branch-and-

bound tree. The default value for HUMNTM is 0 seconds.

79. DECOMP

Many large scale linear and mixed integer problems have constraint matrices that are totally

decomposable into a series of block structures. If total decomposition is possible, LINGO can solve the

independent problems sequentially and report a solution for the original model, resulting in dramatic

speed improvements. Setting DECOMP to 1 enables the decomposition feature.

LINGO defaults to not using matrix decomposition.

80. GLBOPT

The GLBOPT tolerance specifies by how much a new solution must beat the objective value of the

incumbent solution in order to become the new incumbent in the global solver. The default value for

GLBOPT is 1. e-5.

COMMAND-LINE COMMANDS 359

81. GLBDLT

The GLBDLT tolerance specifies how closely the additional constraints, added as part of the global

solver’s convexification process, must be satisfied. The default value for GLBDLT is 1. e-7.

82. GLBVBD

The GLBVBD tolerance sets the default variable bounds while the global solver is running. If this

parameter is set to d, then variables will not be permitted to assume values outside the range of [-d, d].

Setting this parameter as tightly as possible in the Value Field restricts the global solver from straying

into uninteresting regions and will reduce run times. You may also need to set the GLBUBD tolerance

(see below) to control how the global solver uses the bound. The default value for GLBVBD is 1. e

+10.

83. GLBUBD

The GLBUBD tolerance controls how the global solver’s variable bound tolerance, GLBVBD (see

above), is applied. There are three choices available: 0:None, 1:All, and 2:Selected. Selecting None

removes the variable bound entirely and is not recommended. The All setting applies the bound to all

variables. Finally, the Selected setting causes the global solver to apply the bound after an initial solver

pass to find the first local solution. The bound will only be applied to a variable if it does not cut off

the initial local solution. LINGO defaults to the Selected setting.

84. GLBBRN

The GLBBRN tolerance specifies the branching direction for variables when the global solver initially

branches on them. Six options are available:

GLBBRN Setting Branching Direction

0 Absolute Width

1 Local Width

2 Global Width

3 Global Distance

4 Absolute Violation

5 Relative Violation

The default setting for branching is 5, or Relative Violation.

85. GLBBXS

The GLBBXS parameter specifies the strategy to use for choosing between all active nodes in the

global solver’s branch-and-bound tree. The choices are: 0:Depth First and 1:Worst Bound. The default

is 1, or Worst Bound.

86. GLBREF

The GLBREF option sets the degree of algebraic reformulation performed by the global solver.

Algebraic reformulation is critical for construction of tight, convex sub-regions to enclose the

nonlinear and nonconvex functions. The available settings are: 0:None, 1:Low, 2:Medium, and 3:High.

The default is 3, or High.

360 CHAPTER 6

87. SUBOUT

The SUBOUT option is used to control the degree to which fixed variables are substituted out of the

ultimate math program passed to the solver engines.

For example, consider the model:

MAX= 20*X + 30*Y + 12*Z;

X = 2*Y;

X + Y + Z <= 110;

Y = 30;

If we run the GEN command, we see that LINGO is able to reduce this model down to the equivalent,

but smaller model:

MAX= 12 * Z + 2100;

Z <= 20;

From the third constraint of the original model it is obvious that Y is fixed at the value 30. Plugging

this value for Y into the first constraint, we can conclude that X has a value of 60. Substituting these

two fixed variables out of the original formulation yields the reduced formulation above.

In most cases, substituting out fixed variables yields a smaller, more manageable model. In some

cases, however, you may wish to avoid this substitution. An instance in which you might want to

avoid substitution would be when equations have more than one root. When m multiple roots are

present, reduction may select a suboptimal root for a particular equation. On the other hand, the global

and multistart solvers are adept at handling equations containing multiple roots. Thus, when using

these solvers one may wish to forgo fixed variable reduction.

The available options are:

Selecting None disables all fixed variable reduction. Selecting Always enables reduction. When Not

with global and multistart is selected, LINGO disables reduction whenever either the global or

multistart solvers are selected, otherwise reduction is performed. With the Linear Only option, LINGO

will not substitute a variable out unless it is a linear variable.

Note: You should be careful when turning off fixed variable reduction. If the model generator is

unable to substitute out fixed variables, you may end up turning a linear model into a more

difficult nonlinear model.

LINGO defaults to the Linear Only setting for fixed variable reduction.

SUBOUT Setting Reduction Degree

0 None

1 Always

2 Not with global and

multistart

3 Linear only

COMMAND-LINE COMMANDS 361

88. NLPVER

The NLPVER option is no longer supported.

89. DBGCLD and 90. DBGWRM

 These two parameters give you control over the linear solver that is used by the DEBUG command for

model debugging. The available choices are:

DBGCLD/DBGWRM Debug Linear Solver

0 Solver Decides — LINGO selects the solver

it believes is the most appropriate,

1 Primal — the primal simplex solver will be

used,

2 Dual — the dual simplex solver will be

used, and

3 Barrier — the barrier solver will be used

(requires a barrier solver license).

DBGCLD selects the solver for cold starts (starting without an existing basis in memory) and

DBGWRM selects the solver for warm starts (restarting from an existing basis).

LINGO defaults to Solver Decides for both the cold and warm debug solver.

91. LCRASH

The LCRASH parameter controls the use of aggressive crashing techniques on nonlinear programs.

Crashing is a heuristic process designed to find a good starting point for a model. The available

choices are: 0 for none and 1 to perform aggressive crashing. The default setting is 0 or off.

92. BCROSS

The BCROSS parameter controls whether or not the barrier solver performs a basis crossover on linear

programs. Barrier solvers do not normally return basic solutions. For example, if alternate optima

exist, the barrier method will return a solution that is, loosely speaking, the “average” of all alternate

optima. The basis crossover process converts a non-basic barrier solver solution to a basic (i.e., corner

point) solution. The available choices are: 0 for no crossover and 1 (the default) to perform a

crossover.

93. LOWMEM

The LOWMEM option may be used to guide LINGO’s memory usage. Enabling this option (SET

LOWMEM 1) causes LINGO to opt for less memory usage when solving a model. The downside is

that opting for less memory may result in longer runtimes.

LINGO defaults to disabling the LOWMEM option.

94. FILOUT

LINGO can export a model’s solution to databases using the ODBC (Open DataBase Connectivity)

standard. Solutions exported to a database are sent to tables within the database. The tables may

contain more space for values than you are actually exporting. In other words, there may be records at

362 CHAPTER 6

the end of a table that will not be receiving exported values from LINGO. The Fill Out ODBC Tables

option determines how these extra cells and records are treated.

When the Fill Out Ranges and Tables option is enabled (SET FILOUT 1), LINGO overwrites the

extra values with null entries. Conversely, when the option is not enabled, LINGO leaves any extra

values untouched.

The Fill Out ODBC Tables option is disabled by default.

95. DBGLVL

The DBGLVL option gives you control over the output level of the model debugging command,

DEBUG. The debugger is very useful in tracking down problems in models that are either infeasible

or unbounded. Possible output levels range from 1 (minimum output) to 15 (maximum output). In

general, you will want to generate as much output as possible. The only reason to restrict the amount

of output would be to speed debugging times on large models.

The default setting for the debugger output level is 15.

96. UNARYM

The UNARYM option is used to set the priority of the unary minus operator. The two available

options are High (SET UNARYM 1) are Low (SET UNARYM 0).

There are two theories as to the priority that should be assigned to the unary minus (i.e., negation)

operator in mathematical expressions. On the one hand, there is the Excel practice that the unary

minus operator should have the highest priority, in which case, the expression 3^2 would evaluate to

+9. On the other hand, there is the mathematicians’ preference for assigning a lower priority to unary

minus than is assigned to exponentiation, in which case, 3^2 evaluates to 9. Note that regardless

which relative priority is used, one can force the desired result through the use of parenthesis.

LINGO defaults to the Excel approach of setting a higher priority (High) on negation than on

exponentiation.

97. LINEAR

The LINEAR option can be enabled (SET LINEAR 1) to minimize memory usage on models that are

entirely linear. When this option is in effect, the model generator can take steps to dramatically reduce

overall memory consumption without sacrificing performance. In fact, if all your models are linear,

we recommend that you enable this option permanently as the default for your installation. The one

restriction is that models must prove to be entirely linear. If a single nonlinearity is detected, you will

receive an error message stating that the model is nonlinear and model generation will cease. At which

point, you should clear this option and attempt to solve the model again.

By default, the LINEAR option is disabled.

98. LOPTOL

The LOPTOL parameter allows you to control the setting for the linear optimality tolerance. This

tolerance is used to determine whether a reduced cost on a variable is significantly different from zero.

You may wish to loosen this tolerance (make it larger) on poorly scaled and/or large models to

improve performance.

The default setting for the LOPTOL parameter is 1.e-7.

COMMAND-LINE COMMANDS 363

99. SECORD

The SECORD option determines if the nonlinear solver will use second order derivates. If used (SET

SECORD 1), second order derivatives will always be computed analytically, as opposed to using

numerical differences. Computing second order derivatives will take more time, but the additional

information they provide may lead to faster runtimes and/or more accurate solutions.

LINGO defaults to not using second order derivatives.

100. NONNEG

When enabled (SET NONNEG 1), the NONNEG option tells LINGO to place a default lower bound of

0 on all variables. In other words, unless otherwise specified, variables will not be allowed to go

negative. Should you want a variable to take on a negative value, you may always override the default

lower bound of 0 using the @BND() function. If this option is disabled, then LINGO’s default

assumption is that variables are unconstrained and may take on any value, positive or negative.

Unconstrained variables are also referred to as be being free.

By default, LINGO enables the non-negative option, thereby setting a default lower bound of 0 on all

variables.

101. BIGMVL

Many integer programming models have constraints of the form:

f(x) ≤ M * z

where f(x) is some function of the decision variables, M is a large constant term, and z is a binary

variable. These types of constraints are called forcing constraints and are used to force the binary

variable, z, to 1 when f(x) is nonzero. In many instances, the binary variable is multiplied by a fixed

cost term in the objective; a fixed cost that is incurred when a particular activity, represented by f(x),

occurs. The large constant tem, M, Is frequently referred to as being a BigM coefficient.

Setting BigM too small can lead to infeasible or suboptimal models. Therefore, the BigM value will

typically have to be rather large in order to exceed the largest activity level of f(x). When BigM is

large, the solver may discover that by setting z slightly positive (within normal integrality tolerances),

it can increase f(x) to a significant level and thereby improve the objective. Although such solutions

are technically feasible to tolerances, they are invalid in that the activity is occurring without incurring

its associated fixed cost.

The BIGMVL parameter, or BigM threshold, is designed to avoid this problem by allowing LINGO to

identify the binary variables that are being set by forcing constraints. Any binary variable with a

coefficient larger than the BigM threshold will be subject to a much tighter integrality tolerance.

The default value for the BigM Threshold is 1.e8.

102. KILLSC

LINGO allows the input of scripts in the calc section. These scripts are useful for running multiple

models, where the outputs of one model feed into subsequent models as input. Models are solved in

calc sections with the @SOLVE command. Time limits can be placed on @SOLVE's via the TATSLV

parameter (see below). If a time limit is hit while @SOLVE is running, LINGO will interrupt the solve

and either continue executing the script with the next command, or terminate all processing. When the

KILLSC option is set to 0 (default), processing continues with the next statement. Setting KILLSC to 1

364 CHAPTER 6

causes LINGO to terminate all processing whenever the @SOLVE time limit is hit, and LINGO will

subsequently return to command-prompt level.

103. TATSLV

LINGO allows the input of scripts in the calc section. These scripts are useful for running multiple

models, where the outputs of one model feed into subsequent models as input. Models are solved in

calc sections with the @SOLVE command. Time limits can be placed on @SOLVE's via the TATSLV

parameter. If a time limit is hit while @SOLVE is running, LINGO will interrupt the solver and either

continue executing the script with the next command, or terminate all processing based on the setting

for the KILLSC parameter (see above). LINGO defaults to placing no time limit on @SOLVE

commands.

104. KBESTS

The KBESTS parameter is used to set the number of solutions desired as part of the K-Best solutions

feature of LINGO's mixed integer solver. Whenever this value is greater than 1, say K, LINGO will

return up to K unique solutions to the model. These solutions will have the property that they are the

next best solutions available in terms of their objective values. Less than K solutions may be returned

if a sufficient number of feasible solutions do not exist. Please refer to section K-Best Solutions

Example for an example of the use of the K-Best feature. The default value for this parameter is 1,

meaning that LINGO will find only one solution to integer models, i.e, the K-Best feature is disabled

by default.

105. LCORES

The LCORES parameter may be used to perform parallel solves of linear programs on multiple-cored

machines. One of four different linear solvers is chosen for each core. Assignment of solvers to cores

is controlled by the LCORE1 - LCORE4 parameters (see below). LINGO will take the solution from

the solver that finishes first and then interrupt the remaining solver threads.

The idea behind this approach is that different linear solvers will have relatively better or worse

performance on different classes of models. However, it may be difficult to predict beforehand the

solver that is most likely to outperform. So, by enabling multi-core solves, you guarantee that you will

always get top performance, even without knowledge beforehand of which solver is likely to run the

fastest.

Note: The multi-core feature requires that your machine have at least one core free for each solver

you wish to run. Using this feature with an inadequate number of cores will tend to decrease

overall performance.

For the LCORES parameter, you have the following choices: 1, 2, 3, or 4. When the default 1 option is

selected, the multi-core feature is disabled, and LINGO will run only one solver on linear programs,

namely the one specified as part of the SOLVEL option detailed above. When either option 2, 3, or 4 is

selected, LINGO will run linear solvers in the requested number of cores. The choice of the actual

solvers used is controlled by the LCORE1 - LCORE4 parameters (see below).

106-109. LCORE1 - LCORE4

The LCORE1, LCORE2, LCORE3 and LCORE4 parameters are used in conjunction with the LCORES

parameter to perform parallel solves of linear programs on multiple-cored machines. One of four

different linear solvers is chosen for each core, with assignments controlled by the LCORE1 - LCORE4

parameters. LINGO will take the solution from the solver that finishes first and then interrupt the

remaining solver threads.

COMMAND-LINE COMMANDS 365

The LCORES parameter gives the number of parallel solves that are to be performed on linear

programs, while LCORE1 - LCORE4 control the selection of the actual LP solver to use in each core.

Parameters LCORE1 - LCORE4 are meaningful only when LCORES is greater than 1. In addition, if

LCORES=<n>, then only the parameters LCORE1 - LCORE<n> are meaningful. When the default 1

option is selected for LCORES, the multi-core feature is disabled, and LINGO will run only one solver

on linear programs, namely the one specified as part of the SOLVEL option detailed above. When

either option 2, 3, or 4 is selected for LCORES, LINGO will run linear solvers in the requested number

of cores. The choice of the actual solvers used is controlled by the LCORE1 - LCORE4 parameters.

The idea behind this approach is that different linear solvers will have relatively better or worse

performance on different classes of models. However, it may be difficult to predict beforehand the

solver that is most likely to outperform. So, by enabling multi-core solves, you guarantee that you will

always get top performance, even without knowledge beforehand of which solver is likely to run the

fastest.

Note: The multi-core feature requires that your machine have at least one core free for each solver

you wish to run. Using this feature with an inadequate number of cores will tend to decrease

overall performance.

For each of the LCORE1-4 parameters, you have the following choices:

LCORE(i) Setting LP Solver Used in Core i

1 Primal1 — Primal simplex algorithm 1

2 Dual — Dual simplex algorithm

3 Barrier — Barrier/Interior point solver (available as a

option)

4 Primal2 — Primal simplex algorithm 2, installed as

part of the Barrier option

366 CHAPTER 6

As an example, the following session runs an LP model in two cores (LCORES=2), with the barrier

solver in core 1 (LCORE1=3) and the dual simplex solver in core2 (LCORE2=2):

: set lcores 2 !run in 2 cores

 Parameter Old Value New Value

 LCORES 1 2

: set lcore1 3 !barrier in core 1

 Parameter Old Value New Value

 LCORE1 1 3

: set lcore2 2 !dual simplex in core 2

 Parameter Old Value New Value

 LCORE2 2 2

: take lp.lng !load the model

: set terseo 1 !minimal output

 Parameter Old Value New Value

 TERSEO 0 1

: go !solve the model

 First returning solver: BARRIER

 Global optimal solution found.

 Objective value: 1272282.

 Infeasibilities: 0.000000

 Total solver iterations: 27

:

Once optimization is complete, LINGO will display a line indicating the solver that finished first. In

the solution report excerpt above, we see that the barrier solver was the first to completion.

110. SCALEW

After LINGO generates a model, it checks all the nonzero coefficients in the model and computes the

ratio of the largest to smallest coefficients. This ratio is an indicator of how well the model is scaled.

When the ratio gets to be too high, scaling is considered to be poor, and numerical difficulties may

result during the solution phase. If the scaling ratio exceeds the value of the SCALEW parameter,

LINGO will display error message 205. The default value for SCALEW is 1e12. Instead of simply

increasing the SCALEW setting to eliminate error 205, we strongly suggest that you attempt to rescale

the units of your model so as to reduce the largest-to-smallest coefficient ratio.

COMMAND-LINE COMMANDS 367

111. REFRAQ

The REFRAQ parameter allows you to control how frequently the linear solver refactors the basis

matrix. The options are either to set REFRAQ to 0, thereby letting LINGO determine the frequency,

or to set REFRAQ to some positive integer quantity. If an integer value, N, is selected, then the

linear solver will refactor every N iterations. Numerically tough and/or poorly scaled models may

benefit from more frequent refactoring. However, refactoring too frequently will cause the solver to

slow down.

The default setting for the REFRAQ is 0, which will typically result in refactoring about once every

100 iterations.

112. SPSMSZ

 The SPSMSZ parameter is used to control the default sample size for random variables in stochastic

programming (SP) whose outcomes are determined via sampling.

In many SP models, LINGO will generate a set of sample values for the some or all of the random

variables. This is particularly true when you have one or more continuous random variables, which

have an infinite number of possible outcomes. In such a case, sampling is the only viable alternative.

One way to specify the desired sample size for each stage is via the @SPSAMPSIZE function used

directly in the model's text. If, on the other hand, all or most stages should have the same sample size,

then you can use the SPSMSZ parameter to control the default sample size. Any stage which has not

had its sample size specified with @SPSAMPSIZE will default to a sample size equal to the SPSMSZ

parameter.

Note: In general, we prefer larger sample sizes to smaller ones in order to reduce sampling error.

However, SP models can become quite large if sample sizes aren't kept reasonably small.

This is particularly true for multiperiod models. For example, suppose we have a model with

just one random variable and ten periods/stages. If the default sample size is set to 3, then

there will be 3^10=59,049 possible scenarios. With this many scenarios, it would only take a

handful of decision variables to end up with an underlying deterministic equivalent model

approaching one million variables.

The SPSMSZ parameter defaults to a value of 2.

113. SPSCON

The SPSCON parameter is used to control whether LINGO samples continuous distributions only for

the random variables in stochastic programs, or if it samples both continuous and discrete random

variables. Obviously, continuous random variables must be subject to sampling, given the infinite

number of possible outcomes. On the other hand, we have a choice when it comes to discretely

distributed random variables. If this option is enabled, then LINGO will generate one outcome for

each density point in the discrete distribution of the random variable. These outcomes will be

weighted by their corresponding probabilities.

368 CHAPTER 6

Note: If there are many density points in the distributions for the discrete random variables, the

deterministic equivalent generated to solve the SP may become exceedingly large, in which

case, disabling this option may be required. Once this option is disabled, discrete random

variables will be sampled in the same way as the continuous random variables.

The SPSCON option defaults to being on.

114. SPSEED

The SPSEED parameter is used to establish the seed for the random number generator used in

generating samples for random variables in stochastic programming (SP) models.

In many SP models, LINGO will generate a set of sample values for the random variables. This is

particularly true when you have one or more continuous random variables, which leads to an infinite

number of possible outcomes. In such a case, sampling is the only viable alternative.

The SPSEED parameter defaults to a value of 1031.

Note: The seed parameter has no effect when running demo versions of LINGO. Demo versions

always use the default seed value, regardless of this parameter's setting.

115. SPMTHD

The SPMTHD, or SP Solver Method, option is used to select the solution method for a stochastic

programming (SP) model. Presently, the available choices are:

SPMTHD Setting SP Solver Method

0 Solver Decides — LINGO decides the most appropriate

method for solving the SP model

1 Deterministic Equivalent — LINGO generates and directly

solves the deterministic equivalent (DE) of the SP model

2 Nested Benders Decomposition — The DE for realistic SP

models can get to be quite large, in that the core model is

replicated once for every scenario. Fortunately, the DE

displays strong block-angular structure, which makes it

adaptable to decomposition techniques, such as nested Bender

decomposition (NBD). Note that the model must be entirely

linear to successfully use the NBD option.

The default setting for the SP Solver Method option is 0, or Solver Decides.

116. SPXVAL

The SPXVAL, or Calculate All Expected Value Statistics, option controls whether LINGO displays

information regarding the expected values for a number of statistics when solving stochastic

programming (SP) models. To illustrate, when solving the SPGAS.LG4 model when this option is

enabled, you will see the following expected values at the top of the solution report:

COMMAND-LINE COMMANDS 369

Expected value of:

 Objective (EV): 1400.000

 Wait-and-see model's objective (WS): 1326.667

 Perfect information (EVPI = |EV - WS|): 73.33333

 Policy based on mean outcome (EM): 1479.444

 Modeling uncertainty (EVMU = |EM - EV|): 79.44444

These values are a guide as to how the stochastic nature of the model is impacting the objective

value. The following is a brief description of these expected values:

Expected Value of Objective (EV) - is the expected value for the model's

objective over all the scenarios, and is the same as the reported objective

value for the model.

Expected Value of Wait-and-See Model's Objective (WS) - reports the

expected value of the objective if we could wait and see the outcomes of

all the random variables before making our decisions. Such a policy

would allow us to always make the best decision regardless of the

outcomes for the random variables, and, of course, is not possible in

practice. For a minimization, it's true that WS <= EV, with the converse

holding for a maximization. Technically speaking, WS is a relaxation of

the true SP model, obtained by dropping the nonanticipativity

constraints.

Expected Value of Perfect Information (EVPI) - is the absolute value of

the difference between EV and WS. This corresponds to the expected

improvement to the objective were we to obtain perfect information

about the random outcomes. As such, this is a expected measure of how

much we should be willing to pay to obtain perfect information

regarding the outcomes of the random variables.

Expected Value of Policy Based On Mean Outcome (EM) - is the

expected true objective value if we (mistakenly) assume that all random

variables will always take on exactly their mean values. EM is

computed using a two-step process. First, the values of all random

variables are fixed at their means, and the resulting deterministic model

is solved to yield the optimal values for the stage 0 decision variables.

Next, a) the stage 0 variables are fixed at their optimal values from the

previous step, b) the random variables are freed up, c) the

nonanticipativity constraints are dropped, and d) this wait-and-see model

is solved. EM is the objective value from this WS model.

Expected Value of Modeling Uncertainty (EVMU) - is the absolute value

of the difference EV - EM. It is a measure of what we can expect to

gain by taking into account uncertainty in our modeling analysis, as

opposed to mistakenly assuming that random variables always take on

their mean outcomes.

370 CHAPTER 6

Note: The above approach for computing EM and EVMU makes unambiguous sense only for

models with a stage 0 and a stage 1. If there are later random variables in stages 2, 3, etc.,

then there are complications. For example, for decisions in later stages, we have seen the

outcomes from the random variables in earlier stages, so considering these random variables

to take on their mean value does not make sense. For models with additional stages beyond 0

and 1, EVMU will merely be an approximation of the true expected value of modeling

uncertainty.

Note: Computing these expected value statistics can be very time consuming for large models. If

speed is an issue, you may wish to disable this feature on the LINGO|Options|SP Solver tab.

The SPXVAL option is enabled by default.

117. SPMAXS

The SPMAXS, or Max Scenarios Limit, parameter is used to establish a limit on the maximum number

of scenarios in a stochastic programming (SP) model before forcing automatic sampling of the random

variables.

The SPMAXS parameter defaults to a value of 40,000 scenarios.

118. PRECIS

LINGO defaults to displaying seven significant digits for values in standard solution reports. In some

cases, you may desire more or less than seven digits of precision, in which case, you will need to

adjust the PRECIS parameter.

For example, suppose we have a very simple model consisting of the single expression:
 X = 1/3;

The default solution report for this model using seven digits of precision would contain:

Variable Value

 X 0.3333333

 Row Slack or Surplus

 1 0.000000

Increasing the Precision parameter to 16 and resolving yields the following solution report with 16

significant digits:

Variable Value

 X 0.3333333333333333

 Row Slack or Surplus

 1 0.000000000000000

The default value for the PRECIS parameter is seven significant digits.

COMMAND-LINE COMMANDS 371

119. LOOPOP

The LOOPOP, or Loop optimization, parameter is used to either enable or disable LINGO's loop

optimization step. Loop optimization reformulates expressions containing set looping functions in

order to make them more efficient, while maintaining mathematical equivalency. The end goal of loop

optimization is to minimize the number of passes through the inner loop of any nested loops in an

expression.

As an example, consider the following transportation model fragment, that just contains constraints for

satisfying customer demand:

MODEL:

! A transportation problem fragment;

SETS:

 WAREHOUSE /1..50/ : CAPACITY;

 CUSTOMER /1..5000/ : DEMAND;

 ROUTES(WAREHOUSE, CUSTOMER) : COST, VOLUME;

ENDSETS

! The demand constraints;

 @FOR(CUSTOMER(J):

 @SUM(ROUTES(I, J): VOLUME(I, J)) >= DEMAND(J)

);

END

Transportation Model Fragment with Inefficient Constraints

In the demand constraints expression there are two loops an outer @FOR() over the CUSTOMER

set and an inner @SUM() over the ROUTES set. As written, the inner loop must be executed

50*50*5000=1.25 million times. Note that a valid reformulation of these demand constraints would

be:

! The demand constraints;

 @FOR(CUSTOMER(J):

 @SUM(WAREHOUSE(I): VOLUME(I, J)) >= DEMAND(J)

);

With the expression rewritten in this manner, the inner loop will now only be executed 50*5000 times,

for a 98% reduction in total passes. LINGO's loop optimizer seeks out such inefficient loops and,

invisible to the user, rewrites them before the model gets passed to the generator. Of course, the end

result of such reformulations are faster generation times. In fact, the speedup from reformulation can

be quite dramatic in many cases. In this particular example, the reformulated version ran over 400

times faster in the model generator.

LINGO defaults to disabling the LOOPOP feature.

372 CHAPTER 6

120. HEUCUT

The HEUCUT, or heuristics cutoff criterion, option controls the criterion for terminating integer

programming heuristics. The possible settings for HEUCUT are:

HEUCUT Value Cutoff Criterion

0 LINGO decides

1 Time

2 Iterations

Under the Time setting, LINGO terminates heuristics after a certain amount of elapsed time. The

Iterations option terminates heuristics after a certain number of iterations. In general, the Time setting

results in the fastest performance. However, due to shifting computational loads on a machine,

solution paths may change under the Time setting from one solve to the next, potentially resulting in

non-reproducible solutions. If reproducibility of a runs is a concern, then the Iterations option should

be selected. Under the Solver Decides setting, LINGO chooses the most appropriate strategy.

The default setting for HEUCUT is 1, Solver Decides.

121. NUMBIN - Number of Histogram Bins

The NUMBIN parameter determines the number of bins used in histogram charts. Set this parameter to

0 to have LINGO automatically determine a sensible bin count.

The default setting for NUMBIN is 0.

122. SPBIGM - SP Big M Coefficient

The SPBIGM parameter is used by the Stochastic Programming (SP) solver in constructing forcing

constraints that may be required in the deterministic models generated by the solver. Forcing

constraints are generally added to force binary variables to 1 when some activity occurs. For example,

suppose x is a continuous variable and z is a binary variable. A forcing constraint that would drive z to

1 whenever x is positive would be:

 x M * z

where M is some large number. M in this case is the SPBIGM parameter.

There are two things to note about M. First, if M is too small, a forcing constraint can become

infeasible, making the entire model infeasible. In general, M should be at least as large as the largest

possible value for x so as not to introduce an infeasibility. However, from an algorithmic point of

view, M should not be too large. If M is unrealistically large, it will be tougher for the integer solver to

converge, plus it also introduces the potential round off error.

The default setting for M should be sufficient for most models. However, if your SP model is

infeasible for no known reason, you may want to try increasing M. On the other hand, if your SP is

running slow, you may want to try reducing M.

The SPBIGM parameter defaults to a value of 1.e8.

COMMAND-LINE COMMANDS 373

123. NSLPSV - SLP Solver

If the NSLPSV parameter is enabled, LINGO uses a successive linear programming (SLP) algorithm

for its nonlinear solver. This technique uses a linear approximation of the true nonlinear model within

successive, small regions. This then allows the use of the fast linear solver for optimizing each linear

subregion. In general, the SLP solver will not be well suited for highly nonlinear models. However, it

may offer better performance than the standard nonlinear solver when a model has few nonlinear

variables, such that the model is "mostly linear".

LINGO defaults to not enabling the SLP Solver option.

124. FORCEB - Enforce Bounds in CALC and DATA

If the Enforce Bounds In CALC and DATA option is enabled, it causes LINGO to check the values of

any variables input in calc and data sections against their bounds. Normally, variable bounds apply

only to optimizable variables that appear in the model's constraints and not to variables fixed to

constant values in calc and data sections. If you would also like LINGO to check variables fixed in

calc and data sections against their bounds, then you will need to enable this option.

By default, this option is disabled.

125. NTHRDS - Number of Execution Threads

The NTHRDS option controls the maximum number of threads, or processors, to utilize at any given

time. Interesting settings for the thread count are:

 0 — LINGO determines the number of processors on the system and sets the thread limit to

this number.

 1 — Only one processor will be used, causing LINGO to run in single-threaded mode.

 N — Here, N is some positive integer greater than 1 and less-than-or-equal-to 32, in which

case, LINGO will set the maximum number of threads to N.

LINGO defaults to running in single-threaded mode with a thread limit of 1.

By default, this option is disabled.

Note: Setting the maximum thread count parameter, NTHRDS, to N does not guarantee than N

cores will be fully utilized throughout the entire solve. There may be serial sections inside

parallel code that get executed from time to time, causing only one core to be utilized.

Concurrent algorithms may also have fewer than N different serial algorithms to launch,

meaning fewer than N cores will be occupied.

374 CHAPTER 6

126. MTMODE - Multithread Mode

The MTMODE parameter controls the multithreading mode that LINGO operates in. LINGO offers

multicore extensions to its model generator and solvers. The multicore extensions are of two types:

concurrent and parallel. Concurrent algorithms run two or more different serial algorithms on multiple

copies of the same model, using a separate thread for each algorithm, terminating as soon as the

winner thread finishes. These “different algorithms” may in fact be the same algorithm type, but using

different strategies and/or parameters. Parallel algorithms, on the other hand, parallelize

computationally intensive portions of the serial algorithm to distribute the workload across multiple

threads.

The following multicore extensions are currently available in LINGO:

LINGO Component Model Class Parallel

Option

Concurrent Option

Barrier Solver Linear Programs Yes No

BNP Solver Mixed Integer Programs Yes No

Global Solver Nonlinear Programs Yes No

Integer Solver Mixed Integer Programs Yes Yes

Linear Solver Linear Programs No Yes

Model Generator All Yes No

Multistart Solver Nonlinear Programs Yes No

Stochastic Solver Stochastic Programs Yes No

The available settings for the Mode, or multithreading mode, parameter are as follows:

 -1 — Solver Decides — The best available multithreading strategy, either parallel or

concurrent, will be selected for each step of the solution process.

 0 — Off in Solver — Multithreading will be disabled in the solvers, but allowed in the model

generator if the number of threads is greater than 1.

 1 — Prefer Parallel — If a parallel option is available for a particular solution step, then it

will be selected, otherwise, a concurrent option will be selected when available.

 2 — Parallel Only - If a parallel option is available for a particular solution step, then it will

be selected, otherwise, the step will be executed in single-thread mode.

 3 — Prefer Concurrent - If a concurrent option is available for a particular solution step, then

it will be selected, otherwise, a parallel option will be selected when available.

 4 — Concurrent Only - If a concurrent option is available for a particular solution step, then it

will be selected, otherwise, the step will be executed in single-thread mode.

Note: If the maximum thread count parameter, NTHRDS, is set to 1, then the multithreading mode

setting will be ignored, and LINGO will execute in single-threaded mode.

COMMAND-LINE COMMANDS 375

Note: Setting the maximum thread count parameter, NTHRDS, to N does not guarantee than N cores

will be fully utilized throughout the entire solve. There may be serial sections inside parallel

code that get executed from time to time, causing only one core to be utilized. Concurrent

algorithms may also have fewer than N different serial algorithms to launch, meaning fewer

than N cores will be occupied.

127. BNPBLK - BNP Block Determination

The BNPBLK parameter controls how the the branch-and-price (BNP) solver determines the block

structure of the model. The BNP solver is a mixed integer programming solver for solving models with

block structures like the following:

Minimize: c(k) * x(k)

Subject To:

 A(k) * x(k) = d (linking constraints)

 x(k) in X(k), for all k (decomposition structure)

where d, c(k) and x(k) are vectors and A(k) is a matrix with appropriate dimensions. x(k) contains

decision variables and X(k) denotes a linear feasible domain for x(k).

The BNP solver is a hybrid of branch-and-bound, column generation, and Lagrangean relaxation

methods. It can help to find either the optimal solution or a better lower bound (the Lagrangean bound)

for a minimization problem. Based on the decomposition structure, the solver divides the original

problem into several subproblems, or blocks, and solves them (almost) independently, exploiting

parallel processing if multiple cores are available.

BNP may perform better than the default MIP solver if: a) the number of linking constraints is small,

b) the number of blocks is large and they are of approximately the same size, and c) the number of

available processors (or cores) is large, e.g., 4 or more. Also, there may be some models for which

BNP finds a good solution and good bound more quickly than the default MIP algorithm, although it

may take longer to prove optimality.

The Blocks option for the BNP solver controls the number of subproblems, or blocks, that the model

will be partitioned into. Possible setting for the Blocks parameter are:

 -1 - Row Names - Row names are constructed in such a way as to specify each row's block (an

example is given below).

 0 - Off - This will disable the BNP solver, in which case, the standard MIP solver will be used

to solve all mixed integer linear programs.

 1 - Specified - The user explicitly specifies each row's block using the @BLOCKROW

function.

 N - A positive integer, greater-than-or-equal-to 2, indicating the number of independent

blocks to try and partition the model into via one of the graph partitioning algorithms

provided by LINGO. The actual heuristic used is chosen with the Heuristic parameter.

The default setting for Blocks is 0, or Off, i.e., the BNP solver will not be used on integer programming

models.

376 CHAPTER 6

Note: The BNP solver can run the independent subproblems on separate threads to improve

performance. So, if your machine has multiple cores, be sure to set the thread limit to allow

for multithreading. Refer to the NTHRDS parameter above.

For more information on block determination, the BNP solver and the BNPBLK parameter, refer to the

section BNP Solver in Chapter 5.

128. BNPHEU - BNP Block Finding Heuristic

The Block Heuristic parameter controls the heuristic used to partition the model into blocks. You may

currently select from two graph partitioning algorithms named simply GP1 and GP2; simple set

BNPHEU to 1 for GP1 and 2 for GP2.

For more information on block finding heuristics, the BNP solver and the BNPHEU parameter, refer

to the section BNP Solver in Chapter 5.

The default setting for BNPHEU is 1, i.e., the GP1 graph partitioning algorithm.

129. REPROD - Favor Reproducibility

The REPROD parameter allows you to indicate if your preference is for reproducible solutions across

multiple runs, or if your preference is for faster average runtimes.

A number of solver steps have been found to perform better when using elapsed time as a measure of

work performed. The problem with this approach is that the actual amount of work that gets performed

over a fixed time interval will vary slightly across runs depending on the machine's load factor. Many

models have alternate optimal solutions, with equal objectives but different variable values. LINGO is

indifferent as to which solution is selected; it just wants to find a feasible solution with the best

objective value, regardless of the variables values. The end result of this variability in work performed

is that a different solution path may be selected from one run to the next, in which case, you may end

up with a different alternate optimum from a previous run.

On the other hand, enabling the Favor reproducibility over performance option causes LINGO to use

fixed measures of work (such as iteration counts), allowing solutions to be reproducible across runs

when using the same machine.

By default, LINGO disables the Favor reproducibility over performance option. However, if

reproducibility of results is important for your application, then you should enable this option.

COMMAND-LINE COMMANDS 377

9. Miscellaneous
The Miscellaneous category contains various LINGO commands that don’t fall into one of the other

eight command categories.

!
Place an exclamation mark in a command and LINGO ignores the remainder of the line following the

exclamation mark.

QUIT
Issue the QUIT command to close the LINGO application. Be sure to save any changes made to your

model before quitting.

TIME
Displays the current elapsed time since the start of the current LINGO session as illustrated in the

following example:

: TIME

 Cumulative HR:MIN:SEC = 2:22:39.54

:

379

7 LINGO’s Operators and
Functions

LINGO provides the mathematical modeler with a number of functions and operators. For our

purposes, we have broken them down into the following categories:

 Standard Operators - Arithmetic, logical, and relational operators such as +,

-, =, and <=.

 Mathematical - Trigonometric and general mathematical functions.

 Financial - Common financial functions used to determine present values.

 Probability - Functions used to determine a wide range of probability and

statistical answers. Poisson and Erlang queuing functions are among those

provided.

 Variable Domain - Functions used to define the range of values (domain) a

variable can take on (e.g., lower and upper bounds or integer restrictions).

 Set Handling - Functions useful for manipulating sets.

 Set Looping - Looping functions used to perform an operation over a set

(e.g., to compute the sum, maximum, or minimum of a set of numbers).

 Interface - Functions used to create links to external data sources.

 Distributions - Probability distributions, including cumulative, inverse and

pdf functions.

 Miscellaneous - Miscellaneous functions are listed under this heading.

Select a link above for an in-depth description of the operators and functions available in LINGO.

Standard Operators
LINGO has three types of standard operators:

1. Arithmetic,

2. Logical, and

3. Relational.

380 CHAPTER 7

Arithmetic Operators
Arithmetic operators work with numeric operands. LINGO has five binary (two-operand) arithmetic

operators, shown here:

Operator Interpretation

^ Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

Since these are binary operators, they require two arguments—one immediately to the left of the

operator and one immediately to the right.

The only unary (one-operand) arithmetic operator in LINGO is negation (-). In this case, the operator

applies to the operand immediately to the right of the negation sign.

These operators should be familiar to all readers. The priority of the operators is given in the

following:

Priority Level Operator(s)

Highest - (negation)

 ^

 * /

Lowest + -

Operators with the highest priority are evaluated first, in order from left to right. As an example,

consider the expression:

4 + 6 / 2

The division operator (/) has higher priority than the addition operator (+). Thus, it is evaluated first,

leaving: 4 + 3. Evaluating the remaining addition gives a final result of 7.

The order of evaluation of the operators can be controlled with parentheses. LINGO evaluates the

equation in the innermost parentheses first and works out from there. If we recast the expression from

above as:

(4 + 6) / 2

we will now get a final result of 5, instead of 7. The 4 and 6 are added first because they appear in

parentheses. The resulting sum of 10 is divided by 2, giving the final result of 5.

Note: LINGO follows the Excel convention of assigning the highest priority to the negation

operator. Given this, LINGO evaluates -3^2 as positive 9. Some users may prefer to give the

unary minus operator a lower priority so that -3^2 evaluates to minus 9. You can do this by

setting the Unary Minus Priority option to Low via the Model Generator tab of the

LINGO|Options command. Once you set the unary minus operator’s priority is set to low its

priority will be lower than multiplication and division, but higher than addition and

subtraction.

OPERATORS AND FUNCTIONS 381

Logical Operators
Logical operators were used in Chapter 2, Using Sets, when we introduced set looping functions. In

LINGO, logical operators are primarily used in conditional expressions on set looping functions to

control which members of a set are to be included or excluded in the function. They also play a role in

building set membership conditions.

Logical operators return either TRUE or FALSE as a result. LINGO uses the value 1 to represent

TRUE, and the value 0 to represent FALSE. LINGO considers an argument to be FALSE if, and only

if, it is equal to 0. Thus, for example, arguments of 1, 7, -1, and .1234 would all be considered TRUE.

LINGO has nine logical operators, which are all binary with the single exception of the #NOT#

operator, which is unary. LINGO’s logical operators and their return values are listed below:

Logical Operator Return Value

#NOT# TRUE if the operand immediately to the right is FALSE, else

FALSE.

#EQ# TRUE if both operands are equal, else FALSE.

#NE# TRUE if both operands are not equal, else FALSE.

#GT# TRUE if the left operand is strictly greater than the right

operand, else FALSE.

#GE# TRUE if the left operand is greater-than-or-equal-to the right

operand, else FALSE.

#LT# TRUE if the left operand is strictly less than the right operand,

else FALSE.

#LE# TRUE if the left operand is less-than-or-equal-to the right

operand, else FALSE.

#AND# TRUE only if both arguments are TRUE, else FALSE.

#OR# FALSE only if both its arguments are FALSE, else TRUE.

The priority ranking of the logical operators is:

Priority Level Operator(s)

Highest #NOT#

 #EQ# #NE# #GT# #GE# #LT# #LE#

Lowest #AND# #OR#

Relational Operators
In LINGO, relational operators are used in a model to specify whether the left-hand side of an

expression should be equal to, less-than-or-equal-to, or greater-than-or-equal-to the right-hand side.

Relational operators are used to form the constraints of a model. Relational operators are distinct from

the logical operators #EQ#, #LE#, and #GE#, in that they tell LINGO the optimal solution of the

model must satisfy the direction of the relational operator. Logical operators, on the other hand, merely

report whether or not a condition is satisfied.

Relational operators have the lowest priority of all the operators.

382 CHAPTER 7

The three relational operators are described below:

Relational Operator Interpretation

= The expression to the left must equal the one on the right.

<= The expression to the left must be less-than-or-equal-to the

expression on the right

>= The expression to the left must be greater-than-or-equal-to

the expression on the right

LINGO will also accept “<” for less-than-or-equal-to, and “>” for greater-than-or-equal-to.

Note: LINGO does not directly support strictly less than and strictly greater than relational

operators. In general, it would be unusual to find a good formulation that requires such a

feature. However, if you want A to be strictly less than B:

 A < B,

 then convert this expression to an equivalent less-than-or-equal-to expression as follows:

 A + e B,

 where e is a small constant term whose value is dependent upon how much A must be “less

than” B in order for you to consider them to be “not equal”.

Operator Priority Table
The following table combines all three types of operatorsarithmetic, logical, and relationalinto a

single table showing their relative priority rankings.

Priority Level Operator(s)

Highest #NOT# -(negation)

 ^

 * /

 + -

 #EQ# #NE# #GT# #GE# #LT# #LE#

 #AND# #OR#

Lowest <= = >=

Note: LINGO follows the Excel convention of assigning the highest priority to the negation

operator. Given this, LINGO evaluates -3^2 as positive 9. Some users may prefer to give the

unary minus operator a lower priority so that -3^2 evaluates to minus 9. You can do this by

setting the Unary Minus Priority option to Low via the Model Generator tab of the

LINGO|Options command. Once you set the unary minus operator’s priority is set to low its

priority will be lower than multiplication and division, but higher than addition and

subtraction.

OPERATORS AND FUNCTIONS 383

Note: In the absence of parentheses, all operators of the same priority are processed from left to

right. Thus, 4^3^2 evaluates to 4096. Be forewarned that for the exponentiation operator,

"^", this differs from the convention that some mathematicians follow, namely, to have the

exponentiation operator evaluated from right to left, i.e., 4^3^2 would evaluate to 262144.

When in doubt, use parentheses to enforce your intentions, e.g., 4^(3^2) unambiguously

evaluates to 262144.

Mathematical Functions
LINGO offers a number of standard, mathematical functions. These functions return a single result

based on one or more scalar arguments. These functions are listed below:

@ABS(X)
Returns the absolute value of X.

@ACOS(X)

Returns the inverse cosine, or arccosine, of X, where X is an angle in radians.

@ACOSH(X)

Returns the inverse hyperbolic cosine of X, where X is an angle in radians.

@ASIN(X)

Returns the inverse sine, or arcsine, of X, where X is an angle in radians.

@ASINH(X)

Returns the inverse hyperbolic sine of X, where X is an angle in radians.

@ATAN(X)

Returns the inverse tangent, or arctangent, of X, where X is an angle in radians.

@ATAN2(Y, X)

Returns the inverse tangent of Y/X.

@ATANH(X)

Returns the inverse hyperbolic tangent of X, where X is an angle in radians.

@COS(X)
Returns the cosine of X, where X is an angle in radians.

@COSH(X)

Returns the hyperbolic cosine of X, where X is an angle in radians.

@EXP(X)
Returns e (i.e., 2.718281 ...) raised to the power X.

@FLOOR(X)

Returns the integer part of X. To be specific, if X 0, @FLOOR returns the

largest integer, I, such that I X. If X is negative, @FLOOR returns the most

negative integer, I, such that I X.

384 CHAPTER 7

@INT(X)
This returns the integer part of X. To be specific, if X ≥ 0, @INT returns the largest

integer, I, such that I ≤ X. If X is negative, @INT returns the largest negative integer, I,

such that X ≥ I.

@INTEGRAL(PROCEDURE, X, XL, XU, Y)
This function performs numeric integration using a variant of Simpson's Rule. Argument

PROCEDURE is the name of a procedure which calculates the function to be integrated. The

function's value should be placed in Y in the specified procedure. The integral will be taken

with respect to X over the interval [XL,XU]. At present, @INTEGRAL may only be used in

calc sections.

Example 1:

In this example, we illustrate how to compute the integral of the standard normal distribution

over the interval [-5,1.645].

MODEL:

! Takes the integral of the standard normal

distribution over the interval [-5,1.645];

PROCEDURE NORMAL:

Y = @EXP(-X * X / 2) / ((2 * @PI()) ^ 0.5);

ENDPROCEDURE

CALC:

PROB = @INTEGRAL(NORMAL, X, -5, 1.645, Y);

ENDCALC

END

@LGM(X)
Returns the natural (base e) logarithm of the gamma function of X (i.e., log of

(X - 1)!). It is extended to noninteger values of X by linear interpolation.

@LOG(X)

Returns the natural logarithm of X.

@LOG10(X)

Returns the base-10 logarithm of X.

@MOD(X,Y)

Returns the value of X modulo Y, or, in other words, the remainder of an integer divide of X

by Y.

@PI()

Returns the value of PI, i.e., 3.14159265....

@POW(X,Y)
Returns the value of X raised to the Y power.

@ROUND(X, N)
The @ROUND function rounds X to the closest number to X having N digits. For

example, if X is equal to 2.576 and N is 2, then @ROUND(X, N) will return 2.58. If X is

equal to -2.576 and N is 2, then @ROUND(X, N) will return --2.58.

OPERATORS AND FUNCTIONS 385

@ROUNDDOWN(X, N)
The @ROUNDDOWN function rounds X down (towards 0) to the closest number to X

having N digits. For example, if X is equal to 2.576 and N is 2, then @ROUNDDOWN(

X, N) will return 2.57. If X is equal to -2.576 and N is 2, then @ROUNDUP(X, N) will

return -2.57.

@ROUNDUP(X, N)
The @ROUNDUP function rounds X up (away from 0) to the closest number to X having

N digits. For example, if X is equal to 2.576 and N is 2, then @ROUNDUP(X, N) will

return 2.58. If X is equal to -2.576 and N is 2, then @ROUNDUP(X, N) will return -2.58.

@SIGN(X)

Returns -1 if X < 0, 0 if X = 0 and +1 if X > 0.

@SIN(X)
Returns the sine of X, where X is the angle in radians.

@SINH(X)

Returns the hyperbolic sine of X, where X is an angle in radians.

@SMAX (X1, X2, ..., XN)
Returns the maximum value of X1, X2, ..., and XN.

@SMIN(X1, X2, ..., XN)

Returns the minimum value of X1, X2, ..., and XN.

 @SQR(X)

Returns the value of X squared.

 @SQRT(X)
Returns the square root of X.

 @TAN(X)
Returns the tangent of X, where X is the angle in radians.

@TANH(X)

Returns the hyperbolic tangent of X, where X is an angle in radians.

386 CHAPTER 7

Financial Functions
LINGO currently offers two financial functions. One computes the present value of an annuity. The

other returns the present value of a lump sum.

@FPA(I, N)

This returns the present value of an annuity. That is, a stream of $1 payments per period at an interest

rate of I for N periods starting one period from now. I is not a percentage, but a fraction representing

the interest rate (e.g., you would use .1 to represent 10%). To get the present value of an annuity

stream of $X payments, multiply the result by X.

@FPL(I, N)

This returns the present value of a lump sum of $1 N periods from now if the interest rate is I per

period. I is not a percentage, but a fraction representing the interest rate (e.g., you would use .1 to

represent 10%). To get the present value of a lump sum of $X, multiply the result by X.

Probability Functions
LINGO has a number of probability related functions. There are examples that make use of most of

these functions in Chapter 12, Developing More Advanced Models, and in Appendix A, Additional

Examples of LINGO Modeling.

@NORMINV(P, MU, SIGMA)

This is the inverse of the normal cumulative distribution. Given a probability, P, the mean of the of

the normal distribution, MU, and its standard deviation, SIGMA, this function returns the value Z such

that the probability of a normally distributed random variable being less-than-or-equal to Z is P. This

function is being replaced by the @PNORMINV function, documented below in the Distributions

section.

@NORMSINV(P)

This is the inverse of the standard normal cumulative distribution. Given a probability, P, this function

returns the value Z such that the probability of a normally distributed random variable with a mean of 0

and a standard deviation of 1 being less-than-or-equal to Z is P.

@PBN(P, N, X)

This is the cumulative binomial probability. It returns the probability that a sample of N items, from a

universe with a fraction of P of those items defective, has X or less defective items. It is extended to

noninteger values of X and N by linear interpolation. This function is being replaced by the

@PBINOCDF function, documented below in the Distributions section.

@PCX(N, X)

This is the cumulative distribution function for the Chi-squared distribution with N degrees of

freedom. It returns the probability that an observation from this distribution is less-than-or-equal-to X.

This function is being replaced by the @PCHISCDF function, documented below in the Distributions

section.

OPERATORS AND FUNCTIONS 387

@PEB(A, X)

This is Erlang’s busy probability for a service system with X servers and an arriving load of A, with

infinite queue allowed. The result of @PEB can be interpreted as either the fraction of time all servers

are busy or the fraction of customers that must wait in the queue. It is extended to noninteger values of

X by linear interpolation. The arriving load, A, is the expected number of customers arriving per unit of

time multiplied by the expected time to process one customer.

@PEL(A, X)

This is Erlang’s loss probability for a service system with X servers and an arriving load of A, no queue

allowed. The result of @PEL can be interpreted as either the fraction of time all servers are busy or the

fraction of customers lost due to all servers being busy when they arrive. It is extended to noninteger

values of X by linear interpolation. The arriving load, A, is the expected number of customers arriving

per unit of time multiplied by the expected time to process one customer.

@PFD(N, D, X)

This is the cumulative distribution function for the F distribution with N degrees of freedom in the

numerator and D degrees of freedom in the denominator. It returns the probability that an observation

from this distribution is less-than-or-equal-to X. This function is being replaced by the @PFDSTCDF

function, documented below in the Distributions section.

@PFS(A, X, C)

This returns the expected number of customers waiting for or under repair in a finite source Poisson

service system with X servers in parallel, C customers, and a limiting load A. It is extended to

noninteger values of X and C by linear interpolation. A, the limiting load, is the number of customers

multiplied by the mean service time divided by the mean repair time.

@PHG(POP, G, N, X)

This is the cumulative hypergeometric probability. It returns the probability that X or fewer items in

the sample are good, given a sample without replacement of N items from a population of size POP

where G items in the population are good. It is extended to noninteger values of POP, G, N, and X by

linear interpolation. This function is being replaced by the @PHYPGCDF function, documented below

in the Distributions section.

@PPL(A, X)

This is the linear loss function for the Poisson distribution. It returns the expected value of MAX(0,

Z-X), where Z is a Poisson random variable with mean value A.

@PPS(A, X)

This is the cumulative Poisson probability distribution. It returns the probability that a Poisson random

variable, with mean value A, is less-than-or-equal-to X. It is extended to noninteger values of X by

linear interpolation. This function is being replaced by the @PPOISCDF function, documented below

in the Distributions section.

@PSL(X)

This is the unit normal linear loss function. It returns the expected value of MAX(0, Z-X), where Z is a

standard normal random variable. In inventory modeling, @PSL(X) is the expected amount that

demand exceeds a level X, if demand has a standard normal distribution.

388 CHAPTER 7

@PSN(X)

This is the cumulative standard normal probability distribution. A standard normal random variable

has mean 0.0 and standard deviation 1.0 (the bell curve, centered on the origin). The value returned by

@PSN is the area under the curve to the left of the point on the ordinate indicated by X. This function

is being replaced by the @PNORMCDF function, documented below in the Distributions section.

@PTD(N, X)

This is the cumulative distribution function for the t distribution with N degrees of freedom. It returns

the probability that an observation from this distribution is less-than-or-equal-to X. This function is

being replaced by the @PSTUTCDF function, documented below in the Distributions section.

@QRAND(SEED)

The @QRAND function produces a sequence of “quasi-random” uniform numbers in the interval (0,

1). @QRAND is only permitted in a data section. It will fill an entire attribute with quasi-random

numbers. Generally, you will be filling two-dimensional tables with, say, m rows and n variables. m

represents the number of scenarios, or experiments, you want to run. n represents the number of

random variables you need for each scenario or experiment. Within a row, the numbers are

independently distributed. Among rows, the numbers are “super uniformly” distributed. That is, the

numbers are more uniformly distributed than you would expect by chance. These numbers are

generated by a form of “stratified sampling”.

For example, suppose m = 4 and n = 2. Even though the numbers are random, you will find that

there will be exactly one row in which both numbers are in the interval (0, .5), exactly one row in

which both numbers are in (.5, 1), and two rows in which one number is less than .5 and the other

is greater than .5. Using @QRAND allows you to get much more accurate results for a given

number of random numbers in a Monte Carlo model. If you want 8 ordinary random numbers,

then use @QRAND(1,8) rather than @QRAND(4,2). An example of @QRAND follows:

MODEL:

 DATA:

 M = 4;

 N = 2;

 SEED = 1234567;

 ENDDATA

 SETS:

 ROWS /1..M/;

 COLS /1..N/;

 TABLE(ROWS, COLS): X;

 ENDSETS

 DATA:

 X = @QRAND(SEED);

 ENDDATA

END

Example of @QRAND function

If you don’t specify a seed value for @QRAND, then LINGO will use the system clock to construct a

seed value.

OPERATORS AND FUNCTIONS 389

@RAND(SEED)

This returns a pseudo-random number between 0 and 1, depending deterministically on SEED.

Variable Domain Functions
The default assumption for a variable is that it is continuous with a lower bound of 0. Variable domain

functions place additional restrictions on the values that variables can assume. The functions and their

effects are as follows:

@BIN(variable)

Restricts variable to being a binary (0/1) integer value.

@BND(lower_bound, variable, upper_bound)

Limits variable to being greater-than-or-equal-to lower_bound and less-than-or-equal-to upper_bound.

@CARD('card_set_name', variable|N)

Use @CARD to restrict a a set of variables to have a cardinality of N. See section Cardinality for more

information.

@FREE(variable)

Removes the default lower bound of zero on variable, allowing it to take any positive or negative

value.

@GIN(variable)

Restricts variable to integer values (e.g., 0,1,2, ...).

@PRIORITY(variable, priority)

Sets the branching priority for integer variable variable to the value priority. Variables with higher

priorities will tend to be branched on sooner than variables with lower priorities.

@SEMIC(lower_bound, variable, upper_bound,)

Restricts variable to being either 0 o in the range of [lower_bound, upperbound]. Refer to section

Semicontinuous Variables for more information.

@SOS{1|2|3}('sos_set_name', variable)

Use the @SOS1, @SOS2 and @SOS3 functions to set up special ordered sets of variables. Refer to

section SOS Variables for more information.

You may use the @FOR function to apply variable domain functions to all the elements of an attribute.

Variable domain functions are discussed in detail in Using Variable Domain Functions.

390 CHAPTER 7

Set Handling Functions
 LINGO offers several functions that assist with handling sets. The @IN function determines if a set

element is contained in a set. The @INDEX function returns the index of a set element within its set,

while @INSERT allows you to dynamically add set members to derived set. The @SIZE function

returns the number of elements in a set. Finally, the @WRAP function is useful for "wrapping" set

indices from one end of a time horizon to another in multiperiod planning models. These are described

in more detail below.

@IN(set_name, primitive_1_index [, primitive_2_index ...])

This returns TRUE if the set member referenced by the primitive set member index tuple

(primitive_1_index, primitive_2_index, ...) is contained in the set_name set. As the following example

shows, the @IN operator is useful for generating complements of subsets in set membership

conditions.

Example 1:

For example, to derive a set of open plants based on a subset of closed plants, your sets section

might resemble the following:

SETS:

 PLANTS / SEATTLE, DENVER,

 CHICAGO, ATLANTA/:;

 CLOSED(PLANTS) /DENVER/:;

 OPEN(PLANTS) |

 #NOT# @IN(CLOSED, &1):;

ENDSETS

The OPEN set is derived from the PLANTS set. We use a membership condition containing the

@IN function to allow only those plants not contained in the CLOSED set to be in the OPEN set.

Example 2:

In this example, we illustrate how to determine if the set element (B, Y) belongs to the derived

S3 set. In this case, (B, Y) is indeed a member of S3, so X will be set to 1. Note that, in order

to get the index of the primitive set elements B and Y, we made use of the @INDEX function,

which is discussed next.

SETS:

 S1 / A B C/:;

 S2 / X Y Z/:;

 S3(S1, S2) / A,X A,Z B,Y C,X/:;

ENDSETS

 X = @IN(S3, @INDEX(S1, B), @INDEX(S2, Y));

OPERATORS AND FUNCTIONS 391

@INDEX(set_name, set_member)

This returns the index of a set member set_member in the set set_name. If the specified set

member does not belong to the set @INDEX will return 0. Unlike @IN, which requires you to

specify the indices for the set elements, @INDEX allows you to refer to set member names

directly.

Example 1:

In this example, we illustrate how to get the index of set member (R1, C3) in the derived S3

set. In this case, (R1, C3) is the third member SRXC, so NDX will be set to 3.

SETS:

 ROWS /R1..R27/;

 COLS /C1..C3/;

 RXC(ROWS, COLS): XRNG;

ENDSETS

! return the index of (r1,c3) in the rxc set;

NDX = @INDEX(RXC, R1, C3);

LINGO allows you to omit the set name argument if the set member belongs to a primitive set.

This is to maintain compatibility with earlier releases of LINGO. As the following example

illustrates, it's good practice to always specify a set name in the @INDEX function:

Example 2:

A model's set elements can come from external sources that the modeler may have little

control over. This can potentially lead to confusion when using the @INDEX function.

Consider the sets section:

SETS:

 GIRLS /DEBBIE, SUE, ALICE/;

 BOYS /BOB, JOE, SUE, FRED/;

ENDSETS

Now, suppose you want to get the index of the boy named Sue within the BOYS set. The value of

this index should be 3. Simply using @INDEX(SUE) would return 2 instead of 3, because

LINGO finds SUE in the GIRLS set first. In this case, to get the desired result, you must specify

the BOYS set as an argument and enter @INDEX(BOYS, SUE).

Note: The set member argument to @INDEX is considered to be a text literal. The following

example illustrates how this can potentially lead to unexpected results.

392 CHAPTER 7

Example 3:

In the model below, we loop over the GIRLS set using a set index variable named G. Given that

@INDEX considers the set member argument (G in this case) to be a text literal, each element of

XINDEX will be set to 0; this is because the GIRLS set does not contain a set member called G. On

the other hand, the elements of XIN will all be set to 1, because @IN treats G as a set index

variable, as opposed to a text literal.

SETS:

GIRLS /DEBBIE, SUE, ALICE/: XINDEX, XIN;

BOYS /BOB, JOE, SUE, FRED/;

ENDSETS

!XINDEX will be 0 because GIRLS does not contain the member 'G';

!XIN will be 1 because G is treated as a set index variable as

opposed to the text literal 'G';

@FOR(GIRLS(G):

XINDEX(G) = @INDEX(GIRLS, G);

XIN(G) = @IN(GIRLS, G);

);

@INSERT(set_name, primitive_1_index [, primitive_2_index ...])

This function may be used to dynamically add members to derived sets. Each of the primitive

set members forming the new derived set member must have been included in their respective

primitive sets. The following example illustrates:

OPERATORS AND FUNCTIONS 393

MODEL:

SETS:

 PRIMITIVE;

 LATTICE(PRIMITIVE, PRIMITIVE);

ENDSETS

DATA:

 PRIMITIVE = 1..10;

ENDDATA

CALC:

! Starting at 1,1, generate the lattice of points reachable

 by the two integer vectors;

 X1 = 1; Y1 = 3;

 X2 = 7; Y2 = 5;

 @INSERT(LATTICE, 1,1); ! insert the seed;

 @SET('TERSEO', 3); !minimal output;

! Now generate all the points reachable, directly or

 indirectly from the seed via the two vectors within

 a finite region;

 @FOR(LATTICE(I, J) | I + I #LE# @SIZE(PRIMITIVE):

 I1 = I + X1;

 J1 = J + Y1;

 @IFC(#NOT# @IN(LATTICE, I1, J1):

 @IFC(@IN(PRIMITIVE, I1) #AND# @IN(PRIMITIVE, J1):

 @INSERT(LATTICE, I1, J1);

);

);

 I1 = I + X2;

 J1 = J + Y2;

 @IFC(#NOT# @IN(LATTICE, I1, I1):

 @IFC(@IN(PRIMITIVE, I1) #AND# @IN(PRIMITIVE, J1):

 @INSERT(LATTICE, I1, J1);

);

);

);

ENDCALC

DATA:

 !display the lattice set;

 @TEXT() = @TABLE(LATTICE);

ENDDATA

END

Model: LATTICE

394 CHAPTER 7

In this model, we want to find all the points on a 10-by-10 grid that are reachable, either directly

or indirectly, from point (1,1) using combinations of the two vectors (1,3) and (7,5). The grid is

represented by the 2-dimensional set LATTICE. Initially, LATTICE is empty, but we will add

members using @INSERT if we discover they are reachable from the seed (1,1).

First, we place the seed into the LATTICE with the following insert statement:

@INSERT(LATTICE, 1, 1); ! insert the seed;

The following doubly-nested loop iterates through the entire 10x10 grid:

@FOR(LATTICE(I, J) | I + I #LE# @SIZE(PRIMITIVE):

 @FOR(VECTORS(I2, J2):

 I3 = I + I2;

 J3 = J + J2;

 @IFC(#NOT# @IN(LATTICE, I3, J3):

 @IFC(@IN(PRIMITIVE, I3) #AND# @IN(PRIMITIVE, J3):

 @INSERT(LATTICE, I3, J3);

);

);

);

);

Each of the two vectors are then added individually to the current point, with the resulting point

tested to see if a) if it has not already been added to LATTICE, and b) if it lies within the 10x10

grid. If the new point passes both these tests, it gets added to the lattice using an @INSERT

statement:

@INSERT(LATTICE, I3, J3);

At the end of the model we use the @TABLE output function to display the lattice we found:

 1 2 3 4 5 6 7 8 9 10

 1 X

 2 X

 3 X

 4 X

 5

 6

 7

 8 X

 9 X

 10

Here we see that, in addition to the seed, the following points are members of the lattice: (2,4),

(3,7), (4,10), (8,6) and (9,9).

OPERATORS AND FUNCTIONS 395

@SIZE(set_name)

This returns the number of elements in the set_name set. Using the @SIZE function is preferred

to explicitly listing the size of a set in a model. This serves to make your models more data

independent and, therefore, easier to maintain should the size of your sets change.

To view an example of the @SIZE function, refer to the PERT/CPM example in the Sparse

Derived Set Example - Explicit List section of Using Sets.

@WRAP(INDEX, LIMIT)

This allows you to "wrap" an index around the end of a set and continue indexing at the other

end of the set. That is, when the last (first) member of a set is reached in a set looping function,

use of @WRAP will allow you to wrap the set index to the first (last) member of the set. This is

a particularly useful function in cyclical, multiperiod planning models.

Formally speaking, @WRAP returns J such that J = INDEX - K * LIMIT, where K is an integer

such that J is in the interval [1,LIMIT]. Informally speaking, @WRAP will subtract or add limit

to index until it falls in the range 1 to LIMIT.

For an example on the use of the @WRAP function in a staff scheduling model, refer to the

Primitive Set Example section in Using Sets.

Set Looping Functions
Set looping functions operate over an entire set and, with the exception of the @FOR function,

produce a single result. The syntax for a set looping function is:

@function(setname [(set_index_list) [| conditional_qualifier]] : expression_list);

@function corresponds to one of the set looping functions listed below. setname is the name of the set

you want to loop over. The set_index_list is optional, and is used to create a list of indices, which

correspond to the parent primitive sets that form the set setname. As LINGO loops through the

members of the set setname, it will set the values of the indices in the set_index_list to correspond to

the current member of the set setname.

The conditional_qualifier is optional and may be used to limit the scope of the set looping function.

When LINGO is looping over each member of the set setname, it evaluates the conditional_qualifier.

If the conditional_qualifier evaluates to true, then @function is performed for the set member.

Otherwise, it is skipped.

The expression_list is a list of expressions to be applied to each member of the set setname. When

using the @FOR function, the expression_list may contain multiple expressions, separated by

semicolons. These expressions will be added as constraints to the model. When using the remaining

three set looping functions (@SUM, @MAX, and @MIN), the expression_list must contain one

expression only. If the set_index_list is omitted, all attributes referenced in the expression_list must be

defined on the set setname.

396 CHAPTER 7

The available set looping functions are listed below:

@FOR (setname [(set_index_list) [| cond_qualifier]]: exp_list)
This generates the expressions contained in exp_list for all members of the set setname.

@MAX(setname [(set_index_list) [| cond_qualifier]]: expression)
This returns the maximum value of expression taken over the set setname.

@MIN(setname [(set_index_list) [| cond_qualifier]]: expression)
This returns the minimum value of expression taken over the set setname.

@PROD(setname [(set_index_list) [| cond_qualifier]]: expression)
This returns the product of an expression over the setname set.

@SUM(setname [(set_index_list) [| cond_qualifier]]: expression)

This returns the sum of expression over the set setname.

Set looping functions are discussed in more detail in Chapter 2, Using Sets.

OPERATORS AND FUNCTIONS 397

Interface Functions
Interface functions allow you to link your model to external data sources such as text files, databases,

spreadsheets and external applications. With the exception of @FILE, interface functions are valid

only in sets and data sections, and may not be used in calc and model sections.The interface

functions currently available in LINGO are listed below.

@FILE ('filename')

The @FILE function allows you to include data from external text files anywhere in your model,

where filename is the name of the file to include text form. This is particularly useful for

incorporating data stored in text files in your sets and data sections.

When this function is encountered in a model, LINGO will continue to take text from this file

until it encounters either the end-of-file or a LINGO end-of-record mark (~). For subsequent

@FILE references in the same model that use the same file name, LINGO resumes taking input

from the file at the point where it left off. Nesting of @FILE function calls (embedding an @FILE

in a file which is itself called by @FILE) is not allowed.

For more information on use of the @FILE function, refer to Interfacing with External Files.

@ODBC (['data_source'[, 'table_name'[, 'col_1'[, 'col_2' ...]]]])

The @ODBC function is used to open ODBC links between LINGO and databases. You can use

@ODBC in the sets section to retrieve set members from a database, or in the data section to

import data and/or export solutions.

The data_source is the name of the ODBC data source you registered with the ODBC

Administrator. The table_name is the name of the table in the data_source you want to open a

link to. Finally, col_i is the column in the table table_name that you wish to link to.

The @ODBC function is discussed in detail in Interfacing with Databases.

@OLE ('workbook_file'[, range_name_list])

The @OLE function is used to move data and solutions back and forth from Excel using OLE

based transfers. You can use @OLE in the sets section to retrieve set members from Excel, or in

the data section to import data and/or export solutions.

OLE transfers are direct memory transfers and do not make use of intermediate files. When using

@OLE for exports, LINGO loads Excel, tells Excel to load the desired spreadsheet, and sends

ranges of data containing solution values to the sheet. You must have Excel 5, or later, to use the

@OLE function. The @OLE function is valid only in data and sets sections. @OLE can export

two-dimensional ranges (rectangular ranges that lie on a single worksheet in Excel), but cannot

export three-dimensional ranges (ranges which traverse more than one worksheet in Excel) or

discontinuous ranges.

The workbook_file argument is the name of the workbook to link to. The range_name_list is the

list of named ranges in the sheet to link to.

For more information on use of the @OLE function, refer to Interfacing with Spreadsheets.

398 CHAPTER 7

@POINTER (N)

This function is strictly for use with the LINGO Dynamic Link Library (DLL) under Windows.

@POINTER allows you to transfer data directly through shared memory locations. For more

information on the use of the @POINTER function, refer to Interfacing with Other Applications.

@TEXT ([['filename'], ‘a’])

The @TEXT function is used in the data section of a model to export solutions to text files, where

filename is the name of the file you want to export the solution to. If filename is omitted, the

solution data will be sent to the standard output device (in most cases this corresponds to the

screen). If you specify a file name and you wish to append output to the file instead of

overwriting the file, include a second argument of ‘a’.

For additional documentation on the @TEXT function, see Interfacing with External Files.

Distributions
Distribution functions are available for an extensive number of probability distributions. LINGO

supports the probability density functions (PDF) for each distribution, as well as their cumulative

(CDF) and inverse functions. Supported distributions are listed below:

Continuous Distribution

Functions

Description Parameters and Domain

@PBETACDF(A, B, X) Cumulative Beta A = alpha > 0

B = beta > 0

X ∈ (0,1)

@PBETAINV(A, B, X) Inverse Beta A = alpha > 0

B = beta > 0

X ∈ [0,1]

@PBETAPDF(A, B, X) Beta PDF A = alpha > 0

B = beta > 0

X ∈ (0,1)

@PCACYCDF(L, C, X) Cumulative Cauchy L = location

S = scale > 0

X a real

@PCACYINV(L, S, X) Inverse Cauchy L = location

S = scale > 0

X ∈ [0,1]

@PCACYPDF(L, S, X) Cauchy PDF L = location

S = scale > 0

X a real

@PCHISCDF(DF, X) Cumulative Chi-Square DF = degrees of freedom

OPERATORS AND FUNCTIONS 399

= a positive integer

X ≥ 0

@PCHISINV(DF, X) Inverse Chi-Square DF = degrees of freedom

 = a positive integer

X ∈ [0,1]

@PCHISPDF(DF, X) Chi-Square PDF DF = degrees of freedom

= a positive integer

X ≥ 0

@PEXPOCDF(L, X) Cumulative Exponential L = lambda > 0

X ≥ 0

@PEXPOINV(L, X) Inverse Exponential L = lambda > 0

X ∈ [0,1]

@PEXPOPDF(L, X) Exponential PDF L = lambda > 0

X ≥ 0

@PFDSTCDF(DF1, DF2, X) Cumulative F-Distribution DF1,DF2 = degrees of

freedom = a positive integer

X ≥ 0

@PFDSTINV(DF1, DF2, X) Inverse F-Distribution DF1,DF2 = degrees of

freedom = a positive integer

X ∈ [0,1]

@PFDSTPDF(DF1, DF2, X) F-Distribution PDF DF1,DF2 = degrees of

freedom = a positive integer

X ≥ 0

@PGAMMCDF(SC, SH, X) Cumulative Gamma SC = scale > 0

SH = shape > 0

X ≥ 0

@PGAMMINV(SC, SH, X) Inverse Gamma SC = scale > 0

SH = shape > 0

X ∈ [0,1]

@PGAMMPDF(SC, SH, X) Gamma PDF SC = scale > 0

SH = shape > 0

X ≥ 0

@PGMBLCDF(L, S, X) Cumulative Gumbel L = location

S = scale > 0

X a real

@PGMBLINV(L, S, X) Inverse Gumbel L = location

S = scale > 0

X ∈ [0,1]

400 CHAPTER 7

@PGMBLPDF(L, S, X) Gumbel PDF L = location

S = scale > 0

X a real

@PLAPLCDF(L, S, X) Cumulative Laplace L = location

S = scale > 0

X a real

@PLAPLINV(L, S, X) Inverse Laplace L = location

S = scale > 0

X ∈ [0,1]

@PLAPLPDF(L, S, X) Laplace PDF L = location

S = scale > 0

X a real

@PLGSTCDF(L, S, X) Cumulative Logistic L = location

S = scale > 0

X a real

@PLGSTINV(L, S, X) Inverse Logistic L = location

S = scale > 0

X ∈ [0,1]

@PLGSTPDF(L, S, X) Logistic PDF L = location

S = scale > 0

X a real

@PLOGNCDF(M, S, X) Cumulative Lognormal M = mu

S = sigma > 0

X > 0

@PLOGNINV(M, S, X) Inverse Lognormal M = mu

S = sigma > 0

X ∈ [0,1]

@PLOGNPDF(M, S, X) Lognormal PDF M = mu

S = sigma > 0

X > 0

@PNORMCDF(M, S, X) Cumulative Normal M = mu

S = sigma > 0

X a real

@PNORMINV(M, S, X) Inverse Normal M = mu

S = sigma > 0

X ∈ [0,1]

@PNORMPDF(M, S, X) Normal PDF M = mu

S = sigma > 0

X a real

@PPRTOCDF(SC, SH, X) Cumulative Pareto SC = scale > 0

SH = shape > 0

X ≥ SC

@PPRTOINV(SC, SH, X) Inverse Pareto SC = scale > 0

OPERATORS AND FUNCTIONS 401

SH = shape > 0

X ∈ [0,1]

@PPRTOPDF(SC, SH, X) Pareto PDF SC = scale > 0

SH = shape > 0

X ≥ SC

@PSMSTCDF(A, X) Cumulative Symmetric

Stable

A = alpha [0.2,2]

X a real

@PSMSTINV(A, X) Inverse Symmetric Stable

A = alpha [0.2,2]

X Î [0,1]

@PSMSTPDF(A, X) Symmetric Stable PDF

A = alpha [0.2,2]

X a real

@PSTUTCDF(DF, X) Cumulative Student's t DF = degrees of freedom = a

positive integer

X a real

@PSTUTINV(DF, X) Inverse Student's t DF = degrees of freedom = a

positive integer

X ∈ [0,1]

@PSTUTPDF(DF, X) Student's t PDF DF = degrees of freedom = a

positive integer

X a real

@PTRIACDF(L, U, M, X) Cumulative Triangular L = lower limit

U = upper limit

M = mode

X ∈ [L,U]

@PTRIAINV(L, U, M, X) Inverse Triangular L = lower limit

U = upper limit

M = mode

X ∈ [0,1]

@PTRIAPDF(L, U, M, X) Triangular PDF L = lower limit

U = upper limit

M = mode

X ∈ [L,U]

@PUNIFCDF(L, U, X) Cumulative Uniform L = lower limit

U = upper limit

X ∈ [L,U]

@PUNIFINV(L, U, X) Inverse Uniform L = lower limit

U = upper limit

X ∈ [0,1]

@PUNIFPDF(L, U, X) Uniform PDF L = lower limit

U = upper limit

402 CHAPTER 7

X ∈ [L,U]

@PWEIBCDF(SC, SH, X) Cumulative Weibull SC = scale > 0

SH = shape > 0

X ≥ 0

@PWEIBINV(SC, SH, X) Inverse Weibull SC = scale > 0

SH = shape > 0

X ∈ [0;1]

@PWEIBPDF(SC, SH, X) Weibull PDF SC = scale > 0

SH = shape > 0

X ≥ 0

Discrete Distribution

Functions

Description Parameters

@PBTBNCDF(N, A, B, X) Cumulative Beta Binomial N = trials ∈ {0,1,...}

A = alpha ∈ (0,+inf)

B = beta ∈ (0,+inf)

X ∈ [0,

@PBTBNINV(N, A, B, X) Beta Binomial Inverse N = trials ∈ {0,1,...}

A = alpha ∈ (0,+inf)

B = beta ∈ (0,+inf)

X ∈ [0,+inf)

@PBTBNPDF(N, A, B, X) Beta Binomial PDF N = trials ∈ {0,1,...}

A = alpha ∈ (0,+inf)

B = beta ∈ (0,+inf)

X ∈ [0,+inf)

@PBINOCDF(N, P, X) Cumulative Binomial N = trials ∈ {0,1,...}

P = probability of success ∈

[0,1]

X ∈ {0,1,...,N}

@PBINOINV(N, P, X) Inverse Binomial N = trials ∈ {0,1,...}

P = probability of success ∈

[0,1]

X ∈ [0,1]

OPERATORS AND FUNCTIONS 403

@PBINOPDF(N, P, X) Binomial PDF N = trials ∈ {0,1,...}

P = probability of success ∈

[0,1]

X ∈ {0,1,...,N}

@PGEOMCDF(P, X) Cumulative Geometric P = probability of success ∈

(0,1]

X ∈ {0,1,...}

@PGEOMINV(P, X) Inverse Geometric P = probability of success ∈

(0,1]

X ∈ [0,1]

@PGEOMPDF(P, X) Geometric PDF P = probability of success∈

(0,1]

X ∈ {0,1,...}

@PHYPGCDF(N, D, K, X) Cumulative

Hypergeometric
N = population ∈ {0,1,...}

D = number defective ∈

{0,1,...,N}

K = sample size ∈ {0,1,...,N}

X ∈ {max(0,D+K-

N),...,min(D,K)}

@PHYPGINV(N, D, K, X) Inverse Hypergeometric N = population ∈ {0,1,...}

D = number defective ∈

{0,1,...,N}

K = sample size ∈ {0,1,...,N}

X ∈ [0,1]

@PHYPGPDF(N, D, K, X) Hypergeometric PDF N = population ∈ {0,1,...}

D = number defective ∈

{0,1,...,N}

K = sample size ∈ {0,1,...,N}

X ∈ {max(0,D+K-

N),...,min(D,K)}

@PLOGRCDF(P, X) Cumulative Logarithmic P = p-factor ∈ (0,1)

X ∈ {0,1,...,N}

@PLOGRINV(P, X) Inverse Logarithmic P = p-factor ∈ (0,1)

404 CHAPTER 7

X ∈ [0,1]

@PLOGRPDF(P, X) Logarithmic PDF P = p-factor ∈ (0,1)

X ∈ {0,1,...,N}

@PNEGBCDF(R, P, X) Cumulative Negative

Binomial
R = number of failures ∈

(0,+inf)

P = probability of success ∈

(0,1)

X ∈ {0,1,...}

@PNEGBINV(R, P, X) Inverse Negative Binomial R = number of failures ∈

(0,+inf)

P = probability of success ∈

(0,1)

X ∈ [0,1]

@PNEGBPDF(R, P, X) Negative Binomial PDF R = number of failures ∈

(0,+inf)

P = probability of success ∈

(0,1)

X ∈ {0,1,...}

@PPOISCDF(L, X) Cumulative Poisson L = lambda ∈ (0,+inf)

X ∈ {0,1,...,N}

@PPOISINV(L, X) Inverse Poisson L = lambda ∈ (0,+inf)

X ∈ [0;1]

@PPOISPDF(L, X) Poisson PDF L = lambda ∈ (0,+inf)

X ∈ {0,1,...,N}

Report Functions
Report functions are used to construct reports based on a model’s results, and are valid on both calc

and data sections. Combining report functions with interface functions in a data section allows you to

export the reports to text files, spreadsheets, databases, or your own calling application.

Note: The interested reader will find an exhaustive example of the use of report functions in the

sample model TRANSOL.LG4 in the Samples subfolder. This model makes extensive use of

many of the report functions to mimic the standard LINGO solution report.

OPERATORS AND FUNCTIONS 405

@DUAL (variable_or_row_name)

The @DUAL function outputs the dual value of a variable or a row. For example, consider a

model with the following data section:

DATA:

 @TEXT('C:\RESULTS\OUTPUT.TXT') =

 @WRITEFOR(SET1(I): X(I), @DUAL(X(I)), @NEWLINE(1));

ENDDATA

When this model is solved, the values of attribute X and their reduced costs will be written to the file

C:\RESULTS\OUTPUT.TXT. Output may be routed to a file, spreadsheet, database or memory

location. The exact destination will depend on the export function used on the left-hand side of the

output statement.

If the argument to the @DUAL function is a row name, then the dual price on the generated row will

be output.

@FORMAT (value, format_descriptor)
@FORMAT may be used in @WRITE and @WRITEFOR statements to format a numeric or string

value for output as text, where value is the numeric or string value to be formatted, and

format_descriptor is a string detailing how the number is to be formatted. The format descriptor is

interpreted using C programming conventions. For instance, a format descriptor of ‘12.2f’ would

cause a numeric value to be printed in a field of 12 characters with 2 digits after the decimal point. For

a string values, such as a set member name, a format descriptor of '12s' would cause the string to be

right justified in a field of 12 characters, while '-12s' would cause the string to be left justified in a field

of 12. You can refer to a C reference manual for more details on the available formatting options.

The following example uses the @FORMAT function to place a shipping quantity into a field of eight

characters with no trailing decimal value:

DATA:

 @TEXT() = @WRITE(' From To Quantity', @NEWLINE(1));

 @TEXT() = @WRITE('--------------------------', @NEWLINE(1));

 @TEXT() = @WRITEFOR(ROUTES(I, J) | X(I, J) #GT# 0:

 3*' ', WAREHOUSE(I), 4*' ',

 CUSTOMER(J), 4*' ', @FORMAT(X(I, J), '8.0f'),

 @NEWLINE(1));

ENDDATA

The report will resemble the following:

From To Quantity

 WH1 C1 2

 WH1 C2 17

 WH1 C3 1

 WH2 C1 13

 WH2 C4 12

 WH3 C3 21

406 CHAPTER 7

This next example, GRAPHPSN.LG4, graphs the standard normal function, @PSN, over the

interval [–2.4, 2.4]. The @FORMAT function is used to print the X coordinates with one trailing

decimal point.

! Graphs @PSN() over a specified

 interval around 0;

DATA:

 ! height of graph;

 H = 49;

 ! width of graph;

 W = 56;

 ! interval around 0;

 R = 2.4;

ENDDATA

SETS:

 S1 /1..H/: X, FX;

ENDSETS

@FOR(S1(I):

 ! X can be negative;

 @FREE(X);

 ! Compute x coordinate;

 X(I) = -R + (I - 1)* 2 * R / (H - 1);

 ! Compute y coordinate = @psn(x);

 FX(I) = @PSN(X(I));

);

DATA:

 ! Print the header;

 @TEXT() = @WRITE(

 'Graph of @PSN() on the interval [-',

 R,',+',R,']:',@NEWLINE(1));

 @TEXT() = @WRITE('| 0 ',(W/2-5)*'-',

 ' 0.5 ',(W/2-5)*'-', '1.0 X(i)',@NEWLINE(1));

 ! Loop to print the graph over;

 @TEXT() = @WRITEFOR(S1(I): '| ',

 (W * FX(I) + 1/2) * '*',

 @IF(X(I) #LT# 0, '', ' '), (W -

 (W * FX(I) + 1/2) + 3)*' ',

 @FORMAT(X(I), '.1f'),@NEWLINE(1));

 !Trailer;

 @TEXT() = @WRITE('| 0 ',(W/2-5)*'-',

 ' 0.5 ',(W/2-5)*'-', '1.0',@NEWLINE(1));

ENDDATA

Model: GRAPHPSN

OPERATORS AND FUNCTIONS 407

Here is how the graph will appear when the model is solved:

Graph of @PSN() on the interval [-2.4,+2.4]:

| 0 ----------------------- 0.5 -----------------------1.0 X(i)

| -2.4

| * -2.3

| * -2.2

| * -2.1

| * -2.0

| ** -1.9

| ** -1.8

| ** -1.7

| *** -1.6

| **** -1.5

| ***** -1.4

| ***** -1.3

| ****** -1.2

| ******** -1.1

| ********* -1.0

| ********** -0.9

| ************ -0.8

| ************** -0.7

| *************** -0.6

| ***************** -0.5

| ******************* -0.4

| ********************* -0.3

| ************************ -0.2

| ************************** -0.1

| **************************** 0.0

| ****************************** 0.1

| ******************************** 0.2

| *********************************** 0.3

| ************************************* 0.4

| *************************************** 0.5

| *** 0.6

| ** 0.7

| ** 0.8

| ** 0.9

| *** 1.0

| ** 1.1

| ** 1.2

| *** 1.3

| *** 1.4

| ** 1.5

| *** 1.6

| ** 1.7

| ** 1.8

| ** 1.9

| *** 2.0

| *** 2.1

| *** 2.2

| *** 2.3

| ** 2.4

| 0 ----------------------- 0.5 -----------------------1.0

408 CHAPTER 7

@ITERS ()

The @ITERS function returns the total number of iterations required to solve the model. @ITERS

is available only in the data and calc sections, and is not allowed in the constraints of a model.

For example, the following output statement writes the iteration count to the standard output

device:

DATA:

 @TEXT() = @WRITE('Iterations= ', @ITERS());

ENDDATA

@NAME (var_or_row_reference)

Use @NAME to return the name of a variable or row as text. @NAME is available only in the

data and calc sections, and is not allowed in the constraints of a mode. The following example

prints a variable name and its value:

DATA:

 @TEXT() = @WRITEFOR(ROUTES(I, J) |

 X(I, J) #GT# 0: @NAME(X), ' ', X(I, J), @NEWLINE(1));

ENDDATA

The report will resemble the following:

X(WH1, C1) 2

X(WH1, C2) 17

X(WH1, C3) 1

X(WH2, C1) 13

X(WH2, C4) 12

X(WH3, C3) 21

@NEWLINE (n)
Use @NEWLINE to write n new lines to the output device. @NEWLINE is available only in the data

and calc sections, and is not allowed in the constraints of a model. See the example immediately

below in the @RANGED section.

@OBJBND ()

@OBJBND returns the bound on the objective value.

@RANGED (variable_or_row_name)

@RANGED outputs the allowable decrease on a specified variable’s objective coefficient or on a

specified row’s right-hand side. @RANGED is available only in the data and calc sections, and is

not allowed in the constraints of a model. For example, consider a model with the following data

section:

DATA:

 @TEXT('C:\RESULTS\OUTPUT.TXT') =

 @WRITEFOR(SET(I): X(I), @RANGED(X(I), @NEWLINE(1));

ENDDATA

OPERATORS AND FUNCTIONS 409

When this model is solved, the values of attribute X and the allowable decreases on its objective

coefficients will be written to the file C:\RESULTS\OUTPUT.TXT. If @RANGED is passed a row

name it will output the allowable decrease on the right-hand side value for the row. Output may

be routed to a file, spreadsheet, database, or memory location. The exact destination will depend

on the export function used on the left-hand side of the output statement. Range computations

must be enabled in order for @RANGED to function properly. For more information on the

interpretation of allowable decreases, refer to the LINGO|Range command.

@RANGEU (variable_or_row_name)

@RANGEU outputs the allowable increase on a specified variable’s objective coefficient or on a

specified row’s right-hand side. For example, consider a model with the following data section:

DATA:

 @TEXT('C:\RESULTS\OUTPUT.TXT') = @WRITEFOR(SET(I):

 X, @RANGEU(X), @NEWLINE(1));

ENDDATA

When this model is solved, the values of X and the allowable increases on its objective

coefficients will be written to the file C:\RESULTS\OUTPUT.TXT. If @RANGEU is passed a row

name it will output the allowable increase on the right-hand side value for the row. Output may be

routed to a file, spreadsheet, database, or memory location. The exact destination will depend on

the export function used on the left-hand side of the output statement. Range computations must

be enabled in order for @RANGED to function properly. For more information on the

interpretation of allowable increases, refer to the LINGO|Range command.

410 CHAPTER 7

@STATUS ()

This returns the final status of the solution process using the following codes:

@STATUS()

Code Interpretation

0 Global Optimum — The optimal solution

has been found.

1 Infeasible — No solution exists that

satisfies all constraints.

2 Unbounded — The objective can be

improved without bound.

3 Undetermined — The solution process

failed.

4 Feasible — A feasible solution was found

that may, or may not, be the optimal

solution.

5 Infeasible or Unbounded — The

preprocessor determined the model is

either infeasible or unbounded. If you

need to narrow the result down to either

infeasible or unbounded, then you will

need to turn off presolving and run the

model again.

6 Local Optimum — Although a better

solution may exist, a locally optimal

solution has been found.

7 Locally Infeasible — Although feasible

solutions may exist, LINGO was not able

to find one.

8 Cutoff — The objective cutoff level was

achieved.

9 Numeric Error — The solver stopped due

to an undefined arithmetic operation in

one of the constraints.

In general, if @STATUS does not return a code of 0, 4, 6 or 8, the solution is of little use and

should not be trusted. The @STATUS function is available only in the data and calc sections. The

@STATUS function is not allowed in the constraints of a model.

OPERATORS AND FUNCTIONS 411

For example, the following output statement uses @STATUS to print a message to let the user

know if the solution is globally optimal, or not:

DATA:

 @TEXT() = @WRITE(@IF(@STATUS() #EQ# 0,

 'Global solution found',

 'WARNING: Solution *not* globally optimal!');

ENDDATA

For additional examples of the use of the @STATUS function, refer to Interfacing with Other

Applications.

@STRLEN(string)
Use @STRLEN to get the length of a specified string. This can be a useful feature when

formatting reports. As an example, @STRLEN(‘123’) would return the value 3. @STRLEN is

available only in the data and calc sections, and is not allowed in the constraints of a model.

@TABLE(‘attr|set’)

The @TABLE function is used to display either an attribute’s values or a set’s members in tabular

format. The @TABLE function is available only in the data section of a model. You can refer to

either QUEENS8.LG4 or PERT.LG4 for examples of @TABLE. These models can be found in

the SAMPLES folder off the main LINGO folder.

For instance, QUEENS8.LG4 is a model for positioning eight queens on a chessboard so that no

one queen can attack another. At the end of this model you will find the following data section:

DATA:

 @TEXT() = ' The final chessboard:';

 @TEXT() = @TABLE(X);

ENDDATA

Here we are using the @TABLE function to display the X attribute in the standard output window

via the @TEXT interface function (see below for more on @TEXT). The X attribute is an 8-by-8

table of 0’s and 1’s indicating if a queen is positioned in a given square of the chessboard, or not.

The output generated by @TABLE in this instance follows:

 The final chessboard:

 E1 E2 E3 E4 E5 E6 E7 E8

 E1 0 1 0 0 0 0 0 0

 E2 0 0 0 0 1 0 0 0

 E3 0 0 0 0 0 0 1 0

 E4 0 0 0 1 0 0 0 0

 E5 1 0 0 0 0 0 0 0

 E6 0 0 0 0 0 0 0 1

 E7 0 0 0 0 0 1 0 0

 E8 0 0 1 0 0 0 0 0

Note that all eight queens (indicated by the 1’s on the board) are safe from attack.

412 CHAPTER 7

In addition to displaying attributes, @TABLE can also display sets. When displaying a set,

@TABLE will print the letter X in the table cell if the corresponding set member exists, otherwise

it will leave the table cell blank.

The PERT.LG4 sample model is a project scheduling model. A project consists of many tasks,

and some tasks must be completed before others can begin. The list of all the tasks that must

precede certain other tasks is called the precedence relations. At the end of PERT4.LG4 there is

the following data section which uses @TABLE to display the precedence relations set, PRED:

DATA:

!Use @TABLE() to display the precedence relations set,

PRED;

 @TEXT() = @TABLE(PRED);

ENDDATA

When we run the model, @TABLE displays the following table:

 DESIGN FORECAST SURVEY PRICE SCHEDULE COSTOUT

TRAIN

DESIGN X X

FORECAST X X

SURVEY X

PRICE

X

SCHEDULE X

COSTOUT

X

TRAIN

Whenever one task must precede another, an ‘X’ appears in the particular cell of the table. So, for

instance, the DESIGN task must precede the FORECAST and SURVEY tasks.

If a line of a table exceeds the page width setting in Lingo, it simply gets wrapped around. So, if

you want to display wide tables without line wraps, you may need to increase the page width.

Note: Currently, @TABLE can only send tables to the standard solution window or to text files. In

other words, it is not possible to send tables to Excel, databases or to applications calling the

LINGO DLL.

OPERATORS AND FUNCTIONS 413

@TABLE can also display sets and attributes of more than two dimensions. In fact, @TABLE allows

you great control over how multidimensional objects get displayed. Specifically, four forms of

@TABLE are supported:

 @TABLE(attr/set) – This is the simplest form of @TABLE. If the object is of one

dimension, it will be displayed as a column. Otherwise, the first n-1 dimensions will

be displayed on the vertical axis, while the n-th dimension will be displayed on the

horizontal axis of the table. An example follows:

 @TABLE(X)

 @TABLE(attr/set, num_horz_indices) – In this form, a second argument,

num_horz_indices, is supplied. This argument is an integer quantity equal to the

number of the object’s dimensions to display along the horizontal axis. In which

case, dimensions (n – num_horz_indices) to n will be displayed along the horizontal

axis of the table. The following example displays dimension 2 and 3 of a 3-

dimensional set along the horizontal axis:

 @TABLE(MY_3_DIM_SET, 2)

 @TABLE(attr/set, prim_set1,...,prim_setn) – Here we specify the exact ordering of

the object’s n dimensions. In which case, the first n-1 dimensions specified will be

displayed along the vertical axis, while the last dimension specified will be displayed

along the horizontal axis. Here’s an example that displays a 4-dimensional attribute

with dimensions 3, 4 and 1 on the vertical, and dimension 2 on the horizontal:

 @TABLE(MY_4_DIM_ATTRIBUTE, 3, 4, 1, 2)

 @TABLE(attr/set, prim_set1,...,prim_setn, num_horz_indices) – In this final form,

we again specify the ordering of all the indices, but a final integer argument is added

to specify the number of dimensions to be displayed on the horizontal axis. The

following example displays a 4-dimensional attribute with dimensions 3 and 4 on the

vertical, and dimensions 1 and 2 on the horizontal:

 @TABLE(MY_4_DIM_ATTRIBUTE, 3, 4, 1, 2, 2)

@WRITE(obj1[, …, objn])
Use @WRITE to output one or more objects. @WRITE is available only in the data and calc sections,

and is not allowed in the constraints of a model. In a data section, output from @WRITE may be

routed to a file, spreadsheet, or database. The exact destination will depend on the interface function

used on the left-hand side of the output statement. @WRITE is valid only in the data sections of a

model.

@WRITE may also be used to display computations that are a function of variable values. As an

example, the output statement below prints the ratio of the two variables X and Y:

DATA:

 @TEXT() = @WRITE('The ratio of X to Y is: ', X / Y);

ENDDATA

414 CHAPTER 7

@WRITEFOR(setname[(set_index_list) [| cond_qualifier]]: obj1[, …, objn])
Use @WRITEFOR to output one or more objects across a set. @WRITEFOR is available only in the

data and calc sections, and is not allowed in the constraints of a model

@WRITEFOR operates like the other set looping functions in that you may, or may not, specify an

index list and a conditional qualifier. The ability to use a conditional qualifier allows great flexibility

in specifying exactly what you wish to display in your reports. @WRITEFOR may also be used to

display computations that are a function of variable values.

Using @WRITEFOR in conjunction with export functions in data sections allows you to route output

to a file, spreadsheet, or database. The exact destination will depend on the export function used on the

left-hand side of the output statement.

As an example, the output statement below prints the number of units to ship, the warehouse name,

and the customer name for each route with nonzero volume:

DATA:

 @TEXT() = @WRITEFOR(ROUTES(I, J) | X(I, J) #GT# 0:

 'Ship ', X(I, J), ' units from warehouse ', WAREHOUSE(I),

 ' to customer ', CUSTOMER(J), @NEWLINE(1));

ENDDATA

The resulting report would appear as follows:

Ship 2 units from warehouse WH1 to customer C1

Ship 17 units from warehouse WH1 to customer C2

Ship 1 units from warehouse WH1 to customer C3

Ship 13 units from warehouse WH2 to customer C1

Ship 12 units from warehouse WH2 to customer C4

Ship 21 units from warehouse WH3 to customer C3

Text Replication Operator (*)

The text replication operator (*) may be used inside either the @WRITE or @WRITEFFOR functions

to repeat a string a specified number of times. The operator should be preceded by a numeric value

and then followed by a string (e.g., 3*’text’), which will cause the string to be printed n times, where n

is the numeric value.

In the following example, the text replication operator is used twice to produce a simple graph of on-

duty staff during the seven days of the week:

DATA:

 LEAD = 3;

 @TEXT() = 'Staff on duty graph:';

 @TEXT() = @WRITEFOR(DAY(D): LEAD*' ',

 DAY(D), ' ', ON_DUTY(D), ' ', ON_DUTY(D)*'+',

 @NEWLINE(1)

);

ENDDATA

OPERATORS AND FUNCTIONS 415

The graph would appear as follows, with one plus sign displayed for each staff member on duty:

Staff on duty graph:

 MON 20 ++++++++++++++++++++

 TUE 16 ++++++++++++++++

 WED 12 ++++++++++++

 THU 16 ++++++++++++++++

 FRI 19 +++++++++++++++++++

 SAT 14 ++++++++++++++

 SUN 13 +++++++++++++

Date, Time and Calendar Functions
@TIME()

The @TIME function returns the total runtime, in seconds, required so far to generate and solve the

model. @TIME is available only in the data and calc sections, and is not allowed in the constraints of a

model. For example, the following output statement writes the solution time to the standard output

device:

CALC:

 @WRITE('Solve time in seconds =', @TIME());
ENDCALC

@YMD2STM(year, month, day, hour, minute, second)

The @YMD2STM function takes a date and time as input and returns the equivalent scalar time, where

scalar time is the number of seconds since the start of the base date of 1 Jan 2000. Note that dates prior

to 1 Jan 2000 will return negative scalar time values. The first five arguments must be integral values,

while the number of seconds can be fractional. If the seconds value is fractional, it will be rounded to

the nearest 10 microseconds (or .00001 seconds). Hours are reported using military time and can range

from 0 to 23. An example follows:

CALC:

 !Convert two dates to scalar time;

 STM1 = @YMD2STM(2013, 1, 24, 13, 30, 10.5);

 STM2 = @YMD2STM(1787, 9, 17, 0, 0, 0);
ENDCALC

Here, we compute the scalar time for the two dates and times: 1/23/2013 13:30:10.5 and 9/17/1787

00:00:00. The solution report lists the following values:

Variable Value

 STM1 412349410.50
 STM2 -6699196800.0

There are two things to note: First, STM1 has a fractional value of .5, given that its time includes .5

fractional seconds. Second, STM2 is negative reflecting the fact that its date if prior to the base date to

1 Jan 2000.

416 CHAPTER 7

@STM2YR(stm) / @STM2MON(stm) / @STM2DAY(stm)

@STM2HR(stm) / @STM2MIN(stm) / @STM2SEC(stm)

These six functions are the inverses of the @STM2YR function presented above. Each function takes a

scalar time value as input and returns, respectively, the year, month, day, hour, minute or second of the

point in time represented by the scalar time value. Note that @STM2SEC can return fractional seconds.

The following example takes a date and time, converts it to scalar time, and then converts the scalar

time back to the original date and time:

SETS:

 MONTHS /JAN..DEC/;

 DAYS /SUN..SAT/;

ENDSETS

CALC:

!Convert a date to scalar time;

STM = @YMD2STM(1787, 9, 17, 12, 0, 0);

!Convert the scalar time back to the original date and time;

YR = @STM2YR(STM);

MO = @STM2MON(STM);

DA = @STM2DAY(STM);

HR = @STM2HR(STM);

MN = @STM2MIN(STM);

SC = @STM2SEC(STM);

DOW = @STM2DWK(STM);

!Write out the original date;

@WRITE('Date: ',

 DA, ' ', MONTHS(MO), ' ', YR,

 @NEWLINE(1);

);

!And the original date;

@WRITE('Time: ',

 HR, ':',

 @FORMAT(MN, '%02g'), ':',

 @FORMAT(SC, '%02g'),

 @NEWLINE(1);

);

!And the day of the week;

@WRITE('Day: ',

 DAYS(DOW),

 @NEWLINE(2);

);

ENDCALC

OPERATORS AND FUNCTIONS 417

The output from this sample follows:

Date: 17 SEP 1787

 Time: 12:00:00

Day: MON

@STMNOW()

The @STMNOW returns the current date and time as a scalar time value, where scalar time is the

number of hours since the base date of 1 Jan 2000. The returned may be fractional to indicate fractions

of an hour. The returned value can be broken down into the corresponding year, month, day, hour,

minute and second by calling the @STM2 inverse functions described above. An example for

displaying the current date and time follows:

MODEL:

SETS:

 MONTHS /JAN..DEC/;

 DAYS /SUN..SAT/;

ENDSETS

CALC:

 T = @STMNOW();

 YR = @STM2YR(T);

 MO = @STM2MON(T);

 DA = @STM2DAY(T);

 HR = @STM2HR(T);

 MN = @STM2MIN(T);

 SC = @STM2SEC(T);

 DWK = @STM2DWK(T);

@SET('TERSEO', 1);

@WRITE(' The current date and time is:',

' ', DAYS(DWK),

' ', DA,

' ', MONTHS(MO),

' ', YR,

', ', HR,

':', @FORMAT(MN, '%02g'),

':', @FORMAT(SC, '%04.1f'),

@NEWLINE(2)

);

ENDCALC

END

418 CHAPTER 7

Here, we retrieve the current date and time as a scalar time value using @STMNOW. We then convert

the scalar time to a calendar date and time and then write out the result. The following is a sample of

output from the model:

The current date and time is: MON 11 FEB 2013, 15:54:56.7

@STM2DWK(stm)

The @STM2DWK function takes a scalar time and returns the index of its day of the week, with

Sunday returning 1 and Saturday returning 7. An example of @STM2DWK can be found immediately

above.

Miscellaneous Functions
@BLOCKROW(block_index, row_name)

The @BLOCKROW function is used in conjunction with the branch-and-price (BNP) solver. Models

suited for BNP have 2 or more mostly independent subproblems known as blocks. @BLOCKROW is

used to assign rows to their respective blocks, where block_index is the index of the block and

row_name is the name of the row to assign to block block_index. Block indices may be any non-

negative, integer value, with 0 corresponding to the block of linking rows. Refer to the BNP Solver

section in Chapter 5 for more information on the use of @BLOCKROW.

@IF (logical_condition, true_result, false_result)

The @IF function evaluates logical_condition and, if true, returns true_result. Otherwise, it returns

false_result. For example, consider the following simple model that uses @IF to compute fixed

production costs:

MIN = COST;

COST = XCOST +YCOST;

XCOST = @IF(X #GT# 0, 100, 0) + 2 * X;

YCOST = @IF(Y #GT# 0, 60, 0) + 3 * Y;

X + Y >= 30;

Model: IFCOST

We produce two products—X and Y. We want to minimize total cost, subject to producing at least 30

total units of X and Y. If we produce X, there is a fixed charge of 100 along with a variable cost of 2.

Similarly, for Y, these respective values are 60 and 3. We use the @IF function to determine if either

of the products are being produced in order to apply the relevant fixed cost. This is accomplished by

testing to see if their production levels are greater than 0. If so, we return the fixed cost value.

Otherwise, we return zero.

Experienced modelers know that, without the benefit of an @IF function, modeling fixed costs

requires invoking some “tricks” using binary integer variables. The resulting models are not as

intuitive as models constructed using @IF. However, the caveat is that the @IF function is not a linear

function. At best, the graph of an @IF function will be piecewise linear. In our current example, the

@IF functions are piecewise linear with a discontinuous break at the origin.

OPERATORS AND FUNCTIONS 419

It is always best to try and keep a model linear (see Chapter 15, On Mathematical Modeling). Barring

this, it is best for all functions in a nonlinear model to be continuous. The @IF function violates both

these conditions. Thus, models containing @IF functions may be tough to solve to global optimality.

Fortunately, LINGO has two options that can help overcome the difficult nature of models containing

@IF functions—linearization and global optimization.

To illustrate the difficulty in solving models with discontinuous functions such as @IF, we will solve

our example model with both linearization and global optimization disabled. When we do this, we get

the following solution:

Local optimal solution found at iteration: 42

Objective value: 160.0000

 Variable Value

 COST 160.0000

 XCOST 160.0000

 YCOST 0.000000

 X 30.00000

 Y 0.000000

This solution involves producing only X at a total cost of 160. Given that producing only Y and not X

will result in a lower total cost of 150, this is clearly a locally optimal point. In order to find the

globally optimal point, we must resort to either the linearization or global optimization features in

LINGO.

Briefly, linearization seeks to reformulate a nonlinear model into a mathematically equivalent linear

model. This is desirable for two reasons. First, linear models can always be solved to global optimality.

Secondly, linear models will tend to solve much faster than equivalent nonlinear models.

Unfortunately, linearization can not always transform a model into an equivalent linear state. In which

case, it may be of no benefit. Fortunately, our sample model can be entirely linearized. To enable the

linearization option, run the LINGO|Options command and set the Linearization Degree to High on the

General Solver tab.

Global optimization breaks a model down into a series of smaller, local models. Once this series of

local models has been solved, a globally optimal solution can be determined. To enable global

optimization, run the LINGO|Options command, select the Global Solver tab, then click on the Global

Solver checkbox. Note that the global solver is an add-on option to LINGO. The global solver feature

will not be enabled for some installations. Run the Help|About LINGO command to determine if your

installation has the global solver capability enabled.

Whether using the linearization option or the global solver, LINGO obtains the true, global solution:

Global optimal solution found at iteration: 6

Objective value: 150.0000

 Variable Value

 COST 150.0000

 XCOST 0.000000

 YCOST 150.0000

 X 0.000000

 Y 30.00000

420 CHAPTER 7

Note: Starting with release 9.0, the false branch of the @IF function may contain arithmetic errors

without causing the solver to trigger an error. This makes the @IF function useful in

avoiding problems when the solver strays into areas where certain functions become

undefined. For instance, if your model involves division by a variable, you might use @IF as

follows: @IF(X #GT# 1.E-10, 1/X, 1.E10).

@WARN (‘text’, logical_condition)

This displays the message ‘text’ if the logical_condition is met. This feature is useful for verifying the

validity of a model’s data. In the following example, if the user has entered a negative interest rate, the

message “INVALID INTEREST RATE” is displayed:

! A model of a home mortgage;

DATA:

! Prompt the user for the interest

 rate, years, and value of mortgage.

 We will compute the monthly payment;

 YRATE = ?;

 YEARS = ?;

 LUMP = ?;

ENDDATA

! Number of monthly payment;

 MONTHS = YEARS * 12;

! Monthly interest rate;

 (1 + MRATE) ^ 12 = 1 + YRATE;

! Solve next line for monthly payment;

 LUMP = PAYMENT * @FPA(MRATE, MONTHS);

! Warn them if interest rate is negative

 @WARN('INVALID INTEREST RATE',

 YRATE #LT# 0);

@USER (user_determined_arguments)

The user can supply this in an external DLL or object code file. For a detailed example on the use of

@USER, please see the User Defined Functions section in Chapter 11, Interfacing with Other

Applications.

421

8 Interfacing with External
Files

It can be cumbersome and impractical to try to maintain your data in a LINGO model file. In most

cases, your model’s data will reside externally in text files, spreadsheets, and databases. Also, a

solution generated by LINGO is of little use if you can’t export it to other applications. For these

reasons, LINGO has many methods to assist you in moving information in and out of the application.

The primary focus of this chapter is to illustrate how to move data in and out of LINGO through the

use of text based ASCII files. In Chapter 9, Interfacing with Spreadsheets, we will look at using

spreadsheets. In Chapter 10, Interfacing with Databases, we will illustrate the use of databases for

maintaining your model’s data.

Cut and Paste Transfers
Perhaps the simplest and most straightforward way to move data in and out of an application in

Windows is by using cut and paste commands. Windows maintains an information buffer called the

clipboard. Applications that support the cut command can move information into the clipboard.

Applications that support the paste command can move information from the clipboard into their

memory. Thus, cut and paste offers a simple, but effective, technique for moving small amounts of

data from one application to another.

Pasting in Data from Excel
You should be able to paste data into LINGO from any application that supports a cut command. For

illustration purposes, we will show how to paste data from an Excel worksheet into a LINGO model.

Recall our staff-scheduling model from Chapter 2, Using Sets, which is reproduced here with the data

for the REQUIRED attribute omitted from the data section:

SETS:

 DAYS / MON TUE WED THU FRI SAT SUN/:

 REQUIRED, START;

ENDSETS

DATA:

 REQUIRED = <data omitted>;

ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)))

 >= REQUIRED(J)

);

422 CHAPTER 8

Suppose your staffing requirements data is maintained in an Excel worksheet resembling the

following:

To paste the staffing requirements data from Excel into the LINGO model above, follow these steps:

1. Select the range containing the data (C3:I3) by placing the cursor on the C3

cell, press and hold down the left mouse button, drag the mouse to cell I3,

then release the mouse button.

2. Select the Copy command from Excel’s Edit Menu.

3. Click once on the LINGO model window.

4. Place the LINGO cursor directly to the right of the data statement:

REQUIRED =.

5. Select the Paste command from LINGO’s Edit menu.

The data should now appear in the LINGO model as follows:

DATA:

 REQUIRED = 20 16 13 16 19 14 12;

ENDDATA

You may need to adjust the font of the data to your liking. You can use the Edit|Select Font command

in LINGO to accomplish this. Your model now has the required data and is ready to be solved. Note

that LINGO also has features that allow you to import data directly from Excel. See Chapter 9,

Interfacing with Spreadsheets, for more information.

Pasting Data Out to Microsoft Word
Suppose you went ahead and solved the previous staffing model. LINGO will present you with a new

Window containing the solution to your model. Now, suppose you would like to get a copy of the

solution into MS Word for a report you are writing. You can do this by following these steps:

1. Select the solution report window in LINGO by clicking on it once.

2. Select all the text in the window by issuing the Edit|Select All command in

LINGO.

3. Place the solution into the clipboard by selecting the Edit|Copy command in

LINGO.

4. Activate MS Word by clicking once on the window containing the report

you are writing.

5. Paste the solution from the clipboard into the report by issuing the

Edit|Paste command in MS Word.

INTERFACING WITH EXTERNAL FILES 423

Text File Interface Functions
LINGO has several interface functions that perform input and output operations. There are interface

functions for dealing with text files, spreadsheets, and databases. There is even an interface function

that lets you pass data back and forth from other applications. In this chapter, we are focusing on

interfacing with text files, so we will investigate the @FILE function for importing the contents of

external text files and the @TEXT function for exporting solutions to text files.

Including External Files with @FILE
The @FILE interface function in LINGO allows you to include data from external text files anywhere

in your model. This is particularly useful for incorporating data stored in text files into your sets and

data sections.

The syntax for the @FILE function is:

@FILE(‘filename’)

where filename is the name of the file to include text from. When this function is encountered in a

model, LINGO will continue to take text from this file until it encounters either the end-of-file mark or

a LINGO end-of-record mark (~). For subsequent @FILE references in the same model that use the

same file name, LINGO resumes taking input from the file at the point where it left off. Nesting of

@FILE function calls (embedding an @FILE in a file that is itself called by @FILE) is not allowed.

424 CHAPTER 8

Using @FILE in a Transportation Model
As an example, we will use the Wireless Widgets transportation model developed in Chapter 1,

Getting Started with LINGO. It is reproduced in its original form below:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

 WAREHOUSES /WH1 WH2 WH3 WH4 WH5 WH6/: CAPACITY;

 VENDORS /V1 V2 V3 V4 V5 V6 V7 V8/ : DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

! The objective;

 MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I):

 @SUM(VENDORS(J): VOLUME(I, J)) <=

 CAPACITY(I));

! Here is the data;

DATA:

 CAPACITY = 60 55 51 43 41 52;

 DEMAND = 35 37 22 32 41 32 43 38;

 COST = 6 2 6 7 4 2 5 9

 4 9 5 3 8 5 8 2

 5 2 1 9 7 4 3 3

 7 6 7 3 9 2 7 1

 2 3 9 5 7 2 6 5

 5 5 2 2 8 1 4 3;

ENDDATA

Model: WIDGETS

Note that data appears two places in the model. First, there are the lists of warehouses and vendors in

the sets section. Second, there is data on capacity, demand, and shipping costs in the data section.

INTERFACING WITH EXTERNAL FILES 425

In order to completely isolate the data from our model, we would like to move it to an external text

file, and modify the model so it will draw the data from the text file using the @FILE function. The

following modified version of the model has all the data removed. Changes are represented in bold

type:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

 WAREHOUSES / @FILE('WIDGETS2.LDT')/: CAPACITY;

 VENDORS / @FILE('WIDGETS2.LDT')/ : DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

! The objective;

 MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I):

 @SUM(VENDORS(J): VOLUME(I, J)) <=

 CAPACITY(I));

! Here is the data;

DATA:

 CAPACITY = @FILE('WIDGETS2.LDT');

 DEMAND = @FILE('WIDGETS2.LDT');

 COST = @FILE('WIDGETS2.LDT');

ENDDATA

Model: WIDGETS2

426 CHAPTER 8

The model is now set to draw all data from the file WIDGETS2.LDT. The contents of this data file

appear below:

!List of warehouses;

WH1 WH2 WH3 WH4 WH5 WH6 ~

!List of vendors;

V1 V2 V3 V4 V5 V6 V7 V8 ~

!Warehouse capacities;

60 55 51 43 41 52 ~

!Vendor requirements;

35 37 22 32 41 32 43 38 ~

!Unit shipping costs;

6 2 6 7 4 2 5 9

4 9 5 3 8 5 8 2

5 2 1 9 7 4 3 3

7 6 7 3 9 2 7 1

2 3 9 5 7 2 6 5

5 5 2 2 8 1 4 3

File: WIDGETS2.LDT

Note: We use the convention of placing the extension of .LDT on all LINGO data files.

Sections of the data file between end-of-record marks (~) are called records. If an included file has no

end-of-record marks, LINGO reads the whole file as a single record. Notice that, with the exception of

the end-of-record marks, the model text and data appear just as they would if they were in the model

itself.

Also, notice how the end-of-record marks in the include file work along with the @FILE function calls

in the model. The first call to @FILE opens WIDGETS2.LDT and includes the first record. The second

call includes the second record, and so on.

The last record in the file does not need an end-of-record mark. When LINGO encounters an

end-of-file, it includes the last record and closes the file. If you end the last record in an include file

with an end-of-record mark, LINGO will not close the file until it is done solving the current model.

This could cause problems if multiple data files are opened in the model—files that remain open can

cause the limit on open files to be exceeded.

When using the @FILE function, think of the contents of the record (except for any end-of-record

mark) as replacing the text @FILE(‘filename’) in the model. This way, you can include a whole

statement, part of a statement, or a whole series of statements in a record. For example, the first two

records of the WIDGETS2.LDT file in the above example:

!List of warehouses;

WH1 WH2 WH3 WH4 WH5 WH6 ~

!List of vendors;

V1 V2 V3 V4 V5 V6 V7 V8 ~

INTERFACING WITH EXTERNAL FILES 427

are included in the model in the sets section as follows:

WAREHOUSES / @FILE('WIDGETS2.LDT')/: CAPACITY;

VENDORS / @FILE('WIDGETS2.LDT')/ : DEMAND;

The net effect of these @FILE calls is to turn the model statements into:

WAREHOUSES / WH1 WH2 WH3 WH4 WH5 WH6/: CAPACITY;

VENDORS / V1 V2 V3 V4 V5 V6 V7 V8/ : DEMAND;

Comments in the include file are ignored. The maximum number of include files a model can

simultaneously reference is 16.

Writing to Files Using @TEXT
The @TEXT interface function is used for exporting solutions to text files. The @TEXT function can

export both set members and attribute values. The syntax of the @TEXT function is:

@TEXT(['filename', [‘a’]])

where filename is the name of the file you want to export the solution to. If filename is omitted, the

solution data will be sent to the standard output device (this is typically the screen). If the second

argument of ‘a’ is present, then LINGO will append output to the file, otherwise it will create a new

file for subsequent output, erasing any existing file. The @TEXT function may only appear on the left-

hand side of a data statement in the data section of a model.

We refer to data statements that use interface functions to generate output as output operations. Output

operations are only performed when the solver finishes running a model. The operations are run in the

sequence that they were encountered in the model.

Here are some examples of using @TEXT:

Example 1: @TEXT('RESULTS.TXT') = X;

Sends the value(s) for X to the file RESULTS.TXT. Any existing version of the file is

overwritten

Example 2: @TEXT() = DAYS, START;

In this example, we are exporting the DAYS set and the START attribute. We

routed the output to the screen by omitting the filename argument.

Example 3: @TEXT() = @WRITEFOR(DAYS(D) | START(D) #GT# 0:

DAYS(D), ' ', START(D));

In this example, we use the @WRITEFOR reporting function to loop over the

members of the DAYS set. Contrary to the previous example, we only print

information for those days where START(D) is greater than 0.

Now, let’s turn to a more detailed example of the use of @TEXT in our staff scheduling model.

428 CHAPTER 8

Example - Using @TEXT for Staff-Scheduling
Let’s once again make use of the staff scheduling model from Chapter 2, Using Sets. However, this

time we will modify it to use the @TEXT function and write the solution to a file. The model follows

with the critical change listed in bold type:

SETS:

 DAYS / MON TUE WED THU FRI SAT SUN/:

 REQUIRED, START;

ENDSETS

DATA:

 REQUIRED = 20 16 13 16 19 14 12;

 @TEXT('OUT.TXT') = DAYS, START;

ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)))

 >= REQUIRED(J)

);

We have added the one output operation:

@TEXT('OUT.TXT') = DAYS, START;

which writes the values of the DAYS set and the values of the START attribute to the file OUT.TXT.

Once you solve the model, LINGO will run this output operation, the file OUT.TXT will be generated,

and it will contain the members of the DAYS set and the optimal values for the START attribute:

MON 8.0000000

TUE 2.0000000

WED 0.0000000

THU 6.0000000

FRI 3.0000000

SAT 3.0000000

SUN 0.0000000

File: OUT.TXT

INTERFACING WITH EXTERNAL FILES 429

You may now import the data from OUT.TXT into other applications. For instance, if you want to

import the data into MS Access, you could use the File|Get External Data|Import command in Access

to read the data into a table. We defined a small table in Access called Start, and imported the data in

this manner yielding the following:

To import the data into an Excel sheet, you must first use the File|Open command on the OUT.TXT file

to get the data into a spreadsheet by itself, as we have done here:

Once the results are imported into a spreadsheet, you may cut and paste them to any other sheet you

desire.

Before we move on, suppose you are not interested in all the output generated by the standard LINGO

solution report. Suppose, in the case of this example, all you want to see is the objective value and the

values for the DAYS set and the START attribute. Here's how you can do it. First, add the additional

output operation, shown here in bold, to your data section, so it looks like:

DATA:

 @TEXT('OUT.TXT') = DAYS, START;

 @TEXT() = DAYS, START;

ENDDATA

The new output operation causes the values of DAYS and START to be sent to the screen (since we

omitted a file name). Next, you will need to suppress the normal LINGO solution report. In Windows

versions of LINGO, select the LINGO|Options command, click on the Interface tab in the Options

430 CHAPTER 8

dialog box, check the Terse output checkbox, then press the OK button (on platforms other than

Windows, enter the TERSE command). Now, solve your model and you will be presented with the

following, abbreviated report:

Global optimal solution found at step: 8

Objective value: 22.00000

MON 8.0000000

TUE 2.0000000

WED 0.0000000

THU 6.0000000

FRI 3.0000000

SAT 3.0000000

SUN 0.0000000

In the example above, we simply listed the names of set DAYS and attribute START on the right-hand

side of our output operation. This causes LINGO to display all values for DAYS and START. Suppose

we'd like more control over what values do and do not get displayed. In particular, suppose we are

only interested in viewing those days in which the value for START is nonzero. We can do this by

using the @WRITEFOR report function, which allows us to provide a condition to test before printing

output:

DATA:

 @TEXT() = @WRITEFOR(DAYS(D) | START(D) #GT# 0:

 DAYS(D), @FORMAT(START(D), '6.1f'));

ENDDATA

Note how we now only display the days where START > 0 in our new report:

Global optimal solution found at iteration: 15

Objective value: 22.00000

MON 8.0

TUE 2.0

THU 6.0

FRI 3.0

SAT 3.0

Another feature of this last example to note is the use of the @FORMAT function, which we used to

display the nonzero start values in a field of six columns with one trailing decimal point.

@WRITEFOR also allows us to form arithmetic expressions of the variable values. Here's an example

that we could add to our staff model to compute the number of staff on duty each day:

DATA:

 @TEXT() = @WRITE('Day On-Duty');

 @TEXT() = @WRITE(14*'-');

 @TEXT() = @WRITEFOR(DAYS(D): DAYS(D),

 @FORMAT(@SUM(DAYS(D2) | D2 #LE# 5:

 START(@WRAP(D - D2 + 1, 7))), '11.1f'));

ENDDATA

INTERFACING WITH EXTERNAL FILES 431

Here's the report generated by these output operations:

Day On-Duty

MON 20.0

TUE 16.0

WED 13.0

THU 16.0

FRI 19.0

SAT 14.0

SUN 12.0

This previous example also illustrates the use of the @WRITE function. The @WRITE function is

similar to the @WRITEFOR function with the exception that it does not accept a set to loop on, and,

therefore, is used to write single occurrences of text output. As with @WRITEFOR, @WRITE accepts

expressions of variables. Here's an example that calculates the maximum number of employees

starting on a particular day.

DATA:

 @TEXT() = @WRITE('Max start = ', @MAX(DAYS: START));

ENDDATA

which yields the following output: Max start = 8.

LINGO Command Scripts
A LINGO command script is any text file containing a series of LINGO commands. In addition to

understanding the syntax of LINGO models, using command scripts requires some understanding of

LINGO’s command language (covered in Chapter 6, Command-line Commands). You can think of

these commands as a macro language that allows you to automate the running of frequently used

commands and/or models.

To run a command script in Windows versions of LINGO, use the File|Take Commands command. In

other versions of LINGO, use the TAKE command. In both cases, you will be prompted for the name

of a file that contains your command script. Once you have input the file name, LINGO will begin to

execute the commands in this file. Execution will continue until either a QUIT command is

encountered, causing LINGO to terminate, or an end-of-file is encountered, causing LINGO to return

to normal input mode.

432 CHAPTER 8

A Command Script Example
Once again, we will make use of the staff-scheduling model introduced on page 63 to illustrate the use

of a command script. Suppose, instead of one hot dog stand, our operations have expanded and we

now have three hot dog stands: Pluto Dogs, Mars Dogs, and Saturn Dogs. Our staffing requirements at

the three sites are:

Site Mon Tue Wed Thu Fri Sat Sun

Pluto 20 16 13 16 19 14 12

Mars 10 12 10 11 14 16 8

Saturn 8 12 16 16 18 22 19

Running staffing models for all three sites is cumbersome and prone to error. We would like to

automate the process by constructing a script file that runs all three staffing models automatically. To

do this, we construct the following script file:

! Have LINGO echo input to the screen;

SET ECHOIN 1

! Suppresses the standard solution report;

SET TERSEO 1

! Begins input of a new model;

MODEL:

SETS:

 DAYS / MON TUE WED THU FRI SAT SUN/:

 REQUIRED, START;

ENDSETS

DATA:

 REQUIRED = @FILE('PLUTO.LDT');

 @TEXT('PLUTO.TXT') = START;

ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)))

 >= REQUIRED(J)

);

@FOR(DAYS: @GIN(START));

END

! Solve Pluto Dogs model;

GO

! Alter model for Mars;

ALTER ALL 'PLUTO'MARS'

! Solve Mars model;

GO

! Alter model for Saturn;

ALTER ALL 'MARS'SATURN'

INTERFACING WITH EXTERNAL FILES 433

! Solve Saturn model;

GO

! Restore parameters;

SET TERSEO 0

SET ECHOIN 0

Command Script: DOGS.LTF

We use two SET commands to set two of LINGO’s parameters. First, we set ECHOIN to 1, which

causes LINGO to echo all command script input to the screen. This can be useful when you are trying

to debug a script file. Next, we set TERSEO to 1. This causes LINGO to go into terse output mode,

which suppresses the default solution report each time we solve a model.

Next, we include the MODEL: command to put LINGO into model input mode. It is important here to

remember the MODEL: statement is a command. When LINGO encounters this command in a script

file, it reads all subsequent text in the file as model text until it encounters the END command. This

model then becomes the current model in memory.

The key feature to note in our model is the data section:

DATA:

 REQUIRED = @FILE('PLUTO.LDT');

 @TEXT('PLUTO.TXT') = START;

ENDDATA

We use the @FILE function to include the staffing requirements from an external file and we use the

@TEXT function to send the values of the START attribute to a file.

After the END statement, we have a GO command to solve the model for the Pluto stand. We then

include an ALTER command to change all occurrences of PLUTO with MARS. This command will

change the data section to (changes in bold):

DATA:

 REQUIRED = @FILE('MARS.LDT');

 @TEXT('MARS.TXT') = START;

ENDDATA

Assuming we have the staffing requirements for the Mars stand in the file MARS.LDT, our model is

then ready to run again. However, this time it will solve for the START values for the Mars hot dog

stand. We include commands to do the same for the Saturn location as well. Finally, we have two SET

commands to restore the modified parameters.

You can run this command script by issuing the File|Take Commands command in Windows versions

of LINGO, or you can use the TAKE command in other versions. Once the command script has been

executed, you will find the three solution files: PLUTO.TXT, MARS.TXT, and SATURN.TXT. These

files will contain the optimal values for the START attribute for the three locations.

The AUTOLG.DAT Script File
LINGO has an option that allows you to automatically execute a command script each time LINGO

starts. To do this, simply name the command script AUTOLG.DAT and place it in LINGO’s working

directory. Each time LINGO starts, it will automatically execute the commands in this script file.

434 CHAPTER 8

Specifying Files in the Command-line
When a Windows version of LINGO starts up, it checks the command-line for the presence of the

following three commands:

Command Action at Runtime

-Tfilename LINGO executes a File|Take Commands command on the script file

filename. If an AUTOLG.DAT file is present in LINGO’s working

directory, it will be queued for execution before filename.

-Ofilename LINGO performs a File|Open command on filename, reading the

file into a standard window.

-Lfilename LINGO executes a File|Log Output command, causing all output

that would normally have been sent to the command window to be

routed to filename.

As an example, suppose we have the following command script:

! Input a small model

MODEL:

MAX = 20 * X + 30 * Y;

X <= 50;

Y <= 60;

X + 2 * Y <= 120;

END

! Terse output mode

SET TERSEO 1

! Solve the model

GO

! Open a file

DIVERT SOLU.TXT

! Send solution to the file

SOLUTION

! Close solution file

RVRT

! Quit LINGO

QUIT

Command Script: TEST.LTF

This script file inputs a small model, solves it, and then writes a solution report out to the file

SOLU.TXT. Let’s suppose the script file is titled TEST.LTF. We can instruct LINGO to automatically

execute this file by adding the following command to LINGO’s command-line: -tTEST.LTF. To do

this under Windows, you will first need to create a shortcut icon for LINGO. Click the right mouse

button on your desktop, and then select the New command followed by the Shortcut command. Press

INTERFACING WITH EXTERNAL FILES 435

the Browse button and then select the LINGO application file, which is found under the name

LINGO.EXE in your main LINGO directory. You should now have a LINGO shortcut icon on your

desktop that looks like:

To edit the command-line, you must right click on this icon and then select the Properties command.

You will then see the dialog box:

In the Target edit box, add the command -tTEST.LTF. If you want LINGO to run without opening up a

window, you can also select the Minimized option from the Run list box. Now, click the Apply

button followed by the OK button.

436 CHAPTER 8

You can now run LINGO and have it execute the script file by double clicking the shortcut icon on the

desktop. Once you have done this, the solution file, SOLU.TXT, should contain:

 Variable Value Reduced Cost

 X 50.00000 0.000000

 Y 35.00000 0.000000

 Row Slack or Surplus Dual Price

 1 2050.000 1.000000

 2 0.000000 5.000000

 3 25.00000 0.000000

 4 0.000000 15.00000

File: SOLU.TXT

RunLingo
Windows versions of LINGO include a utility program called RunLingo. RunLingo may be used to

process LINGO script files, however, RunLingo does not include the front-end graphical interface

found in the interactive version of LINGO. RunLingo is invoked from the command line, where you

may enter a script file name. RunLingo writes its output to the standard output device. RunLingo can

prove useful in a production environment, where you want LINGO to operate quietly in the

background as part of a larger planning system.

The following example illustrates RunLingo being invoked from the command line to process a small

transportation model contained in the script file TRAN.LTF (also included in the main LINGO folder).

INTERFACING WITH EXTERNAL FILES 437

C:\LINGO14>runlingo tran.ltf
 LINGO/WIN32 14.0.1.29 (29 Jan 13)

 LINDO API 8.0.1053.301 (Jan 30 2013 23:27:41)

 Copyright (C) 2011-2013 LINDO Systems Inc. Licensed material,

 all rights reserved. Copying except as authorized in license

 agreement is prohibited.

 License location: C:\LINGO14\lndlng14.lic

 Config location: C:\LINGO14\LINGO.CNF

 lindo

 Licensed for commercial use.

 Branch-and-bound solver enabled.

 Nonlinear solver enabled.

 Barrier solver enabled.

 Global solver enabled.

 Integer solver enabled.

 Stochastic solver enabled.

 Conic solver enabled.

 Default parameter values restored.

 Parameter Old Value New Value

 ECHOIN 0 1

: MODEL:

? ! A 3 Warehouse, 4 Customer

? Transportation Problem;

? SETS:

? WAREHOUSE / WH1, WH2, WH3/ : CAPACITY;

? CUSTOMER / C1, C2, C3, C4/ : DEMAND;

? ROUTES(WAREHOUSE, CUSTOMER) : COST, VOLUME;

? ENDSETS

? ! The objective;

? [OBJ] min = @SUM(ROUTES: COST * VOLUME);

? ! The demand constraints;

? @FOR(CUSTOMER(J): [DEM]

? @SUM(WAREHOUSE(I): VOLUME(I, J)) >=

? DEMAND(J));

? ! The supply constraints;

? @FOR(WAREHOUSE(I): [SUP]

? @SUM(CUSTOMER(J): VOLUME(I, J)) <=

? CAPACITY(I));

? ! Here are the parameters;

? DATA:

? CAPACITY = 30, 25, 21 ;

438 CHAPTER 8

? DEMAND = 15, 17, 22, 12;

? COST = 6, 2, 6, 7,

? 4, 9, 5, 3,

? 8, 8, 1, 5;

? ENDDATA

? END

: set terseo 1

 Parameter Old Value New Value

 TERSEO 0 1

: go

 Compiling model ...

 Structural analysis, pass 1 ...

 Scalarizing model ...

 Generating nonzero matrix ...

 Solving...

 Global optimal solution found.

 Objective value: 161.0000

 Infeasibilities: 0.000000

 Total solver iterations: 6

: nonz volume

 Global optimal solution found.

 Objective value: 161.0000

 Infeasibilities: 0.000000

 Total solver iterations: 6

 Variable Value Reduced Cost

 VOLUME(WH1, C1) 2.000000 0.000000

 VOLUME(WH1, C2) 17.00000 0.000000

 VOLUME(WH1, C3) 1.000000 0.000000

 VOLUME(WH2, C1) 13.00000 0.000000

 VOLUME(WH2, C4) 12.00000 0.000000

 VOLUME(WH3, C3) 21.00000 0.000000

: quit

C:\LINGO14>

INTERFACING WITH EXTERNAL FILES 439

Redirecting Input and Output
In most Unix environments, it is possible to redirect all screen output from LINGO to a text file. You

can also redirect all input from the keyboard to an input file. This is accomplished by specifying the

files in the command-line using the following syntax:

LINGO < input_file > output_file

Upon execution of this command, LINGO will take its input from input_file, and a text file will be

created called output_file, which contains everything that would have appeared on the screen had

LINGO been started normally. Path names may be included in the names of the input and output files.

Exploiting this capability allows you to use LINGO as a “black box” in larger turnkey applications. If

done properly, the user will not be aware LINGO is running in the background.

As an example, we could run the script file from the previous section, TEST.LTF, generating the same

solution file, SOLU.TXT, with the command:

LINGO < TEST.LTF > CAPTURE.TXT

The file CAPTURE.TXT is used to capture all screen output.

Managing LINGO Files
In order to help keep track of your files, you may want to adopt a file naming standard, at least as far

as the file name extensions are concerned. Here are some suggestions for file name extensions:

Extension Description

.LG4 model files (Windows only)

.LNG model files in text format

.LTF script files

.LDT included data files

.LRP report files

440 CHAPTER 8

 Note: If you use the default LINGO format (.LG4) for a model, the file will be saved in a special

binary format. Files in this format will only be readable by Windows versions of LINGO, and

will appear garbled if read into other applications. This binary format allows LINGO models

to function as both Object Linking and Embedding (OLE) containers and servers, allows for

embedding of objects (e.g., bitmaps), and permits custom formatting of model text. Thus, you

will generally want to use the .LG4 format. Cases where you must use a text format are:

 1. a model that must be transferred to another platform or application,

 2. a LINGO script file, or

 3. a LINGO data file to be included with @FILE.

 LINGO anticipates this by saving any file with an extension other than .LG4 as text.

 You can force LINGO to always use the .LNG text format for models by checking the .LNG

box on the Interface tab of the LINGO|Options dialog box. Any special formatting of the text

(e.g., bold fonts) will be lost when a model is saved in this format. Also, models saved as text

may not function as OLE containers or servers.

 On platforms other than Windows, LINGO always saves files in text format.

441

9 Interfacing With
Spreadsheets

As we have mentioned, it can be cumbersome and impractical to try to maintain your data in a LINGO

model file. This is particularly true if you have more than just a small handful of data—as is the case

with most practical models. Spreadsheets are adept at handling small to moderate amounts of data.

Spreadsheets are also very useful tools for manipulating and presenting the results generated by your

model. For these reasons, LINGO has a number of features that allow the user to import data from

spreadsheets and export solutions back out to spreadsheets. These features include real-time Object

Linking and Embedding (OLE) links to Excel, OLE automation links that can be used to drive LINGO

from Excel macros, and embedded OLE links that allow you to import the functionality of LINGO into

Excel. At present, all of these features are supported only under Windows versions of LINGO.

Importing Data from Spreadsheets
LINGO provides the @OLE function for importing data from spreadsheets. This function is only

available under Windows versions of LINGO. @OLE performs direct OLE transfers of data between

LINGO and Excel.

Using @OLE to Import Data from Excel
@OLE is an interface function for moving data back and forth from Excel using OLE based transfers.

OLE transfers are direct memory transfers and do not make use of intermediate files. When using

@OLE, LINGO loads Excel, tells Excel to load the desired spreadsheet, and requests ranges of data

from the sheet. You must have Excel 5, or later, to be able to use the @OLE function. The @OLE

function may be used in the data and init sections to import data.

@OLE can read both set members and set attributes—set members are expected in text format, while

set attributes are expected in numeric format. Primitive sets require one cell of data for each set

member (i.e., one set member per cell). You will need n cells of values to initialize each n-dimensional

derived set member, where the first n cells contain the first set member, the second n cells contain the

second set member, and so on.

@OLE can read one or two-dimensional ranges (ranges on a single worksheet in Excel), but cannot

read discontinuous ranges or three-dimensional ranges (ranges that traverse more than one worksheet

in Excel).

Ranges are read left-to-right, top-to-bottom.

442 CHAPTER 9

Importing in the Data and Init Sections with @OLE
The syntax for using @OLE to import data in both the data and init sections is:

object_list = @OLE([‘spreadsheet_file’] [, range_name_list]);

The object_list is a list of model objects, optionally separated by commas, which are to be initialized

from the spreadsheet. Object_list may contain any combination of set names, set attributes, and scalar

variables.

The spreadsheet_file is the name of the Excel spreadsheet file to retrieve the data from. If the name is

omitted, LINGO defaults to using whatever workbook is currently open in Excel.

The range_name_list is the list of named ranges in the sheet to retrieve the data from. The ranges must

contain exactly one element for each member in the object_list. There are three options available in

how you specify the ranges. First, you can omit the range arguments entirely. In which case, LINGO

defaults to using a list of range names identical to the list of object names in object_list. Second, you

can specify a single range name to retrieve all the data from. In which case, all the objects in

object_list must be defined on the same set, and LINGO reads the data as if it was a table. When

specifying a single range name for multiple objects, all the objects must be of the same data type.

Furthermore, you can’t mix set members (text) with set attributes (numeric). Finally, you can specify

one range name for each object in object_list. In which case, the objects do not have to be defined on

the same set and can be of differing data types. Examples of these three methods for using @OLE

follow:

Example 1: COST, CAPACITY = @OLE();

In this example we specify no arguments to the @OLE() function. In which case, LINGO

will supply the default arguments. Given that no workbook name was specified, LINGO

will use whatever workbook is currently open and active in Excel. In addition, no range

names were specified, so LINGO defaults to using the names of the model objects. Thus,

COST and CAPACITY are initialized to the values found, respectively, in the ranges COST

and CAPACITY in the currently open workbook in Excel.

Note: If you do not specify a workbook name in @OLE() function references, LINGO defaults to

using whatever workbook is currently open in Excel. Therfore, you will need to open Excel

and load the relevant workbook prior to solving your model.

Example 2: COST, CAPACITY = @OLE('SPECS.XLS', 'DATATABLE');

In this example, we are specifying a single range to initialize both COST and CAPACITY.

Assuming the range DATATABLE has two columns, LINGO initializes COST to the data in

column 1 and CAPACITY to the data in column 2. Note, in order for this method to work,

both COST and CAPACITY must be defined on the same set. Furthermore, they must both

be either sets or set attributes—mixed types aren’t allowed using this form.

Example 3: COST, CAPACITY = @OLE('SPECS.XLS', 'COST01', 'CAP01');

In this example, we are specifying individual ranges to initialize both COST and

CAPACITY. COST will be initialized with the data in the COST01 range and CAPACITY

will receive the values in the CAP01 range.

INTERFACING WITH SPREADSHEETS 443

As a final note, it is important to know that derived sets may be imported from either a single range or

from n ranges, where n is the dimension of the derived set. Here are two examples to illustrate:

Example 4: ARCS, COST = @OLE('TRAN.XLS', 'ARCS', 'COST');

You might find something similar to this example in a transportation model. ARCS is the

set of shipping arcs and COST is an attribute for storing the cost of shipping one unit down

each arc. Typically, ARCS would be a 2-dimensional derived set of from-to coordinate

pairs. In this example, we've chosen to bring the list of arcs in from a single workbook

range. Suppose there are 10 shipping arcs in our model, then the ARCS range would have

20 cells, with the first column of 10 cells being the ship-from points and the second column

of 10 cells being the ship-to points. Since we are using the single range method to input a

derived set, the two columns are adjacent and are both contained in the single range call

ARCS. This is in contrast to the following example…

Example 5: ARCS, COST = @OLE('TRAN.XLS', 'FROM', 'TO', 'COST');

…where we use two ranges to store the two-dimensional ARCS set. The first range,

FROM, would contain 10 ship-from points, while the second range, TO, would contain 10

ship-to points. These two ranges may lie in different areas of the workbook and need not

be adjacent.

444 CHAPTER 9

Importing in a Transportation Model with @OLE
We will now make use of the Wireless Widgets transportation model introduced in Chapter 1, Getting

Started with LINGO, to illustrate in more detail the use of the @OLE function. The model is

reproduced below with changes listed in bold type:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

! Import warehouses and vendors from Excel;

 WAREHOUSES: CAPACITY;

 VENDORS : DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

! The objective;

 MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I):

 VOLUME(I, J)) = DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I):

 @SUM(VENDORS(J): VOLUME(I, J))

 <= CAPACITY(I));

DATA:

! Import the data from Excel;

 WAREHOUSES, VENDORS, CAPACITY, DEMAND, COST =

 @OLE('\LINGO\SAMPLES\WIDGETS.XLS',

 'WAREHOUSES', 'VENDORS', 'CAPACITY',

 'DEMAND', 'COST');

ENDDATA

Model: WIDGETS3

Instead of explicitly listing the data in the text of the model, we are now importing it entirely from the

WIDGETS.XLS spreadsheet. Below is an illustration of the WIDGETS.XLS:

INTERFACING WITH SPREADSHEETS 445

In addition to inputting the data into this sheet, we also had to define range names for the cost,

capacity, demand, vendor name, and warehouse name regions. Specifically, we defined the following

range names:

Name Range

Capacity K5:K10

Cost C5:J10

Demand C11:J11

Vendors C4:J4

Warehouses B5:B10

To define a range name in Excel:

1) select the range by dragging over it with the mouse with the left button

down,

2) release the mouse button,

3) select the Insert|Name|Define command,

4) enter the desired name, and

5) click the OK button.

We use the following instance of the @OLE function in the data section of our model to import the

data from Excel:

WAREHOUSES, VENDORS, CAPACITY, DEMAND, COST =

 @OLE('\LINGO\SAMPLES\WIDGETS.XLS',

 'WAREHOUSES', 'VENDORS', 'CAPACITY',

 'DEMAND', 'COST');

446 CHAPTER 9

Note that because the model objects are all either primitive sets or set attributes, and they have the

same names as their corresponding spreadsheet ranges, we could have dropped the range name

arguments and used the equivalent, but shorter, version:

WAREHOUSES, VENDORS, CAPACITY, DEMAND, COST =

 @OLE('\LINGO\SAMPLES\WIDGETS.XLS');

As an aside, note that we used a single @OLE function call to read all the data for this model. This is

not a requirement, however. For clarity, you may choose to use multiple @OLE function

callsperhaps one for each model object.

When we solve this model, LINGO will load Excel (assuming it isn't already running), load the

WIDGETS worksheet, and then pull the values for the CAPACITY, COST, and DEMAND attributes

from the worksheet, along with the members of the WAREHOUSES and VENDORS sets. Excerpts

from the solution appear below:

Global optimal solution found.

Objective value: 664.0000

Total solver iterations: 15

 Variable Value Reduced Cost

VOLUME(WH1, V2) 19.00000 0.0000000

VOLUME(WH1, V5) 41.00000 0.0000000

VOLUME(WH2, V4) 32.00000 0.0000000

VOLUME(WH2, V8) 1.000000 0.0000000

VOLUME(WH3, V2) 12.00000 0.0000000

VOLUME(WH3, V3) 22.00000 0.0000000

VOLUME(WH3, V7) 17.00000 0.0000000

VOLUME(WH4, V6) 6.000000 0.0000000

VOLUME(WH4, V8) 37.00000 0.0000000

VOLUME(WH5, V1) 35.00000 0.0000000

VOLUME(WH5, V2) 6.000000 0.0000000

VOLUME(WH6, V6) 26.00000 0.0000000

VOLUME(WH6, V7) 26.00000 0.0000000

Exporting Solutions to Spreadsheets
LINGO allows you to place interface functions in a model’s data section to automatically perform

exports to Excel each time your model is solved. In this chapter, we will focus on how to place

interface functions in your model to export your model’s results to Excel.

In the previous section, we saw how the @OLE interface function can be used to import data from

Excel. As we will demonstrate here, this function may also be used to send solutions back out to Excel.

As with imports, @OLE uses OLE technology to create real time links with Excel.

INTERFACING WITH SPREADSHEETS 447

Using @OLE to Export Solutions to Excel
@OLE is an interface function for moving data back and forth from Excel using OLE based transfers.

OLE transfers are direct memory transfers and do not make use of intermediate files. When using

@OLE for exports, LINGO loads Excel, tells Excel to load the desired spreadsheet, and sends ranges

of data containing solution values to the sheet. @OLE can export one and two-dimensional ranges

(rectangular ranges that lie on a single spreadsheet in Excel), but cannot export discontinuous or

three-dimensional ranges (ranges that traverse more than one spreadsheet in Excel). In order to export

solutions with @OLE, you place calls to @OLE in the data section of your model. These @OLE

export instructions are executed each time your model is solved.

Syntax Form 1
The first form of syntax for using @OLE to export data is:

@OLE(['spreadsheet_file’] [, range_name_list]) = object_list;

The object_list is a comma delimited list of sets, set attributes, and/or scalar variables to be exported.

The 'spreadsheet_file’is the name of the workbook file to export the values to. If the name is omitted,

LINGO defaults to using whatever workbook is currently open in Excel.

The range_name_list is the list of named ranges in the sheet to export solution values to. The ranges

must contain exactly one cell for each exported value for each object in the object_list. Primitive sets

and set attributes export one value per element. Derived sets, on the other hand, export one value for

each dimension of the set. Thus, a two-dimensional set exports two values per set member.

As an example, consider the following model and its solution:

SETS:

 S1: X;

 S2(S1, S1): Y;

ENDSETS

DATA:

 S1,X = M1,1 M2,2 M3,3;

 S2,Y = M1,M2,4 M3,M1,5;

ENDDATA

 Variable Value

 X(M1) 1.000000

 X(M2) 2.000000

 X(M3) 3.000000

 Y(M1, M2) 4.000000

 Y(M3, M1) 5.000000

X and Y, both set attributes, export one numeric value per element. More specifically, X exports 1,2,

and 3; while Y exports 4 and 5. S1, a primitive set, exports one text value per element, or the values:

M1, M2, and M3. S2, on the other hand, is a two-dimensional derived set. Thus, it exports two text

values per element. In this case, S2 has two members, so it exports the four values M1, M2, M3, and

M1.

448 CHAPTER 9

There are three options available for how you specify the range names. First, you can explicitly specify

one receiving range for each model object in object_list. Secondly, you can omit the range arguments

entirely. In that case, LINGO supplies the range names with default values that are the same as the

names of the model objects. Finally, you can specify a single range name to export all the solution

values to. In this final case, all the variables in object_list must be defined on the same set, and LINGO

exports the data in a tabular format. Examples of these three methods for using @OLE to export

solutions follow:

Example 1: @OLE('\XLS\DEVELOP.XLS', 'BUILD_IT', 'HOW_BIG') =
 BUILD, SQ_FEET;

Here, an individual range for receiving each model object is specified. Thus, the values

of BUILD will be placed in the range BUILD_IT and SQ_FEET in the range HOW_BIG.

When specifying individual ranges, model objects are not required to be defined on the

same set.

Example 2: @OLE('\XLS\DEVELOP.XLS') = BUILD, SQ_FEET;

In this case, we omitted the range name argument. Thus, LINGO defaults to using the

model object names for the range names. So, LINGO exports BUILD and SQ_FEET to

ranges of the same name in the DEVELOP.XLS Excel sheet.

Example 3: @OLE('\XLS\DEVELOP.XLS', 'SOLUTION') = BUILD, SQ_FEET;

Here we have specified a single range, SOLUTION, to receive both model objects.

Assuming that the receiving range has two columns and our model objects are both

one-dimensional, the values of BUILD will be placed in column 1 and SQ_FEET in

column 2. In order for this method to work, BUILD and SQ_FEET must be defined on

the same set.

Note: The major difference to notice between using @OLE for exports, as opposed to imports, is the

side of the statement the @OLE function appears on. When the @OLE function appears on

the left of the equals sign, you are exporting. When it appears on the right, you are importing.

So, always remember:

 @OLE(…) = object_list; Export, and

 object_list = @OLE(…); Import.

 Another way to remember this convention is that the left-hand side of the expression is

receiving the data, while the right-hand side is the source. For those familiar with computer

programming languages, this follows the convention used in assignment statements.

Syntax Form 2
As with @TEXT, you may also use the @WRITEFOR function in conjunction with @OLE to give you more

control over the values that are exported, which brings us to our second form of syntax for exporting to

Excel:

 @OLE(['spreadsheet_file’], range_name_list) = @WRITEFOR(setname

 [(set_index_list) [| conditional_qualifier]] : output_obj_1[,…,output_obj_n]);

One thing to note that differs from the previous syntax is that the range name list is now required when

exporting via the @WRITEFOR function. The range name list can be a single-cell range, a single

multiple-cell range, or a list of multiple-cell ranges.

INTERFACING WITH SPREADSHEETS 449

In the case of a single cell range, the i-th output object will be written to the (i-1)-th column to the right

of the named cell. Note that single-cell ranges act dynamically in that all values will be written to the

workbook even though, of course, they lie outside the single-cell range. When all output is written, the

original single-cell range will be at the upper left corner of the table of output values.

In the case of a single multiple-cell range, LINGO creates a table of all the output values, where output

object i forms the i-th column of the table. This table is then written to the output range. Items are

written from upper-left to lower-right. In general, your output range will have one column for each

output object. If not, the columns will get scrambled on output.

If a list of multiple cell ranges is specified, then you must specify one range name for each output

object. Each output object will be written to its output range in upper-left to lower-right direction.

@WRITEFOR functions like any other set looping function in that, as a minimum, you will need to

specify the set to loop over. Optionally, you may also specify an explicit set index list and a

conditional qualifier. If a conditional qualifier is used, it is tested for each member of the looping set

and output will not occur for any members that don't pass the test. It's this feature of being able to base

output on the results of a condition that distinguish this second style of syntax.

The list of output objects, of course, specifies what it is you want to output. As with the first form of

syntax, the output objects may be labels, set members and variable values. However, you have

additional latitude in that the output objects may now consist of complex expressions of the variable

values (e.g., you could compute the ratio of two variables). This is a useful feature when you need to

report statistics and quantities derived from the variable values. By placing these calculations in the

data section, as opposed to the model section, you avoid adding unnecessary complications to the

constraints of the model.

In general, you can do everything in the second form of syntax that you can do in the first, and more.

However, the first form has an advantage in that it can be very concise.

Some examples follow:

Example 1: @OLE('RESULTS.XLS', 'A1') =

 @WRITEFOR(DAYS(D) | START(DAYS) #GT# 0:

 DAYS(D), START(D));

Here, our target is the single cell A1. Starting at A1 we will write two columns. The first

column will contain the names of the DAYS set for which the attribute START is nonzero.

The second column will contain the START values. Assuming that there are five days that

have nonzero values, then range A1:A5 will contain the names of the days and B1:B5 will

contain the start values.

Example 2: @OLE('RESULTS.XLS', 'SKED') =

 @WRITEFOR(DAYS(D) | START(DAYS) #GT# 0:

 DAYS(D), START(D));

Here, our target is the multiple-cell range SKED. Assuming SKED is a two-column range,

column one will receive the DAYS set members and column 2 will receive the START

values.

450 CHAPTER 9

Example 3: @OLE('RESULTS.XLS', 'DAYS', 'START') =

 @WRITEFOR(DAYS(D) | START(DAYS) #GT# 0:

 DAYS(D), START(D));

In this example, we specify one named range for each output object. In which case, each

output object will be written to its corresponding range.

Note: When exporting to workbooks, receiving ranges that are larger than the number of exported

values can be filled out by either erasing the contents of the extra cells or leaving the extra

cells untouched. The default is to leave the extra cells untouched. If you would like to erase

the contents of the extra cells, you'll need to enable the Fill Out Ranges and Tables option.

INTERFACING WITH SPREADSHEETS 451

Exporting in a Transportation Model with @OLE
In a previous section of this chapter, @OLE Importing in a Transportation Model, we used the

Wireless Widgets transportation model to demonstrate the use of the @OLE function for importing

data from Excel. At the time, we did not use @OLE to export the solution back to the spreadsheet file.

We will now extend the model in order to have it also export the solution back to the spreadsheet. The

model is reproduced below with changes in the data section listed in bold type:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

! Import warehouses and vendors from Excel;

 WAREHOUSES: CAPACITY;

 VENDORS : DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

! The objective;

 MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I):

 VOLUME(I, J)) = DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I):

 @SUM(VENDORS(J): VOLUME(I, J))

 <= CAPACITY(I));

DATA:

! Import the data from Excel;

 WAREHOUSES, VENDORS, CAPACITY, DEMAND, COST =

 @OLE('\LINGO\SAMPLES\WIDGETS.XLS',

 'WAREHOUSES', ' VENDORS', 'CAPACITY',

 'DEMAND', 'COST');

! Export the solution back to Excel;

 @OLE('\LINGO\SAMPLES\WIDGETS.XLS',

 'VOLUME') = VOLUME;

ENDDATA

Model: WIDGETS5

We now use the @OLE function to send the decision variables contained in the VOLUME attribute

back to the Excel file WIDGETS.XLS with the statement:

@OLE('\LINGO\SAMPLES\WIDGETS.XLS', 'VOLUME') = VOLUME;

Note, since the attribute name is identical to the range name, we could have omitted the range name in

the @OLE function and simply used the following:

@OLE('\LINGO\SAMPLES\WIDGETS.XLS') = VOLUME;

452 CHAPTER 9

We will now need to add a range titled VOLUME for receiving the solution values in the WIDGETS

spreadsheet. Here is the range as it appears after adding it to the sheet:

We have also used the Insert|Name|Define command in Excel to assign the range name VOLUME to

the receiving range of C16:J21. To define a range name in Excel:

1. select the range by dragging over it with the mouse with the left button

down,

2. release the mouse button,

3. select the Insert|Name|Define command,

4. enter the desired name (VOLUME in this case), and

5. click the OK button.

INTERFACING WITH SPREADSHEETS 453

When we solve this model, LINGO will load Excel (assuming it isn't already running), load the

WIDGETS worksheet, and then pull the data for WAREHOUSES, VENDORS, CAPACITY, COST, and

DEMAND from the worksheet. Once the solver has found the optimal solution, LINGO will send the

values for the VOLUME attribute back to the worksheet storing them in the range of the same name

and the updated range will appear as follows:

Export Summary Reports
Whenever you use the @OLE function to export solutions to spreadsheets, you will receive a summary

of the results of the export process. This summary is called the export summary report. These reports

will be found at the top of the solution report window. There will be one export summary report for

each @OLE function in the model used for exporting solutions. Here is the export summary report

obtained when we exported the solution of the Wireless Widgets transportation model to Excel using

@OLE:

Export Summary Report

Transfer Method: OLE BASED

Workbook: \LINGO\SAMPLES\WIDGETS.XLS

Ranges Specified: 1

 VOLUME

Ranges Found: 1

Range Size Mismatches: 0

Values Transferred: 48

The Transfer Method field lists the type of transfer used. @OLE transfers will be listed as “OLE

BASED”.

454 CHAPTER 9

The Workbook field lists the name of the workbook the export was performed on.

The Ranges Specified field lists the total number of ranges specified in the export function followed by

a listing of the range names.

The Ranges Found figure lists the number of ranges actually found in the sheet from the total number

specified.

In general, the spreadsheet range should have one cell for each data value being exported. If a range

has too few or too many cells, it gets counted in the Range Size Mismatches field.

The Values Transferred field lists the total number of data values actually transferred into all the

specified ranges.

OLE Automation Links from Excel
LINGO allows you to place a LINGO command script in a range in an Excel spreadsheet and then pass

the script to LINGO by means of OLE Automation. This allows you to setup a client-server

relationship between Excel and LINGO.

To illustrate this feature, we will once again make use of the staff-scheduling model introduced in the

Primitive Set Example — Staff-Scheduling section in Chapter 2, Using Sets. This illustration assumes

the reader is moderately familiar with the use of Excel Visual Basic macros. If needed, you can refer to

the Excel documentation for more background.

INTERFACING WITH SPREADSHEETS 455

Consider the following Excel spreadsheet:

Spreadsheet: STAFOLE1.XLS

We have placed the staffing requirements in the range C16:I16 and assigned the name

REQUIREMENTS to this range. We have also assigned the name START to the range C18:I18. LINGO

will be sending the solution to the START range. We have also included two graphs in the sheet to help

visualize the solution. The graph on the left shows how many employees to start on each day of the

week, while the graph on the right compares the number on duty to the number required for each day.

456 CHAPTER 9

Note that our spreadsheet has a second tab at the bottom titled Model. Select this tab and you will find

the following:

Spreadsheet: STAFOLE1.XLS

This page contains the command script we will use to solve the staffing model. For more information

on command scripts, refer to page 431. In line 1, we turn on terminal echoing, so LINGO will echo the

command script to the command window as it is read. Lines 2 through 21 contain the text of the

model, which should be familiar by now. Note, in the data section, we are using two @OLE

functions—the first to import the data from the spreadsheet and the second to export the solution back

to the spreadsheet. The data is read from the range named REQUIRED, and the solution is written to

the START range on the first tab of the sheet. In line 22, we use the GO command to solve the model.

We have also assigned the range name MODEL to the range that contains this script (Model!A1:A23).

INTERFACING WITH SPREADSHEETS 457

Given that we have our LINGO command script contained in our spreadsheet, the next question is how

we pass it to LINGO to run it. This is where OLE Automation comes in. If you recall, the first tab of

our sheet (the tab labeled Data) had a Solve button. We added this button to the sheet and attached the

following Excel Visual Basic macro to it:

Sub LINGOSolve()

 Dim iErr As Integer

 iErr = LINGO.RunScriptRange("MODEL")

 If (iErr > 0) Then

 MsgBox ("Unable to solve model")

 End If

End Sub

We use OLE Automation to call the LINGO exported method RunScriptRange, passing it the range

name MODEL. This, of course, is the name of the range that contains the command script. The

RunScriptRange routine calls Excel to obtain the contents of the range and begins processing the

commands contained therein. Processing continues until either a QUIT command is encountered or

there are no further commands remaining in the range.

RunScriptRange will return a value of 0 if it was successfully able to queue the script for processing. If

RunScriptRange was not successful, it will return one of the following error codes:

Error

Code

Description

1 Invalid argument

2 <Reserved>

3 Unable to open log file

4 Null script

5 Invalid array format

6 Invalid array dimension

7 Invalid array bounds

8 Unable to lock data

9 Unable to allocate memory

10 Unable to configure script reader

11 LINGO is busy

12 OLE exception

13 Unable to initialize Excel

14 Unable to read Excel range

15 Unable to find Excel range

We have also added the following Auto_Open macro to the sheet:

Dim LINGO As Object

Sub Auto_Open()

 Set LINGO = CreateObject("LINGO.Document.4")

End Sub

An Auto_Open macro is automatically executed each time a sheet is opened. We declare LINGO as an

object and attach the LINGO object to the LINGO application with the CreateObject function.

458 CHAPTER 9

Now, go back to the first tab on the workbook and press the Solve button. After a brief pause, you

should see the optimal solution installed, so the sheet resembles:

Spreadsheet: STAFOLE1.XLS

The optimal number of employees to start on each day of the week is now contained in the START

range (C18:I18), and the graphs have been updated to reflect this solution.

Embedding LINGO Models in Excel
LINGO is capable of functioning as an OLE server. This means you can embed a LINGO model in

any application that can function as an OLE container. Excel is one such application. Embedding a

LINGO model into Excel is convenient in that the LINGO model is always immediately available once

the spreadsheet is opened. You don’t have to worry about also starting LINGO and finding the correct

LINGO model that corresponds to the spreadsheet.

INTERFACING WITH SPREADSHEETS 459

To embed a LINGO document in an Excel file, select the Excel command Insert|Object. You will be

presented with a list of embeddable objects available on your system. Select the LINGO Document

object from this list as shown here:

Click the OK button and a blank LINGO model window will be embedded within the spreadsheet. You

can enter text directly into this window just as you would in LINGO, or you can paste it in from

another application. When you save the Excel sheet, the embedded LINGO model will automatically

be saved with it. Similarly, whenever you read the sheet back into Excel, the embedded LINGO model

will be restored, as well.

460 CHAPTER 9

To illustrate this feature, we will continue with the staffing model introduced in Chapter 2, Using Sets.

The spreadsheet will contain the data for the model, and it will also contain an embedded LINGO

model to perform the optimization and install the solution back into the spreadsheet. This example may

be found in the spreadsheet file SAMPLES\STAFOLE2.XLS. If you load this sheet into Excel, you

should see the following:

Spreadsheet: STAFOLE2.XLS

As in the previous example, the staffing requirements are in the range C16:I16. This range has been

titled REQUIRED. The range C18:I18 has been assigned the name START and will receive the solution

after the model is solved. In the upper right-hand corner of the sheet, we have defined a graph to help

visualize the solution.

INTERFACING WITH SPREADSHEETS 461

In the upper left corner, there is a region labeled <Embedded LINGO Model>. This region contains a

LINGO model that will solve the staffing model and place the solution values into the spreadsheet. If

you double-click on this region, you will be able to see the model:

Spreadsheet: STAFOLE2.XLS

Note, when this LINGO model is active, the LINGO menus and toolbar replace the Excel menus and

toolbar. Thus, when working with an embedded LINGO model in Excel, you have all the functionality

of LINGO available to you. When you deselect the LINGO model, the Excel menus and toolbar will

automatically become available once again. This begins to illustrate the power of embedded OLE—it

allows the user to seamlessly combine the features of two or more applications together as if they were

a single, integrated application.

462 CHAPTER 9

You can drag the lower right-hand corner of the LINGO model region to expose the contents of the

entire model:

SETS:

 DAYS / MON TUE WED THU FRI SAT SUN/:

 REQUIRED, START;

ENDSETS

DATA:

 REQUIRED =

 @OLE('C:\LINGO\SAMPLES\STAFOLE2.XLS');

 @OLE('C:\LINGO\SAMPLES\STAFOLE2.XLS') = START;

ENDDATA

MIN = @SUM(DAYS: START);

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)))

 >= REQUIRED(J));

@FOR(DAYS: @GIN(START));

Once again, we are making use of our familiar staff-scheduling model. The main feature to note is that

we are using two instances of the @OLE function. The first instance gets the staffing requirements

from the spreadsheet. The second sends the solution back to the START range.

INTERFACING WITH SPREADSHEETS 463

To solve the model, double-click on the region containing the LINGO model. The LINGO command

menus will become visible along the top of the screen. Select the LINGO|Solve command. After

LINGO finishes optimizing the model, it will return the solution to the sheet and we will have:

 Spreadsheet: STAFOLE2.XLS

464 CHAPTER 9

Embedding Excel Sheets in LINGO
Just as you can embed a LINGO model into Excel, you can reverse the process and embed an Excel

sheet in a LINGO model. To illustrate this, load the STAFFOLE model from the SAMPLES

subdirectory into LINGO. Once again, this is our familiar staff-scheduling model and it appears as

follows:

Model: STAFFOLE

INTERFACING WITH SPREADSHEETS 465

This model reads data from and writes the solution to the Excel file STAFFOLE.XLS. To make our

lives easier, it would be nice to embed this spreadsheet in the LINGO model to avoid having to load it

into Excel each time we need to work with our model. To do this, select the Edit|Insert New Object

command in LINGO. You will be presented with the dialog box:

Click on the Create from File button, enter the spreadsheet file name in the File field, click on the Link

checkbox, and then press the OK button.

466 CHAPTER 9

Your LINGO model should now appear as:

The data spreadsheet is now embedded at the top of the LINGO document. You can easily edit the

spreadsheet by double-clicking on it. When you save the LINGO model, the link to the Excel file will

be saved as well.

INTERFACING WITH SPREADSHEETS 467

At this point, go ahead and optimize the model by selecting the LINGO|Solve command. When LINGO

has finished solving the model, you should see the following:

The optimal solution now appears in the embedded spreadsheet and the graphs of the solution have

been updated.

468 CHAPTER 9

Summary
We have demonstrated a number of intriguing methods for combining the modeling features of

LINGO with the data management features of spreadsheets. The concise, structured nature of

LINGO’s modeling language makes reading and understanding even large models relatively easy.

Whereas, it can often be a challenge to discern the underlying mathematical relationships of large,

spreadsheet models with formulas spread throughout numerous cells on multiple tabbed sheets.

LINGO models are also easier to scale than spreadsheet models. As the dimensions of your problem

change, spreadsheet models can require the insertion or deletion of rows or columns and the editing of

cell formulas. Whereas, if your data is separate from the model, your LINGO formulation will

generally require little or no modification. Combining the power of model expression with LINGO and

the ease of data handling in spreadsheets gives the mathematical modeler the best of both worlds.

469

10 Interfacing with
Databases

Spreadsheets are good at managing small to moderate amounts of data. Once your models start dealing

with large amounts of data, database management systems (DBMSs) are, unquestionably, the tool of

choice. Also, in many business modeling situations, you will find most, if not all, of the data is

contained in one or more databases. For these reasons, LINGO supports links to any DBMS that has an

Open DataBase Connectivity (ODBC) driver (effectively all popular DBMSs). ODBC defines a

standardized interface to DBMSs. Given this standardized interface, LINGO can access any database

that supports ODBC.

LINGO has one interface function for accessing databases. This function’s name is @ODBC. The

@ODBC function is used to import data from and export data to any ODBC data source. @ODBC is

currently available only in Windows versions of LINGO.

470 CHAPTER 10

ODBC Data Sources
Windows versions of LINGO include a variation of the standard transportation model that retrieves all

data from a database, and writes a solution back to the same database. This file can be found in the file

SAMPLES\TRANDB.LG4. The contents of this model are displayed below:

MODEL:

 ! A 3 Plant, 4 Customer Transportation Problem;

 ! Data is retrieved from an either an Access database or

 an Oracle database an ODBC link. You *MUST* use the

 ODBC Administrator to register one of the supplied

 databases under the name "Transportation" in order

 to get this model to run. Refer to Chapter 10 for

 more details.;

 TITLE Transportation;

 SETS:

 PLANTS: CAPACITY;

 CUSTOMERS: DEMAND;

 ARCS(PLANTS, CUSTOMERS): COST, VOLUME;

 ENDSETS

 ! The objective;

 [OBJ] MIN = @SUM(ARCS: COST * VOLUME);

 ! The demand constraints;

 @FOR(CUSTOMERS(C):

 @SUM(PLANTS(P): VOLUME(P, C)) >= DEMAND(C));

 ! The supply constraints;

 @FOR(PLANTS(P):

 @SUM(CUSTOMERS(C): VOLUME(P, C)) <= CAPACITY(P));

 DATA:

 ! Import the data via ODBC;

 PLANTS, CAPACITY = @ODBC();

 CUSTOMERS, DEMAND = @ODBC();

 ARCS, COST = @ODBC();

 ! Export the solution via ODBC;

 @ODBC() = VOLUME;

 ENDDATA

END

Model: TRANDB

You will note that in the data section of this model, we use the @ODBC function to establish a link to

an ODBC data source to retrieve all the data and to export the final solution. The technical details of

the @ODBC function are discussed below. Right now, we will focus on how you set up an ODBC data

source that can be accessed by LINGO.

INTERFACING WITH DATABASES 471

An ODBC data source is a database that 1) resides in a DBMS for which you have an ODBC driver,

and 2) has been registered with the ODBC Administrator. Databases in an ODBC enabled DBMS do

not qualify as an ODBC data source until they have been registered with the ODBC Administrator.

The ODBC Administrator is a Windows Control Panel utility. Registering a database with the ODBC

Administrator is a straightforward process. In the following two sections, we will illustrate the

registration process for a Microsoft Access database and for an Oracle database.

Creating an ODBC Data Source from an Access Database
When you installed LINGO, a Microsoft Access database for the transportation model above was

included as part of the installation. This file is contained in the directory SAMPLES under the name

TRANDB.MDB. To register this database as an ODBC data source for our transportation model, you

must start the ODBC Administrator by doing the following:

1) double-click on the My Computer icon on your desktop,

2) find the Control Panel icon and double-click on it,

3) double-click on the Administrative Tools icon, and

4) search for the Data Sources (ODBC) icon and double-click on it.

You should now see the ODBC Administrator dialog box shown below:

472 CHAPTER 10

To install the TRANDB.MDB database as a data source, do the following:

1. Click the Add button in the ODBC Administrator dialog box to reveal the dialog box

below:

2. We are installing an Access data source, so select the Microsoft Access Driver option

and press the Finish button.

3. In the next dialog box:

INTERFACING WITH DATABASES 473

assign the data source the name Transportation in the Data Source Name field. In the

Description field, enter “Datasource for a LINGO transportation model”. Press the Select

button and enter the name of the database “LINGO\SAMPLES\TRANDB.MDB” (this

assumes LINGO has been installed in the LINGO directory—your installation may differ).

The dialog box should now resemble the one below:

474 CHAPTER 10

4. Press the OK button and you should see the Transportation data source has been

added to the list of ODBC data sources:

 5. Click the OK button to close the ODBC Administrator.

INTERFACING WITH DATABASES 475

You should now be able to start LINGO and solve the TRANDB.LG4 model. LINGO knows to go to

the Transportation data source for data because the model’s title (input with the TITLE statement) is

Transportation. If you solve this model, you should see the following results:

Global optimal solution found at step: 6

Objective value: 161.0000

Model Title: Transportation

 Variable Value Reduced Cost

 CAPACITY(PLANT1) 30.00000 0.0000000

 CAPACITY(PLANT2) 25.00000 0.0000000

 CAPACITY(PLANT3) 21.00000 0.0000000

 DEMAND(CUST1) 15.00000 0.0000000

 DEMAND(CUST2) 17.00000 0.0000000

 DEMAND(CUST3) 22.00000 0.0000000

 DEMAND(CUST4) 12.00000 0.0000000

 COST(PLANT1, CUST1) 6.000000 0.0000000

 COST(PLANT1, CUST2) 2.000000 0.0000000

 COST(PLANT1, CUST3) 6.000000 0.0000000

 COST(PLANT1, CUST4) 7.000000 0.0000000

 COST(PLANT2, CUST1) 4.000000 0.0000000

 COST(PLANT2, CUST2) 9.000000 0.0000000

 COST(PLANT2, CUST3) 5.000000 0.0000000

 COST(PLANT2, CUST4) 3.000000 0.0000000

 COST(PLANT3, CUST1) 8.000000 0.0000000

 COST(PLANT3, CUST2) 8.000000 0.0000000

 COST(PLANT3, CUST3) 1.000000 0.0000000

 COST(PLANT3, CUST4) 5.000000 0.0000000

 VOLUME(PLANT1, CUST1) 2.000000 0.0000000

 VOLUME(PLANT1, CUST2) 17.00000 0.0000000

 VOLUME(PLANT1, CUST3) 1.000000 0.0000000

 VOLUME(PLANT1, CUST4) 0.0000000 2.000000

 VOLUME(PLANT2, CUST1) 13.00000 0.0000000

 VOLUME(PLANT2, CUST2) 0.0000000 9.000000

 VOLUME(PLANT2, CUST3) 0.0000000 1.000000

 VOLUME(PLANT2, CUST4) 12.00000 0.0000000

 VOLUME(PLANT3, CUST1) 0.0000000 7.000000

 VOLUME(PLANT3, CUST2) 0.0000000 11.00000

 VOLUME(PLANT3, CUST3) 21.00000 0.0000000

 VOLUME(PLANT3, CUST4) 0.0000000 5.000000

 Row Slack or Surplus Dual Price

 OBJ 161.0000 1.000000

 2 0.0000000 -6.000000

 3 0.0000000 -2.000000

 4 0.0000000 -6.000000

 5 0.0000000 -5.000000

 6 10.00000 0.0000000

 7 0.0000000 2.000000

 8 0.0000000 5.000000

TRANDB Solution

476 CHAPTER 10

As an interesting exercise, you may wish to redirect TRANDB.LG4 to use a second database that was

provided as part of your installation. The second database is called TRANDB2.MDB and is also located

in the SAMPLES directory. The main difference between the files is the dimension of data.

TRANDB.MDB involves only 3 plants and 4 customers, while TRANDB2.MDB contains 50 plants and

200 customers. If you return to the ODBC Administrator and register TRANDB2. MDB under the name

“Transportation2”, then you can redirect LINGO to use the new data source by changing the model

title from “Transportation” to “Transportation2” in the following line in the LINGO model:

TITLE Transportation2;

The new model will have 10,000 variables as opposed to the 12 variables generated with the smaller

data source. This ability to easily run different size data sets illustrates the usefulness of writing data

independent, set-based models.

Creating an ODBC Data Source from an Oracle Database
LINGO installs an SQL script that can be run by the SQL Plus utility in Oracle to build a small

database for the TRANDB.LG4 transportation model. The script file is named TRANDB.SQL and may

be found in the SAMPLES folder off the main LINGO directory. Here is the procedure you will need to

follow to set up this data source:

1. Start up the SQL Plus utility provided with Oracle by going to the Start menu in

Windows, select the Run command, type “SQLPLUSW”, and then click on the OK

button.

2. Enter your Oracle User ID and password. If you have a default installation of Oracle, the

User ID “sys” and the password “change_on_install” should be valid. A host name is

required only if Oracle is running remotely.

3. Run the TRANDB.SQL script by typing “@\LINGO\SAMPLES\TRANDB.SQL” to the

SQL Plus system prompt.

4. Exit SQL Plus by entering “EXIT” to the prompt.

5. Start up the ODBC Administrator as described in the previous section.

6. When selecting an ODBC driver, be sure to use the "Microsoft ODBC for Oracle" driver.

Do not use the "Oracle ODBC Driver", because it does not provide all the necessary

functionality.

7. Assign the data source the name “Transportation”.

8. Load TRANDB.LG4 into LINGO and solve it.

9. Enter your Oracle User ID and password as prompted.

If you would like to avoid entering your Oracle User ID and password each time LINGO accesses a

database, you may set them once at the start of your session with the File|Database User Info

command. For more information, see the File|Database User Info section above in Chapter 5,

Windows Commands.

INTERFACING WITH DATABASES 477

Creating an ODBC Data Source from an SQL Server Database
LINGO installs an SQL script that can be run by the SQL Analyzer utility in SQL Server to build a

small database for the TRANDB.LG4 transportation model. The script file is named

TRANDB_SQL.SQL and may be found in the SAMPLES folder off the main LINGO directory. Here is

the procedure you will need to follow to set up this data source:

1. Start up the SQL Analyzer utility provided with SQL Server by going to the Start menu in

Windows, selecting the Programs command, selecting the Microsoft SQL Server program

group, and then clicking on Query Analyzer.

2. Point the Query Analyzer to the machine running SQL Server.

3. Run the File|Open command and select the script file TRANDB_SQL.SQL from the LINGO

samples folder.

4. Run the script by issuing the Query|Execute command.

5. Exit the Query Analyzer.

6. Start up the ODBC Administrator as described in the section above: Creating an ODBC Data

Source from an Access Database.

7. Press the Add button to add a new ODBC data source: Select the SQL Server ODBC drive,

assign the data source the name "Transportation", and select the appropriate server machine.

8. You should now be able to load TRANDB.LG4 into LINGO and solve it.

Note: If you plan to use LINGO’s ODBC interface to write solutions to a table in SQL Server, then

the table must contain a field that is declared as a unique identifier. Failure to do so will

result in an error message claiming that the table is read-only.

Importing Data from Databases with @ODBC
To import a model’s data from an ODBC data source, we use the @ODBC function in the model’s

data section. @ODBC allows us to import both text formatted set members and numerical set attribute

values.

The syntax for using @ODBC to import data inside a data section is:

object_list = @ODBC([‘data_source’[, ‘table_name’

 [,‘column_name_1’[, ‘column_name_2’ …]]]]);

478 CHAPTER 10

The object_list is a list, optionally separated by commas, containing model objects (i.e., attributes, sets,

or variables) that are to be initialized from the ODBC data source. Object_list may contain up to one

set and/or multiple set attributes. All set attributes in object_list must be defined on the same set. If

object_list contains a set, then all attributes in object_list must be defined on this set. The data_source

argument is the name of the ODBC data source that contains the data table. The table_name argument

is the name of the data table within the data source that contains the data. Finally, the column_name

arguments are the names of the data columns, or fields, in the data table table_name to retrieve the

initialization data from. Set attributes and primitive sets require one column name each to retrieve their

data from. Derived sets require one column name for each dimension of the set. Thus, a

two-dimensional derived set would require two columns of data to initialize its members.

If the data_source argument is omitted, the model's title is used in its place (see the discussion of the

TITLE statement in Chapter 1, Getting Started with LINGO). If table_name is omitted, the name of any

set in the object_list is used in its place. If there is no set in object_list, then the name of the set that the

attributes in object_list are defined on is used.

If the column_name arguments are omitted, LINGO will choose default names based on whether the

corresponding object in object_list is a set attribute, a primitive set, or a derived set. When the object

to be initialized is a set attribute or a primitive set, LINGO will use the name of the object as the

default column name. When the object is a derived set, LINGO will generate one default column name

for each dimension of the derived set, with each name being the same as the parent set that the given

dimension is derived from. As an example, a two-dimensional set named LINKS derived from the two

primitive sets SOURCE and DESTINATION would default to being initialized from the two columns

titled SOURCE and DESTINATION.

Keep in mind that LINGO expects to find set members in text format in the database, while set

attributes are expected to be in numeric format.

Some examples of using @ODBC to import data in a model's data section are:

Example 1: SHIPPING_COST =

 @ODBC('TRANSPORTATION',

 'LINKS','COST');

LINGO initializes the attribute SHIPPING_COST from the column COST contained in the

data table LINKS found in the ODBC data source TRANSPORTATION.

Example 2: VOLUME, WEIGHT =

 @ODBC('TRUCKS', 'CAPACITY');

The database column names are omitted, so, assuming VOLUME and WEIGHT are set

attributes, LINGO defaults to using the attribute names (VOLUME and WEIGHT) as the

database column names. Therefore, LINGO initializes the attributes VOLUME and

WEIGHT from the columns also titled VOLUME and WEIGHT contained in the data table

named CAPACITY found in the ODBC data source TRUCKS.

Example 3: REQUIRED, DAYS = @ODBC();

In this example, we will assume a) we have titled the model PRODUCTION, b)

REQUIRED is a derived set derived from the two primitive sets JOB and WORKSTATION

(e.g., REQUIRED(JOB, WORKSTATION)), and c) DAYS is a set attribute defined on the

set REQUIRED. All arguments to the @ODBC function have been omitted, so LINGO

supplies PRODUCTION as the data source name; the set name REQUIRED as the data

INTERFACING WITH DATABASES 479

table name; and the three data column names JOB, WORKSTATION, and DAYS. Had we

wanted to be more specific, we could have explicitly included all the arguments to the

@ODBC function with the equivalent statement:

REQUIRED, DAYS = @ODBC('PRODUCTION', 'JOB',

 'WORKSTATION', 'DAYS');

Importing Data with ODBC in a PERT Model
We will now modify the project scheduling model, PERT introduced in Chapter 2, Using Sets, to

demonstrate the use of @ODBC to import the set names of the project's tasks from a Microsoft Access

database. The modified model appears below, with changes listed in bold type:

SETS:

 TASKS: TIME, ES, LS, SLACK;

 PRED(TASKS, TASKS);

ENDSETS

DATA:

 TASKS = @ODBC('PERTODBC', 'TASKS', 'TASKS');

 PRED = @ODBC('PERTODBC', 'PRECEDENCE',

 'BEFORE', 'AFTER');

 TIME = @ODBC('PERTODBC');

ENDDATA

@FOR(TASKS(J)| J #GT# 1:

 ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))

);

@FOR(TASKS(I)| I #LT# LTASK:

 LS(I) = @MIN(PRED(I, J): LS(J) - TIME(I));

);

@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

ES(1) = 0;

LTASK = @SIZE(TASKS);

LS(LTASK) = ES(LTASK);

Model: PERTODBC

480 CHAPTER 10

With the statement:

TASKS = @ODBC('PERTODBC', 'TASKS', 'TASKS');

we now fetch the members of the TASKS set from our ODBC data source, as opposed to explicitly

listing them in the model. Specifically, we get the members of the TASKS set from the data column, or

field, TASKS contained in the table named TASKS from the ODBC data source PERTODBC. Here is

the data table as it appears in Access:

Access Database: PERTODBC.MDB

Next, we use the statement:

PRED = @ODBC('PERTODBC', 'PRECEDENCE',

 'BEFORE', 'AFTER');

to fetch the members of the PRED set from an ODBC data source, as opposed to explicitly listing them

in the model. More specifically, we pull the members of the PRED set from the data columns

BEFORE and AFTER contained in the table named PRECEDENCE from the ODBC data source

PERTODBC. Here is the data table showing the precedence relations as it appears in Access:

Access Database: PERTODBC.MDB

Note that the PRECEDENCE set is a two-dimensional set. Thus, we must supply two database

columns containing the set members.

INTERFACING WITH DATABASES 481

In order to retrieve the values for the task times, we create the ODBC link:

TIME = @ODBC('PERTODBC');

Note that we only specified the ODBC data source name—the table and column names have been

omitted. In which case, LINGO supplies default values for the table and column. The object being

initialized, TIME, is a set attribute. Thus, LINGO supplies its parent set name, TASKS, as the default

table name. For the default column name, LINGO supplies the set attribute’s name, TIME. Had we

wanted to be specific, however, we could have explicitly entered all arguments to @ODBC with:

TIME = @ODBC('PERTODBC', 'TASKS', 'TIME');

Exporting Data with @ODBC
As is the case with most interface functions, @ODBC can export data as well as import it. Specifically,

you can use the @ODBC function in the data section of a model to export set members and attribute

values to ODBC data sources. In order to export solutions with @ODBC, you place calls to @ODBC

in the data section of your model. These @ODBC export instructions are executed each time your

model is solved.

The first form of syntax for using @ODBC to export data is:

@ODBC(['data_source'[, 'table_name'[, 'column_name_1'[,…,

 'column_name_n']]]]) = object_list;

Note: When importing, @ODBC appears on the right of the equality sign. When exporting, the

@ODBC function appears on the left of the equals sign.

The object_list is a list, optionally separated by commas, containing model objects (i.e., attributes, sets,

or variables) that are to be exported to the ODBC data source. Object_list may contain up to one set

and/or multiple set attributes. All set attributes in object_list must be defined on the same set. If

object_list contains a set, then all attributes in object_list must be defined on this set. The data_source

argument is the name of the ODBC data source containing the data table that will receive the exported

values. The table_name argument is the name of the data table within the data source that will receive

the data. Finally, the column_name arguments are the names of the receiving columns, or fields, in the

data table table_name. Set attributes and primitive sets require one receiving column name each.

Derived sets require one receiving column name for each dimension of the set. Thus, a two-

dimensional derived set would require two receiving columns in a data table.

If the data_source argument is omitted, the model's title is used in its place (see the discussion of the

TITLE statement in Chapter 1, Getting Started with LINGO). If table_name is omitted, the name of any

set in the object_list is used in its place. If there is no set in object_list, then the name of the set where

the attributes in object_list are defined is used.

If the column_name arguments are omitted, LINGO will choose default names based on whether the

corresponding object in object_list is either a set attribute, a primitive set, or a derived set. When the

object to be initialized is a set attribute or a primitive set, LINGO will use the name of the object as the

default column name. When the object is a derived set, LINGO will generate one default column name

482 CHAPTER 10

for each dimension of the derived set, with each name being the same as the parent set that the given

dimension is derived from. As an example, a two-dimensional set named LINKS derived from the

SOURCE and DESTINATION primitive sets would default to being exported to the two columns titled

SOURCE and DESTINATION.

Keep in mind that set members are exported as text, while set attributes are exported as double

precision floating point values.

Some examples of using @ODBC to export data values to an ODBC data source are:

Example 1: @ODBC('TRANSPORTATION',

 'LINKS', 'VOLUME') = VOLUME;

LINGO sends the values of the VOLUME attribute to the column also titled VOLUME in

the data table LINKS in the ODBC data source TRANSPORTATION.

Example 2: @ODBC() = NUMBER_WORKING;

All arguments to the @ODBC function have been omitted and will default to the model's

title for the data source, the attributes parent set for the data table, and the attribute's name

for the column name. So, assuming we have used the TITLE statement to name this model

SCHEDULING, and the attribute NUMBER_WORKING is defined on the set

SCHEDULES, then LINGO exports the attribute NUMBER_WORKING to the column also

titled NUMBER_WORKING in the data table SCHEDULES in the ODBC data source

SCHEDULING.

The first form of syntax will generally be sufficient for most database export operations. However,

there may be times when you need to export only portions of the attributes, or you need to export

quantities computed from the attribute values. Our second form of syntax uses the @WRITEFOR

reporting function to handle these more general cases:

@ODBC('data_source', 'table_name', 'column_name_1'[,…,

 'column_name_n']) = @WRITEFOR(setname

 [(set_index_list) [| conditional_qualifier]] : output_obj_1[,…, output_obj_n]);

@WRITEFOR functions like any other set looping function in that, as a minimum, you will need to

specify the set to loop over. Optionally, you may also specify an explicit set index list and a

conditional qualifier. If a conditional qualifier is used, it is tested for each member of the looping set

and output will not occur for any members that don't pass the test. It's this feature of being able to base

output on the results of a condition that distinguish this second style of syntax.

The list of output objects, of course, specifies what it is you want to output. As with the first form of

syntax, the output objects may be labels, set members and variable values. However, you have

additional latitude in that the output objects may now consist of complex expressions of the variable

values (e.g., you could compute the ratio of two variables). This is a useful feature when you need to

report statistics and quantities derived from the variable values. By placing these calculations in the

data section, as opposed to the model section, you avoid adding unnecessary complications to the

constraints of the model.

In general, you can do everything in the second form of syntax that you can do in the first, and more.

However, the first form has an advantage in that it can be very concise.

INTERFACING WITH DATABASES 483

Some examples of using @WRITEFOR for ODBC exports follow:

Example 1: @ODBC('TRANSPORTATION',

 'SOLUTION', 'FROM', 'TO', 'VOLUME') =

 @WRITEFOR(LINKS(I, J) | VOLUME(I, J) #GT# 0:

 WAREHOUSE(I), CUSTOMER(J), VOLUME(I, J));

In this example, we exploit the ability to specify a conditional expression to weed zero

shipments out of the export. The nonzero values of the VOLUME attribute are sent to the

SOLUTION table in the TRANSPORTATION data source. The shipping warehouse set

name is placed in column FROM, the receiving customer set name goes to column TO, and

the shipping volume for the arc in placed in the VOLUME column.

Example 2: @ODBC('STAFFREP', 'STATS', 'RATIO') =

 @WRITEFOR(DEPARTMENTS(D): ON_DUTY(D) / NEEDS(D));

Here, we make use of @WRITEFOR's ability to perform computations to compute a ratio

of two variables. Specifically, the ratio of on-duty staff to staffing needs by department is

placed into the column RATIO of table STATS in data source STAFFREP.

Note: When exporting to data tables, receiving columns that are longer than the number of exported

values can be filled out by either erasing the contents of the extra cells or leaving the extra

cells untouched. The default is to leave the extra cells untouched. If you would like to erase

the contents of the extra cells, you'll need to enable the Fill Out Ranges and Tables option. If

this option is enabled, extra text fields will be blanked out, while extra numeric fields will be

zeroed out.

484 CHAPTER 10

Exporting Data with ODBC in a PERT Model
Continuing from the PERT example used in the Importing Data with ODBC in a PERT Model section

above, we can add modifications to export the solution values of the earliest and latest start times (ES

and LS) back out to the PERTODBC data source. We will put these into a blank table titled

SOLUTION. We will also export the members of the TASKS set in order to label our table. The data

column, or field, that receives the TASKS members should be formatted as text, while the columns

receiving the ES and LS attributes should be declared as numeric. Here is a look at the blank table we

will be exporting to:

Access Database: PERTODBC.MDB

INTERFACING WITH DATABASES 485

After modifying the model to export the data back to the TASKS table, we have (with the relevant

changes in bold):

SETS:

 TASKS: TIME, ES, LS, SLACK;

 PRED(TASKS, TASKS);

ENDSETS

DATA:

 TASKS = @ODBC('PERTODBC', 'TASKS', 'TASKS');

 PRED = @ODBC('PERTODBC', 'PRECEDENCE', 'BEFORE', 'AFTER');

 TIME = @ODBC('PERTODBC');

 @ODBC('PERTODBC', 'SOLUTION', 'TASKS',

 'EARLIEST START', 'LATEST START') =

 TASKS, ES, LS;

ENDDATA

@FOR(TASKS(J)| J #GT# 1:

 ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))

);

@FOR(TASKS(I)| I #LT# LTASK:

 LS(I) = @MIN(PRED(I, J): LS(J) - TIME(I));

);

@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

ES(1) = 0;

LTASK = @SIZE(TASKS);

LS(LTASK) = ES(LTASK);

Model: PERTODBC

With the data statement:

@ODBC('PERTODBC', 'SOLUTION', 'TASKS',

 'EARLIEST START', 'LATEST START') =

 TASKS, ES, LS;

we are sending the set TASKS to the text column TASKS, and the ES and LS attributes to the numeric

columns EARLIEST START and LATEST START. The data table is called SOLUTION, while the

ODBC data source name is PERTODBC.

486 CHAPTER 10

Once the model has been solved, the updated data table will resemble:

Access Database: PERTODBC.MDB

At the top of the solution report window, you will also notice an export summary report. There will be

one report for each @ODBC statement in the model used for exporting data. This report lists details as

to the operation of the @ODBC export. In the case of our PERT model, you should see the following

report:

 Export Summary Report

 Transfer Method: ODBC BASED

 ODBC Data Source: PERTODBC

 Data Table Name: TASKS

 Columns Specified: 3

 TASKS

 EARLIEST

 LATEST

 LINGO Column Length: 7

 Database Column Length: 7

The Transfer Method will always list “ODBC BASED” when doing ODBC exports. Next, the data

source and table names are listed along with the number of columns specified and the column names.

The LINGO Column Length field lists the number of elements in each attribute. The Database Column

Length lists the length of the receiving columns in the database. In general, the LINGO Column

Length will agree with the Database Column Length. If not, LINGO must either truncate its output or

it will have insufficient data to fill out the columns in the database.

Export summary reports are not displayed when LINGO is in terse output mode. To place LINGO in

terse output mode, click on the Terse Output checkbox on the Interface tab of the LINGO|Options

dialog box.

INTERFACING WITH DATABASES 487

This version of the PERT model and its supporting database are contained in the SAMPLES directory.

Feel free to run the model to experiment with it if you like—you will find it under the name

PERTODBC. The supporting Access database file, PERTODBC.MDB, is also in the SAMPLES

subdirectory and you will need to register it with the ODBC Administrator as described above in

ODBC Data Sources.

Note that we exported start and finish times for all the tasks in the project. If we were dealing with a

large project there could be thousands of tasks to consider. With such an abundance of tasks, we might

be interested in reporting only those tasks that lie on the critical path. We'll modify our PERTODBC

example one last time to accomplish this using the @WRITEFOR reporting function.

For those unfamiliar with the concept of a critical path, it is the subset of tasks such that if any are

delayed the entire project will be delayed. Generally, and somewhat counterintuitive to what one

would expect, the set of tasks on the critical path will tend to be quite small compared to the total

number of tasks in a large project. A task is considered to be on the critical path when its earliest start

time is equal to its latest start time (i.e., there is no slack with respect to when the task must be started).

Below, we have modified PERTODBC to export only those tasks on the critical path.

MODEL:

SETS:

 TASKS: TIME, ES, LS, SLACK;

 PRED(TASKS, TASKS);

ENDSETS

DATA:

 TASKS = @ODBC('PERTODBC', 'TASKS', 'TASKS');

 PRED = @ODBC('PERTODBC', 'PRECEDENCE', 'BEFORE', 'AFTER');

 TIME = @ODBC('PERTODBC');

 @ODBC('PERTODBC', 'SOLUTION', 'TASKS',

 'EARLIEST START', 'LATEST START') =

 @WRITEFOR(TASKS(I) | ES(I) #EQ# LS(I):

 TASKS(I), ES(I), LS(I));

ENDDATA

@FOR(TASKS(J)| J #GT# 1:

 ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))

);

@FOR(TASKS(I)| I #LT# LTASK:

 LS(I) = @MIN(PRED(I, J): LS(J) - TIME(I));

);

@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

ES(1) = 0;

LTASK = @SIZE(TASKS);

LS(LTASK) = ES(LTASK);

END

488 CHAPTER 10

We specify a conditional expression to test for the earliest start time equaling the latest start time,

thereby restricting the list of exported tasks to those that lie on the critical path. Note that if you limit

the number of output records there won't be enough records to completely fill our output table. We

can have LINGO fill out any extra fields with blanks and zeroes by enabling the Fill Out Ranges and

Tables option. Doing this, the solution table will resemble the following after solving the model:

Note that that LINGO nulled out all the extra records.

489

11 Interfacing with Other
Applications

Although LINGO has a convenient, interactive interface and a large library of callable functions that

make it easy to set up and solve models, there may be times when you would like to bundle LINGO's

functionality into your own applications, or call functions from within your LINGO models that were

written in an external programming language. LINGO makes use of the Dynamic Link Library (DLL)

standard under Windows to provide you with a “hook” to access LINGO's functionality from within

your own custom applications. This gives you the ability to build application specific front-ends to

LINGO that allow naïve users to input data and view solutions in a simple, familiar way without

having to worry about the details of LINGO modeling. Your application handles the details of driving

LINGO in the background, invisible to the user. LINGO also allows you to provide custom functions

in the DLL format that you can call from within any model with the @USER function.

In the following section, The LINGO Dynamic Link Library, we document how to call the LINGO

DLL in order to add LINGO's functionality to your own applications. Following this, in the section

User Defined Functions, we will show you how to build a function in an external programming

language and call it from a LINGO model with the @USER function.

The LINGO Dynamic Link Library
Windows versions of LINGO include a callable DLL. The ability to call a DLL is a standard feature of

all Windows development environments (e.g., Visual Basic, Delphi, and Visual C++). The LINGO

DLL is supplied in either 32-bit of 64-bit configurations and, thus, will run under all current releases of

Windows (Win32 and Win64).

The interface to the LINGO DLL is relatively simple and gives you the ability to run a LINGO

command script from within your application. Given that you can access all the major features of

LINGO from a command script, the LINGO DLL interface is very powerful. You will, however, need

to familiarize yourself with LINGO's command language in order to build useful command scripts. For

more details on the commands available in the command language, see Command-line Commands. For

an example of a script file, see A Command Script Example.

490 CHAPTER 11

When LINGO is installed a number of examples on calling the DLL are installed, too. These

examples may be found in the Programming Samples folder below the main LINGO folder. You will

find examples for each of the following development environments:

 Visual C/C++

 Visual Basic

 Excel

 FORTRAN

 ASP .NET

 C# .NET

 VB .NET

 Delphi

 Java

In this chapter, we will walk through detailed examples on calling the LINGO DLL using both Visual

C/C++ and Visual Basic. Users of other development environments will also be interested in these

programming examples. Many of the ideas presented carry over to other development environments.

Staff-Scheduling Example Using the LINGO DLL
To illustrate interfacing with the LINGO DLL, we will again make use of the Pluto Dogs

staff-scheduling example introduced on page 54. We will create examples using both the Visual C++

and Visual Basic programming languages. We will construct a dialog box that resembles the

following:

INTERFACING WITH OTHER APPLICATIONS 491

The user enters the staffing requirements in the cells of the Needs column and presses the Solve button.

The application then extracts the staffing requirements from the dialog box, passes them along with a

model to the LINGO DLL for solution, and places the results back into the dialog box for viewing.

Specifically, it shows the number of employees to start on each given day in the Start column, the

number of staff on duty in the On Duty column, and the total number of staff required in the Total cell.

As an example, here is how the dialog box will appear after a sample run:

492 CHAPTER 11

The Model
The model passed to LINGO to solve this problem is the familiar staffing model we’ve used before

with some modifications, and appears below with important changes in bold:

MODEL:

 SETS:

 DAYS / MON TUE WED THU FRI SAT SUN/:

 NEEDS, START, ONDUTY;

 ENDSETS

 [OBJECTIVE] MIN = @SUM(DAYS(I): START(I));

 @FOR(DAYS(TODAY):

 ! Calculate number on duty;

 ONDUTY(TODAY) =

 @SUM(DAYS(D)| D #LE# 5:

 START(@WRAP(TODAY - D + 1,

 @SIZE(DAYS))));

 ! Enforce staffing requirement;

 ONDUTY(TODAY) >= NEEDS(TODAY);

 @GIN(START);

);

 DATA:

 NEEDS = @POINTER(1);

 @POINTER(2) = START;

 @POINTER(3) = ONDUTY;

 @POINTER(4) = OBJECTIVE;

 @POINTER(5) = @STATUS();

 ENDDATA

END

Model: STAFFPTR

Since the LINGO script processor will read the model, it must begin with the MODEL: command and

end with the END command. The script processor treats all text between the MODEL: and END

keywords as model text, as opposed to script commands.

We have added the ONDUTY attribute to compute the number of employees on duty each day. We

compute these figures for the purpose of passing them back to the calling application, which, in turn,

posts them in the dialog box in the On Duty column.

We have named the objective row OBJECTIVE for the purpose of returning the objective’s value to

the calling application, so it may place the value in the Total cell.

The @POINTER Function
The @POINTER function in data, init and calc sections acts as direct memory link between the calling

application and the LINGO solver. This ability to do direct memory transfers of data in and out of

LINGO is very powerful. It allows for the fast transfer of data without the hassle of building and

parsing disk based files.

INTERFACING WITH OTHER APPLICATIONS 493

When you call the LINGO DLL, you can pass it a list of memory pointers. @POINTER(n) refers to

the n-th pointer in the passed pointer list. The @POINTER function only makes sense in a model when

accessing LINGO through the DLL or OLE interfaces.

If the @POINTER function appears on the right-hand side of a data statement, as in the case of the

following:

NEEDS = @POINTER(1);

then LINGO will initialize the objects(s) on the left-hand side of the statement from the values in

memory beginning at the location referenced by the pointer on the right-hand side of the statement. On

the other hand, when the @POINTER function appears on the left-hand side of a data statement,

LINGO will export the values of the objects(s) on the right-hand side of the data statement to the

memory location referenced by the pointer on the left-hand side of the statement.

The @POINTER function reads and writes all numeric data (i.e., attribute values) using double

precision floating point format. BASIC and C/C++ developers know this as the double data type, while

FORTRAN developers refer to it as either REAL*8 or DOUBLE PRECISION. Set members are

passed as strings of ASCII text, with each member separated by a line feed character, with the list

being terminated with an null, or ASCII 0.

When setting aside memory locations for @POINTER, you must be sure to allocate adequate space.

LINGO assumes adequate space and/or supplied values are available at the passed memory locations.

If you do not allocate sufficient space or values, you may experience memory protection faults or, even

worse, erroneous results without warning.

So, reviewing the model's data section:

DATA:

 NEEDS = @POINTER(1);

 @POINTER(2) = START;

 @POINTER(3) = ONDUTY;

 @POINTER(4) = OBJECTIVE;

 @POINTER(5) = @STATUS();

ENDDATA

we see the staffing requirements attribute, NEEDS, is read from the first memory location. The START,

ONDUTY, and OBJECTIVE values are written to the second, third, and fourth memory locations,

respectively. Finally, the value for the @STATUS function is written to the fifth memory location.

See the following section for more details on the @STATUS function.

494 CHAPTER 11

The @STATUS Function
The @STATUS function returns the status of the solution process using the following codes:

@STATUS

Code

Interpretation

0 Global Optimum - The optimal solution has been found,

subject to current tolerance settings.

1 Infeasible - No solution exists that satisfies all constraints.

2 Unbounded - The objective can be improved without

bound.

3 Undetermined - The solution process failed.

4 Feasible - A feasible solution was found that may, or may

not, be the optimal solution.

5 Infeasible or Unbounded - The preprocessor determined

the model is either infeasible or unbounded. Turn off

presolving and re-solve to determine which.

6 Local Optimum - Although a better solution may exist, a

locally optimal solution has been found.

7 Locally Infeasible - Although feasible solutions may

exist, LINGO was not able to find one.

8 Cutoff - The objective cutoff level was achieved.

9 Numeric Error - The solver stopped due to an undefined

arithmetic operation in one of the constraints.

In general, if @STATUS does not return a code of 0, 4, 6, or 8, the solution is of little use and should

not be trusted. In fact, if @STATUS does not return 0, 4, 6, or 8, in many cases LINGO will not even

export data to the @POINTER memory locations.

The @POINTER function reads and writes all data using double precision floating point format.

BASIC and C/C++ developers know this as the double data type, while FORTRAN developers refer to

it as either REAL*8 or DOUBLE PRECISION.

When setting aside memory locations for @POINTER, you must be sure to allocate adequate space.

LINGO assumes adequate space and/or supplied values are available at the passed memory locations.

If you do not allocate sufficient space or values, you may experience memory protection faults or, even

worse, erroneous results without warning.

Functions Exported by the LINGO DLL
The LINGO DLL exports twelve functions.The exported functions are contained in the file

Lingo14\Lingd14.Dll. The library file Lingo14\Programming Samples\Lingd14.lib may be used to

import these functions into your own custom application.

Below is a list of the functions exported by the LINGO DLL along with a brief description of each

routine’s functionality. The definitions are written using C language conventions. Refer to the

programming samples in the following sections for specific examples of the use of each of these

routines using Visual C and Visual Basic.

INTERFACING WITH OTHER APPLICATIONS 495

void LSclearPointersLng(pLSenvLINGO pL)
This clears out the list of @POINTER() pointers to user memory transfer areas established through

calls to LSsetPointerLng().

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

int LScloseLogFileLng(pLSenvLINGO pL)
This closes LINGO’s log file that was opened previously by a call to LSopenLogFileLng().

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed below in

the section LINGO DLL Error Codes is returned.

pLSenvLINGO CALLTYPE LScreateEnvLng()
This creates a LINGO environment object. All other LINGO DLL routines require a valid pointer to a

LINGO environment object. You should free this object at the end of your application by calling

LSdeleteEnvLng(). LScreateEnvLng() will search the application's startup directory and the system

path for a valid LINGO license file. If you would prefer to pass LINGO the license key directly, refer

to the following function, LScreateEnvLicenseLNG().

Return Value:

Returns 0 if an error occurred, otherwise, a pointer to a LINGO environment object is

returned.

pLSenvLINGO CALLTYPE LScreateEnvLicenseLng(char* pcLicenseKey, int* pnErr)
This creates a LINGO environment object. All other LINGO DLL routines require a valid pointer to a

LINGO environment object. You should free this object at the end of your application by calling

LSdeleteEnvLng(). LScreateEnvLicenseLng() requires that you pass the license key directly. If you

would prefer to have LINGO search the application's startup directory and the system path for a valid

LINGO license file, refer to the previous function, LScreateEnvLng().

496 CHAPTER 11

Arguments:

pcLicenseKey Pointer to a text string containing a LINGO license key. The

license key may be found at the bottom of your LINGO license

file, typically stored in the main LINGO directory under the file

name LNDLNG??.LIC, where ?? is LINGO's version number.

The license key is delimited in the license file by a greater-than (>)

character.

pnError Pointer to an integer that returns 0 if no problem or an error code

listed in section LINGO DLL Error Codes.

Return Value:

Returns 0 if an error occurred, otherwise, a pointer to a LINGO environment object is

returned.

int LSdeleteEnvLng(pLSenvLINGO pL)
This deletes a LINGO environment object previously created through a call to LScreateEnvLng(),

which frees up the system memory allocated to the LINGO object.

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed below in

the section LINGO DLL Error Codes is returned.

int LSexecuteScriptLng(pLSenvLINGO pL, char* pcScript)
This routine is the main workhorse of the LINGO DLL that processes LINGO command scripts. The

script may be contained entirely in memory, or it may contain one or more TAKE commands to load

scripts from disk.

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

pcScript Pointer to a character string containing a LINGO command script.

Each line must be terminated with a linefeed character (ASCII 10),

and the entire script must be terminated with a NULL (ASCII 0).

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed below in

the section LINGO DLL Error Codes is returned.

INTERFACING WITH OTHER APPLICATIONS 497

int LSgetCallbackInfoLng(pLSenvLINGO pL, int nObject, void* pResult)
You may establish a function in your application that the LINGO solver calls back to at regular

intervals to keep you abreast of its progress. We refer to this type of routine as being a callback

function and you may refer to section Callback Functions for more information. Your callback

function may then call LINGO through LSgetCallbackInfoLng() to request specific information from

the solver while it is processing a model.

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

nObject Index of the information item you’re seeking. Current possibilities

are:

Index Name Type Information Item

0 LS_IINFO_VARIABLES_LNG Int Total number of

variables

1 LS_IINFO_VARIABLES_INTEGER_LNG Int Number of integer

variables

2 LS_IINFO_VARIABLES_NONLINEAR_LNG Int Number of

nonlinear variables

3 LS_IINFO_CONSTRAINTS_LNG Int Total number of

constraints

4 LS_IINFO_CONSTRAINTS_NONLINEAR_LNG Int Number of

nonlinear

constraints

5 LS_IINFO_NONZEROS_LNG Int Total nonzero

matrix elements

6 LS_IINFO_NONZEROS_NONLINEAR_LNG Int Number of

nonlinear nonzero

matrix elements

7 LS_IINFO_ITERATIONS_LNG Int Number of

iterations

8 LS_IINFO_BRANCHES_LNG Int Number of

branches (IPs only)

9 LS_DINFO_SUMINF_LNG Double Sum of

infeasibilities

10 LS_DINFO_OBJECTIVE_LNG Double Objective value

11 LS_DINFO_MIP_BOUND_LNG Double Objective bound

(IPs only)

12 LS_DINFO_MIP_BEST_OBJECTIVE_LNG Double Best objective

value found so far

(IPs only)

pResult Pointer to where you want LINGO to store the results of your

query. LINGO will place the result at this address. You must

498 CHAPTER 11

allocate four bytes of memory for ints and eight bytes of memory

for doubles beforehand.

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed below in

the section LINGO DLL Error Codes is returned.

int LSgetCallbackVarPrimalLng(pLSenvLINGO pL, char* pcVarName, double*
pdPrimals)

You may establish a function in your application that the LINGO solver calls back to at regular

intervals to keep you abreast of its progress. We refer to this type of routine as being a callback

function, and you may refer to section Callback Functions for more information. Your callback

function may then call LINGO through LSgetCallbackVarPrimal() to request the current values for

attributes and/or scalar variables. This will allow you to keep your users posted on the values of the

model's variables in the current best solution found so far. This routine will only return values

successfully when solving integer models, or when solving models with the global solver.

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

pcVarName Pointer to a character string containing the name of the scalar variable or

attribute. The name must be terminated with either a blank or a NULL

(ASCII 0).

pdPrimals Points to where LINGO should write the variable value(s). You must

ensure that enough space is available for the full set of values to avoid

memory protection faults.

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed in section

LINGO DLL Error Codes is returned.

int LSopenLogFileLng(pLSenvLINGO pL, char *pcLogFile)
This creates a file for LINGO to write a log to while processing your script. In general, you should

always try to create a log file (at least in the early stages of your project) to assist with debugging. If an

error is occurring and you are not exactly sure why, then it is always a good idea to refer to the log file

for a clue.

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

pcLogFile Pointer to a character string containing the pathname for your log

file.

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed below in

the section LINGO DLL Error Codes is returned.

INTERFACING WITH OTHER APPLICATIONS 499

int LSsetCallbackErrorLng(pLSenvLINGO pL, lngCBFuncError_t pcbf, void* pUserData)
Use this routine to specify a callback function that LINGO will call whenever an error is encountered.

This allows your application to keep close watch on any unusual conditions that might arise while

processing your script.

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

pcbf Pointer to your callback routine.

pUserData This is a user specified pointer. You may use it to point to any data

you might need to reference from your callback function. LINGO

merely passes the value of this pointer through to your callback

function. You may set this pointer to NULL if it is not required.

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed below in

the section LINGO DLL Error Codes is returned.

The callback function you supply must use the standard call convention and must have the following

interface:

int MyErrCallback(pLSenvLINGO pL, void* pUserData, int nErrorCode, char*

pcErrorText);

Your computer will most likely crash if you don’t follow this interface specification exactly. The

LINGO error code is reported through the nErrorCode argument, along with the error text in

pcErrorText. You should set aside at least 200 bytes for the error text. The list of LINGO error codes

can be found in Appendix B, Error Messages.

int LSsetCallbackSolverLng(pLSenvLINGO pL, lngCBFuncError_t pcbf, void*
pUserData)

Use this routine to specify a callback function that LINGO will call at frequent intervals when solving

a model.

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

pcbf Pointer to your callback routine.

pUserData This is a user specified pointer. You may use it to point to any data

you might need to reference from your callback function. LINGO

merely passes the value of this pointer through to your callback

function. You may set this pointer to NULL if it is not required.

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed below in

the section LINGO DLL Error Codes is returned.

500 CHAPTER 11

The callback function you supply must use the standard call convention and must have the following

interface:

int MySolverCallback(pLSenvLINGO pL, int nReserved, void* pUserData);

Your computer will most likely crash if you don’t follow this interface specification exactly. The

nReserved argument is reserved for future use and may be ignored.

int CALLTYPE LSsetPointerLng(pLSenvLINGO pL, double* pdPointer, int*
pnPointersNow)

Call this routine one or more times to pass a list of memory pointers to LINGO. These pointers are

used by LINGO’s @POINTER() function for moving data into and solutions out of the solver. In other

words, this allows you to have direct memory links with LINGO for fast and convenient data transfer.

Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

pdPointer Pointer to a memory transfer location to be used by an instance of

@POINTER().

pnPointersNow This is a pointer to an integer variable in which LINGO returns the

current number of entries in the @POINTER() pointer list. Thus,

on the first call to LSsetPointersLng(), this argument will return a

value of 1. The pointer list may be cleared at any time by a call to

LSclearPointersLng().

Return Value:

Returns 0 if no error occurred. Otherwise, one of the nonzero error codes listed below in

the section LINGO DLL Error Codes is returned.

INTERFACING WITH OTHER APPLICATIONS 501

LINGO DLL Error Codes
Most of the LINGO DLL functions return an error code. Below is a list of all possible codes:

Value Name Descriptions

0 LSERR_NO_ERROR_LNG No error.

1 LSERR_OUT_OF_MEMORY_LNG Out of dynamic system

memory.

2 LSERR_UNABLE_TO_OPEN_LOG_FILE_LNG Unable to open the log file.

3 LSERR_INVALID_NULL_POINTER_LNG A NULL pointer was passed

to a routine that was expecting

a non-NULL pointer.

4 LSERR_INVALID_INPUT_LNG An input argument contained

invalid input.

5 LSERR_INFO_NOT_AVAILABLE_LNG A request was made for

information that is not

currently available.

6 LSERR_UNABLE_TO_COMPLETE_TASK_LNG Unable to successfully

complete the specified task.

7 LSERR_INVALID_LICENSE_KEY_LNG The license key passed to

LScreateEnvLicenceLng()

was invalid.

8 LSERR_INVALID_VARIABLE_NAME_LNG A variable name passed to

LSgetCallbackVarPrimal()

was invalid.

1000 LSERR_JNI_CALLBACK_NOT_FOUND_LNG A valid callback function was

not found in the calling Java

application.

Supporting DLLs
The main LINGO DLL requires many additional component DLLs. All the required DLLs are

installed as part of the normal LINGO installation in the main LINGO folder. If you need a specific list

of all the supporting DLLs required by the LINGO DLL, then you can open Lingd14.Dll in the

Dependency Walker utility available at no charge from the following website:

http://www.dependencywalker.com. The Dependency Walker program is a useful tool that lists all the

required DLLs for an application, their current location on your system, and flags any DLLs that are

not currently available.

Staff Scheduling Using the LINGO DLL and Visual C++
In this section, we will illustrate the use of Microsoft Visual C/C++ to build an application that

interfaces with the LINGO DLL to solve the staff-scheduling problem presented above. This section

assumes the reader is well versed in the use of Visual C++. Visual Basic users may want to jump

ahead to the Visual Basic Example section.

http://www.dependencywalker.com/

502 CHAPTER 11

If you would rather skip the details involved in constructing this project and would prefer to

experiment with the completed application, it can be found under the path

\LINGO14\Programming Samples\VC++\STAFF1\STAFF.EXE.

Building the Application in C++
We will be working from a code base generated using Visual C++’s AppWizard facility. The

generated code is for a dialog based application. In other words, the interface to the application will

consist of a single dialog box. This dialog box will be modified, so it resembles the one illustrated

above with fields for staffing requirements, daily employee starts, and so on.

The source code for this project may be found in the Programming Samples\STAFF1 subdirectory or

you can create your own project using Visual C/C++ 6.0 as follows:

1. Start Visual C++ and issue the File|New command.

2. Select the Projects tab, give the project a name, select MFC

AppWizard(Exe) as the type of application, and click the OK button.

3. Click the dialog based radio button and then the Next button.

4. Clear the About box button, check the OLE Automation button, check the

OLE Controls button, and press the Next button. OLE support is required

for some of the features in the LINGO DLL.

5. Click the Next button again.

6. Click the Finish button.

INTERFACING WITH OTHER APPLICATIONS 503

After completing these steps, the following summary of the project should be shown:

Click the OK button, and AppWizard will generate the skeleton code base.

504 CHAPTER 11

Use the resource editor to modify the application’s dialog box, so it resembles the following:

Next, use the ClassWizard in Visual C++ to associate member variables with each of the fields in the

dialog box. From the View menu, select the ClassWizard command and then select the Member

Variables tab.

At this point, the LINGO DLL import library must be added to the project in order to make the LINGO

DLL available to the code. Do this by running the Project|Add to Project|Files command and select the

file \LINGO14\Programming Samples\LINGD14.LIB for addition to the project.

INTERFACING WITH OTHER APPLICATIONS 505

After doing that, add the definitions of the LINGO DLL routines to the project. Simply include the

Lingd14.h header file at the top of the dialog class header file as follows (code changes listed in bold):

// staffDlg.h : header file

//

#include "lingd14.h"

#if

!defined(AFX_STAFFDLG_H__74D746B7_CA4D_11D6_AC89_00010240D2AE__INCLUD

ED_)

#define

AFX_STAFFDLG_H__74D746B7_CA4D_11D6_AC89_00010240D2AE__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

///

////////

// CStaffDlg dialog

 .

 .

 .

All the groundwork has now been laid down and we’re ready to begin writing the actual code to call

LINGO to solve the staffing model. Go to the Resource View of the project, open the dialog box

resource, and then double click on the Solve button. You will be prompted to create a handler function

for the button, which should be named OnSolve. Now, edit the stub version of OnSolve, so it contains

the following code:

void CStaffDlg::OnSolve()

{

 int nError, nPointersNow;

 CString csScript, cs;

 double dNeeds[7], dStart[7], dOnDuty[7], dStatus, dTotal;

 // Get user's staffing requirements from our dialog box

 UpdateData();

 // Load staffing requirements into the LINGO transfer array.

 // LINGO uses double precision for all values.

 dNeeds[0] = (double) m_nNeedsMon;

 dNeeds[1] = (double) m_nNeedsTue;

 dNeeds[2] = (double) m_nNeedsWed;

 dNeeds[3] = (double) m_nNeedsThu;

 dNeeds[4] = (double) m_nNeedsFri;

 dNeeds[5] = (double) m_nNeedsSat;

 dNeeds[6] = (double) m_nNeedsSun;

506 CHAPTER 11

 // create the LINGO environment object

 pLSenvLINGO pLINGO;

 pLINGO = LScreateEnvLng();

 if (!pLINGO)

 {

 AfxMessageBox("Unable to create LINGO Environment");

 return;

 }

 // Open LINGO's log file

 nError = LSopenLogFileLng(pLINGO, "LINGO.log");

 if (nError) goto ErrorExit;

 // Pass memory transfer pointers to LINGO

 // @POINTER(1)

 nError = LSsetPointerLng(pLINGO, dNeeds, &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(2)

 nError = LSsetPointerLng(pLINGO, dStart, &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(3)

 nError = LSsetPointerLng(pLINGO, dOnDuty, &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(4)

 nError = LSsetPointerLng(pLINGO, &dTotal, &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(5)

 nError = LSsetPointerLng(pLINGO, &dStatus, &nPointersNow);

 if (nError) goto ErrorExit;

 // Here is the script we want LINGO to run

 csScript = "SET ECHOIN 1\n";

 csScript = csScript +

 "TAKE \\LINGO14\\SAMPLES\\STAFFPTR.LNG\n";

 csScript = csScript +

 "GO\n";

 csScript = csScript +

 "QUIT\n";

 // Run the script

 dStatus = -1.e0;

 nError = LSexecuteScriptLng(pLINGO, (LPCTSTR) csScript);

 // Close the log file

 LScloseLogFileLng(pLINGO);

 // Any problems?

 if (nError || dStatus)

 {

INTERFACING WITH OTHER APPLICATIONS 507

 // Had a problem

 AfxMessageBox("Unable to solve!");

 } else {

 // Everything went ok ... load results into the dialog box

 m_csStartMon.Format("%d", (int) dStart[0]);

 m_csStartTue.Format("%d", (int) dStart[1]);

 m_csStartWed.Format("%d", (int) dStart[2]);

 m_csStartThu.Format("%d", (int) dStart[3]);

 m_csStartFri.Format("%d", (int) dStart[4]);

 m_csStartSat.Format("%d", (int) dStart[5]);

 m_csStartSun.Format("%d", (int) dStart[6]);

 m_csOnDutyMon.Format("%d", (int) dOnDuty[0]);

 m_csOnDutyTue.Format("%d", (int) dOnDuty[1]);

 m_csOnDutyWed.Format("%d", (int) dOnDuty[2]);

 m_csOnDutyThu.Format("%d", (int) dOnDuty[3]);

 m_csOnDutyFri.Format("%d", (int) dOnDuty[4]);

 m_csOnDutySat.Format("%d", (int) dOnDuty[5]);

 m_csOnDutySun.Format("%d", (int) dOnDuty[6]);

 m_csCost.Format("%g", dTotal);

 UpdateData(FALSE);

 }

 goto Exit;

ErrorExit:

 cs.Format("LINGO Errorcode: %d", nError);

 AfxMessageBox(cs);

 return;

Exit:

 LSdeleteEnvLng(pLINGO);

}

The first section of OnSolve is straightforward and deals with extracting the user’s staffing

requirements from the dialog box. Note that the data is stored in a double precision array rather than as

integers. This is because these values will be passed to LINGO, which only passes values in double

precision format.

Our first call to LINGO creates the LINGO environment object with the following code:

 // create the LINGO environment object

 pLSenvLINGO pLINGO;

 pLINGO = LScreateEnvLng();

 if (!pLINGO)

 {

 AfxMessageBox("Unable to create LINGO Environment");

 return;

 }

508 CHAPTER 11

The pLSenvLINGO data type is defined in the LINGO header file, lingd14.h.

Then, a log file for LINGO is established with the following call:

 // Open LINGO's log file

 nError = LSopenLogFileLng(pLINGO, "LINGO.log");

 if (nError) goto ErrorExit;

As mentioned above, opening a log file for LINGO is good practice, at least when you’re debugging

the application. If something should go wrong, the log file will generally contain a helpful clue.

Our next step is to pass LINGO the physical addresses it will use to resolve the @POINTER() function

references used in the data section of the model (refer to the Staff Scheduling Example Using the

LINGO DLL section above for more details). This is done as follows:

 // Pass memory transfer pointers to LINGO

 // @POINTER(1)

 nError = LSsetPointerLng(pLINGO, dNeeds, &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(2)

 nError = LSsetPointerLng(pLINGO, dStart, &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(3)

 nError = LSsetPointerLng(pLINGO, dOnDuty, &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(4)

 nError = LSsetPointerLng(pLINGO, &dTotal, &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(5)

 nError = LSsetPointerLng(pLINGO, &dStatus, &nPointersNow);

 if (nError) goto ErrorExit;

In summary, when LINGO is called to solve the model, the staffing needs are passed to LINGO in the

dNeeds array via the @POINTER(1) reference. Solution information is passed from LINGO back to

the application in the dStart, dOnDuty, dTotal, and dStatus structures via @POINTER() references 2

through 5, respectively. If any of this is unfamiliar, review The @POINTER() Function section under

the Staff Scheduling Example Using the LINGO DLL section above.

Next, the following code is used to build the command script:

 // Here is the script we want LINGO to run

 csScript = "SET ECHOIN 1\n";

 csScript = csScript +

 "TAKE \\LINGO14\\SAMPLES\\STAFFPTR.LNG\n";

 csScript = csScript +

 "GO\n";

 csScript = csScript +

 "QUIT\n";

INTERFACING WITH OTHER APPLICATIONS 509

The script consists of four commands, which are each terminated with a new line character (ASCII

10). The end of the script is terminated with a NULL character (ASCII 0). These commands and their

functions are:

Command Function
SET ECHOIN 1 Causes LINGO to echo input to the log file. This is a useful feature

while building and debugging an application.
TAKE Loads the model from a disk file. The TAKE command may be used to

load model files, as in this example. It may also be used to run nested

command scripts contained in files.
GO Calls the solver to optimize the model.
QUIT Closes down LINGO’s script processor and returns control to the

calling application.

For more information on scripting commands, refer to Chapter 6, Command-line Commands.

At this point, the script is ready to be passed off to LINGO for processing with the following call:

// Run the script

 dStatus = -1.e0;

 nError = LSexecuteScriptLng(pLINGO, (LPCTSTR) csScript);

Note that dStatus is initialized to –1. LINGO returns the model status through memory transfer

location number 5 (i.e., @POINTER(5)) to the dStatus variable. LINGO will only return a status value

if it was able to solve the model. If an unexpected error were to occur, LINGO might not ever reach

the solution phase. In that case, dStatus would never be set. Initializing dStatus to a negative value

tests for this situation. Given that LINGO returns only non-negative status codes, a negative status

code would indicate a problem. This method of error trapping is effective, but not particularly elegant.

Another method that involves specifying an error callback routine is demonstrated below.

Now, LINGO’s log file may be closed down by calling LScloseLogFileLng():

 // Close the log file

 LScloseLogFileLng(pLINGO);

Next, the following code tests to see if LINGO was able to find an optimal solution:

 // Any problems?

 if (nError || dStatus)

 // Had a problem

 AfxMessageBox("Unable to solve!");

 } else {

Note that the code returned in nError pertains only to the mechanical execution of the script processor.

It has nothing to do with the status of the model’s solution, which is returned in dStatus via the use of

the @POINTER() and @STATUS() functions (see the Staff Scheduling Example Using the LINGO

DLL section above). A model may actually be infeasible or unbounded, and the error code returned by

LSexecuteScript() will give no indication. Thus, it is important to add a mechanism to return a

solution’s status to the calling application, as done here with the @STATUS() -> @POINTER(5) ->

510 CHAPTER 11

dStatus link. The end result in the sample code is that “Unable to solve” is printed if either error

condition occurs. A more user-friendly application would offer more specific information regarding

the error condition.

As a final step, in order to avoid memory leaks in your application, remember to free up LINGO’s

environment when through:

Exit:

 LSdeleteEnvLng(pLINGO);

If everything has been entered correctly, you should now be able to build and run the project.

Visual Basic Staff Scheduling Using the LINGO DLL
In this section, we will illustrate the use of Microsoft Visual Basic to build an application that

interfaces with the LINGO DLL to solve the staff-scheduling problem presented above. This section

assumes the reader is well versed in the use of Visual Basic.

If you would rather skip the details involved in constructing this project and would prefer to

experiment with the completed appliction, it can be found under the path

\LINGO14\Programming Samples\VBasic\STAFFVB.EXE.

Building the Application
You can build the project as follows:

1. Start Visual Basic and then issue the File|NewProject command.

2. Select Standard Exe and click the OK button.

3. Use the resource editor to format the project’s form until it resembles the

following:

INTERFACING WITH OTHER APPLICATIONS 511

Now, add handler code for the two buttons in the form. The Exit button is easy. All the Exit button

does when the user clicks it is exit the application. So, double click on the Exit button and enter the

following code:

Private Sub Exit_Click()

 End

End Sub

A little more work will be required to setup the Solve button. When the Solve button is pressed, the

application will retrieve the staffing requirements from the form, pass them along with the model to

the LINGO script processor (LGVBSCRIPT) to solve the model, retrieve the solution, and post the

solution in the form.

First, we must declare the external LINGO functions. Do this by adding the

\LINGO14\Programming Samples\LINGD14.BAS module to the project using the Project|Add

Module command in VB. This module contains the definitions of all the exported function in the

LINGO DLL, and makes them available to our project.

Now, add the handler code for the Solve button. Go to the form, double click on the Solve button, and

enter the following code:

Private Sub Solve_Click()

' Calls the LINGO DLL to solve the staffing

' model in STAFFPTR.LNG. Staffing

' requirements are taken from the dialog

' box.

' Get the staffing needs from the dialog box

 Dim dNeeds(7) As Double

 For i = 1 To 7

 dNeeds(i) = Needs(i - 1).Text

 Next i

' Create the LINGO environment object

 Dim pLINGO As Long

 pLINGO = LScreateEnvLng()

 If pLINGO = 0 Then

 MsgBox ("Unable to create LINGO Environment.")

 GoTo FinalExit

 End If

' Open LINGO's log file

 Dim nError As Long

 nError = LSopenLogFileLng(pLINGO, "LINGO.log")

 If nError <> 0 Then GoTo ErrorExit

' Pass memory transfer pointers to LINGO

 Dim dStart(7) As Double, dOnDuty(7) As Double

 Dim dTotal As Double, dStatus As Double

512 CHAPTER 11

' @POINTER(1)

 nError = LSsetPointerLng(pLINGO, dNeeds(1), nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' @POINTER(2)

 nError = LSsetPointerLng(pLINGO, dStart(1), nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' @POINTER(3)

 nError = LSsetPointerLng(pLINGO, dOnDuty(1), nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' @POINTER(4)

 nError = LSsetPointerLng(pLINGO, dTotal, nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' @POINTER(5)

 nError = LSsetPointerLng(pLINGO, dStatus, nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' Build LINGO's command script (commands

' are terminated with an ASCII 10

 Dim cScript As String

' Causes LINGO to echo input

 cScript = "SET ECHOIN 1" & Chr(10)

' Read in the model file

 cScript = cScript & _

 "TAKE \LINGO14\SAMPLES\STAFFPTR.LNG" & Chr(10)

' Solve the model

 cScript = cScript & "GO" & Chr(10)

' Quit LINGO DLL

 cScript = cScript & "QUIT" & Chr(10)

' Mark end of script with a null byte

 cScript = cScript & Chr(0)

' Run the script

 dStatus = -1#

 nError = LSexecuteScriptLng(pLINGO, cScript)

' Close the log file

 LScloseLogFileLng (pLINGO)

' Problems?

 If nError > 0 Or dStatus <> 0 Then

 MsgBox ("Unable to solve!")

 GoTo ErrorExit

 End If

INTERFACING WITH OTHER APPLICATIONS 513

' Place Start values in dialog box

 For i = 1 To 7

 Start(i - 1).Caption = dStart(i)

 Next i

' Place On Duty values in dialog box

 For i = 1 To 7

 OnDuty(i - 1).Caption = dOnDuty(i)

 Next i

' Put Total staffing in dialog box

 Total.Caption = dTotal

 LSdeleteEnvLng (pLINGO)

 GoTo FinalExit:

ErrorExit:

 MsgBox ("LINGO Error Code: " & nError&)

 LSdeleteEnvLng (pLINGO)

FinalExit:

End Sub

The first section of the Solve_Click procedure is straightforward and deals with extracting the user’s

staffing requirements from the dialog box. Note that the data is stored in a double precision array,

rather than as integers. This is because these values will be passed to LINGO, which only passes

numeric values in double precision format.

The first call to LINGO creates the LINGO environment object with the following code:

' Create the LINGO environment object

 Dim pLINGO As Long

 pLINGO = LScreateEnvLng()

 If pLINGO = 0 Then

 MsgBox ("Unable to create LINGO Environment.")

 GoTo FinalExit

 End If

Next, a log file for LINGO is established with the call:

' Open LINGO's log file

 Dim nError As Long

 nError = LSopenLogFileLng(pLINGO, "LINGO.log")

 If nError <> 0 Then GoTo ErrorExit

As mentioned above, opening a log file for LINGO is good practice, at least when you’re debugging

the application. If something should go wrong, the log file will generally contain a helpful clue.

514 CHAPTER 11

The next step is to pass LINGO the physical addresses it will use to resolve the @POINTER() function

references used in the data section of the model (refer to the Staff Scheduling Example Using the

LINGO DLL section above for more details). This is done as follows:

' Pass memory transfer pointers to LINGO

 Dim dStart(7) As Double, dOnDuty(7) As Double

 Dim dTotal As Double, dStatus As Double

' @POINTER(1)

 nError = LSsetPointerLng(pLINGO, dNeeds(1), nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' @POINTER(2)

 nError = LSsetPointerLng(pLINGO, dStart(1), nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' @POINTER(3)

 nError = LSsetPointerLng(pLINGO, dOnDuty(1), nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' @POINTER(4)

 nError = LSsetPointerLng(pLINGO, dTotal, nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

' @POINTER(5)

 nError = LSsetPointerLng(pLINGO, dStatus, nPointersNow)

 If nError <> 0 Then GoTo ErrorExit

In summary, when LINGO is called to solve the model, the staffing needs are passed to LINGO in the

dNeeds array via the @POINTER(1) reference. Solution information is passed from LINGO back to

the application in the dStart, dOnDuty, dTotal, and dStatus structures via @POINTER() references 2

through 5, respectively. If any of this is unfamiliar, review The @POINTER() Function section under

the Staff Scheduling Example Using the LINGO DLL section above.

Next, the following code is used to build the command script:

' Build LINGO's command script (commands

' are terminated with an ASCII 10

 Dim cScript As String

' Causes LINGO to echo input

 cScript = "SET ECHOIN 1" & Chr(10)

' Read in the model file

 cScript = cScript & _

 "TAKE \LINGO14\SAMPLES\STAFFPTR.LNG" & Chr(10)

' Solve the model

 cScript = cScript & "GO" & Chr(10)

' Quit LINGO DLL

 cScript = cScript & "QUIT" & Chr(10)

' Mark end of script with a null byte

 cScript = cScript & Chr(0)

INTERFACING WITH OTHER APPLICATIONS 515

The script consists of four commands, which are each terminated with a new line character (ASCII

10). The end of the script is terminated with a NULL character (ASCII 0). These commands and their

functions are:

Command Function
SET ECHOIN 1 Causes LINGO to echo input to the log file. This is a useful feature

while building and debugging an application.
TAKE Loads the model from a disk file. The TAKE command may be used to

load model files, as in this example. It may also be used to run nested

command scripts contained in files.
GO Calls the solver to optimize the model.
QUIT Closes down LINGO’s script processor and returns control to the

calling application.

At this point, the script is ready to be passed off to LINGO for processing with the following call:

' Run the script

 dStatus = -1#

 nError = LSexecuteScriptLng(pLINGO, cScript)

Note that dStatus is initialized to –1. LINGO returns the model status through memory transfer

location number 5 (i.e., @POINTER(5)) to the dStatus variable. LINGO will only return a status

value, if it was able to solve the model. If an unexpected error were to occur, LINGO might not ever

reach the solution phase. In that case, dStatus would never be set. Initializing dStatus to a negative

value tests for this situation. Given that LINGO returns only non-negative status codes, a negative

status code would indicate a problem. This method of error trapping is effective, but not particularly

elegant. Another method that involves specifying an error callback routine is demonstrated below.

Now, LINGO’s log file may be closed down by calling LScloseLogFileLng():

' Close the log file

 LScloseLogFileLng (pLINGO)

Next, the following code tests to see if LINGO was able to find an optimal solution:

' Problems?

 If nError > 0 Or dStatus <> 0 Then

 MsgBox ("Unable to solve!")

 GoTo ErrorExit

 End If

Note that the code returned in nError pertains only to the mechanical execution of the script processor.

It has nothing to do with the status of the model’s solution, which is returned in dStatus via the use of

the @POINTER() and @STATUS() functions (see the Staff Scheduling Example Using the LINGO

DLL section above). A model may actually be infeasible or unbounded, and the error code returned by

LSexecuteScriptLng()will give no indication. Thus, it is important to add a mechanism to return a

solution’s status to the calling application, as done here with the @STATUS() -> @POINTER(5) ->

dStatus link. The end result in the sample code is that “Unable to solve” is printed if either error

condition occurs. A more user-friendly application would offer more specific information regarding

the error condition.

516 CHAPTER 11

As a final step, in order to avoid a memory leak in the application, remember to free up LINGO’s

environment when through:

 LSdeleteEnvLng (pLINGO)

 GoTo FinalExit:

If everything has been entered correctly, you should now be able to run the project.

Passing Set Members with @POINTER
In the previous examples, when using the @POINTER function, we only passed attribute values back

and forth. You may also pass set members using @POINTER, with the primary difference being that

the set members are passed as ASCII text, as opposed to double precision numeric values. In addition,

each set member is separated by a line feed (ASCII 10), with the end of the list of set members

denoted with a null (ASCII 0) character.

In order to illustrate passing set members via @POINTER, we will modify the knapsack problem

discussed above in section Binary Integer Example - The Knapsack Problem. You will recall that the

data in a knapsack problem consists of the list of potential items to include in the knapsack, their

weight, their utility/value, and the knapsack's capacity. We will pass all this data to LINGO via the

@POINTER function, including the set of potential items. After solving the model, we will create a

new set, derived from the original set of items, which contains only those items that are included in the

optimal solution. Finally, we will use the @POINTER function to pass the optimal set of items back to

our calling program so that we can display them for the user.

We will develop this example using the C programming language, however, the concepts should carry

over in a straightforward manner to all other development environments. The code for this example

may be found in the Programming Samples\VC++\Knapsack folder off the main LINGO directory.

INTERFACING WITH OTHER APPLICATIONS 517

The Model
Here is a copy of the knapsack model our application will load into LINGO:

MODEL:

SETS:

 ITEMS: INCLUDE, WEIGHT, RATING;

ENDSETS

DATA:

 ITEMS = @POINTER(1);

 WEIGHT = @POINTER(2);

 RATING = @POINTER(3);

 KNAPSACK_CAPACITY = @POINTER(4);

ENDDATA

SUBMODEL SACK:

 MAX = @SUM(ITEMS: RATING * INCLUDE);

 @SUM(ITEMS: WEIGHT * INCLUDE) <=

 KNAPSACK_CAPACITY;

 @FOR(ITEMS: @BIN(INCLUDE));

ENDSUBMODEL

CALC:

 !keep output to a minimum;

 @SET('TERSEO', 1);

 !solve the model;

 @SOLVE(SACK);

 !fix the INCLUDE attribute to it's optimal value;

 @FOR(ITEMS(I): INCLUDE(I) = INCLUDE(I));

ENDCALC

SETS:

 !construct a set of the optimal items;

 ITEMSUSED(ITEMS) | INCLUDE(&1) #GT# .5:;

ENDSETS

DATA:

 !send optimal items set back to caller;

 @POINTER(5) = ITEMSUSED;

 !along with the solver status;

 @POINTER(6) = @STATUS();

ENDDATA

END

Model: SACK

518 CHAPTER 11

Note: Some of the model features in this example take advantage of the scripting capability in

LINGO models. Scripting in models is discussed in more detail in Chapter 13, Programming

LINGO.

In the model's sets section:

SETS:

 ITEMS: INCLUDE, WEIGHT, RATING;

ENDSETS

We define the ITEMS set, which will store the set of potential items for the knapsack. Each item has

the following attributes:

 INCLUDE a binary variable indicating whether or not the item is to be included in the

optimal knapsack.

 WEIGHT the item's weight

 RATING the items utility, or value.

In the data section, we ask LINGO to import all the data for the model via the @POINTER function:

DATA:

 ITEMS = @POINTER(1);

 WEIGHT = @POINTER(2);

 RATING = @POINTER(3);

 KNAPSACK_CAPACITY = @POINTER(4);

ENDDATA

Note that in addition to strictly numeric values, we are also importing the set ITEMS. This set will be

passed from our calling application as an ASCII string.

Next, we have the actual knapsack model. We partition the model as a submodel within our main

model (the concept of submodels is discussed further in Chapter 13):

SUBMODEL SACK:

 MAX = @SUM(ITEMS: RATING * INCLUDE);

 @SUM(ITEMS: WEIGHT * INCLUDE) <=

 KNAPSACK_CAPACITY;

 @FOR(ITEMS: @BIN(INCLUDE));

ENDSUBMODEL

This submodel contains three expressions. First, there's the objective that maximizes total utility of the

selected items. Second, there is a constraint that forces total weight to not exceed capacity. Finally,

via the @BIN function, we force the INCLUDE attribute members to be either 0 or 1, given that

fractional solution do not make sense for this model.

INTERFACING WITH OTHER APPLICATIONS 519

The next section is a calc section where we perform three steps:

CALC:

 !keep output to a minimum;

 @SET('TERSEO', 1);

 !solve the model;

 @SOLVE(SACK);

 !fix the INCLUDE attribute to it's optimal value;

 @FOR(ITEMS(I): INCLUDE(I) = INCLUDE(I));

ENDCALC

The first step sets the TERSEO function to minimize output from LINGO. Next, we use the @SOLVE

function to solve the knapsack submodel. Finally,. we loop over the ITEMS set, fixing the INCLUDE

attribute members to their optimal values in the SACK submodel. The reason we need to fix their

values is that we will need them in the following sets section where we use a set membership condition

to generate the optimal set of items in the knapsack (set membership conditions will reject variables

that aren't fixed in value).

Next, we derive the set ITEMSUSED from the original set of all potential items, however, we only

include those items that have a nonzero value in the optimal solution:

SETS:

 !construct a set of the optimal items;

 ITEMSUSED(ITEMS) | INCLUDE(&1) #GT# .5:;

ENDSETS

As our last step, we construct a data section to send the set of optimal items back to the calling

program via @POINTER:

DATA:

 !send optimal items set back to caller;

 @POINTER(5) = ITEMSUSED;

 !along with the solver status;

 @POINTER(6) = @STATUS();

ENDDATA

520 CHAPTER 11

The Code
Here is a copy of the C code we will use to drive our application:

#include <stdlib.h>

#include <string.h>

#include "..\..\lingd14.h"

/*

 Solves a simple knapsack problem, passing

 all data to Lingo and retrieving the optimal

 set of knapsack items for display

*/

void main()

{

 // input data for model:

 // potential items in knapsack

 char pcItems[256] = "ANT_REPEL \n BEER \n BLANKET \n"

 "BRATWURST \n BROWNIES \n FRISBEE \n SALAD \n"

 "WATERMELON";

 // and their weights

 double pdItemWeight[8] = { 1, 3, 4, 3, 3, 1, 5,10};

 // and their rankings

 double pdItemRank[8] = { 2, 9, 3, 8,10, 6, 4,10};

 // knapsack size

 double dSackSize = 15;

 // other declarations

 int i, nPointersNow, nError;

 double dStatus=-1.0;

 char pcScript[256];

 char pcItemsSolution[256];

 // create the LINGO environment object

 pLSenvLINGO pLINGO;

 pLINGO = LScreateEnvLng();

 if (!pLINGO)

 {

 printf("Can''t create LINGO environment!\n");

 goto FinalExit;

 }

 // Open LINGO's log file

 nError = LSopenLogFileLng(pLINGO, "LINGO.log");

 if (nError) goto ErrorExit;

INTERFACING WITH OTHER APPLICATIONS 521

 // Pass memory transfer pointers to LINGO

 // @POINTER(1) - Items set

 nError = LSsetPointerLng(pLINGO, (void*) pcItems,

 &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(2) - Item weights

 nError = LSsetPointerLng(pLINGO, (void*) pdItemWeight,

 &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(3) - Item ranks

 nError = LSsetPointerLng(pLINGO, (void*) pdItemRank,

 &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(4) - Sack size

 nError = LSsetPointerLng(pLINGO, (void*) &dSackSize,

 &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(5) - Output region for optimal items set

 nError = LSsetPointerLng(pLINGO, (void*) pcItemsSolution,

 &nPointersNow);

 if (nError) goto ErrorExit;

 // @POINTER(6) - Variable to receive solution status

 nError = LSsetPointerLng(pLINGO, &dStatus, &nPointersNow);

 if (nError) goto ErrorExit;

 // Here is the script we want LINGO to run:

 // Load the model, solve the model, exit.

 strcpy(pcScript, "TAKE SACK.LNG \n GO \n QUIT \n");

 // Run the script

 nError = LSexecuteScriptLng(pLINGO, pcScript);

 if (nError) goto ErrorExit;

 // display solution status

 printf("\nSolution status (should be 0): %d\n", (int) dStatus);

 // display items in optimal sack

 printf("\nItems in optimal sack:\n%s\n", pcItemsSolution);

 // Close the log file

 LScloseLogFileLng(pLINGO);

 // All done

522 CHAPTER 11

 goto NormalExit;

ErrorExit:

 printf("LINGO Error Code: %d\n", nError);

NormalExit:

 LSdeleteEnvLng(pLINGO);

FinalExit: ;

}

SACK.C

There are a couple of interesting features to note in this code pertaining to the passing of set members.

First off, there is the declaration of the original set members:

 // potential items in knapsack

 char pcItems[256] = "ANT_REPEL \n BEER \n BLANKET \n"

 "BRATWURST \n BROWNIES \n FRISBEE \n SALAD \n"

 "WATERMELON";

The set members are merely listed as one long string, separated by line feeds (\n). We also added

blank spaces for readability, which LINGO strips out when it parses the names. Note, that since we

are working in C, there is an implicit null byte at the end of this string due to the use of double quotes.

This terminating null is important, because it lets LINGO know where the end of the list occurs.

We pass a pointer to the set to LINGO with the following call to LSsetPointerLng

 // @POINTER(1) - Items set

 nError = LSsetPointerLng(pLINGO, (void*) pcItems,

 &nPointersNow);

 if (nError) goto ErrorExit;

We pass a pointer to the set to LINGO with the following call to LSsetPointerLng. For receiving the

optimal set of items back from LINGO we set aside the following text array: char
pcItemsSolution[256];

We let LINGO know to store the solution set in this array with the following call to LSLsetPointerLng:

 // @POINTER(5) - Output region for optimal items set

 nError = LSsetPointerLng(pLINGO, (void*) pcItemsSolution,

 &nPointersNow);

Recall that this statement in the code pairs with the following statement in the model to establish the

link for receiving the optimal set of items:

 !send optimal items set back to caller;

 @POINTER(5) = ITEMSUSED;

INTERFACING WITH OTHER APPLICATIONS 523

If you have Visual C/C++ 6.0 installed on your machine, you should be able to build the application by

going to the \LINGO\Programming Samples\VC++\Knapsack folder and issuing the NMAKE

command. Alternatively, you may simply go to the folder and run the sack.exe executable. After

running the application, you should see the following:

Solution status (should be 0): 0

Items in optimal sack:

ANT_REPEL

BEER

BLANKET

BRATWURST

BROWNIES

FRISBEE

From the solution we see that all items except the salad and watermelon are included in the optimal

solution.

Callback Functions
In many instances, solving a model can be a lengthy operation. Given this, it may be useful to provide

some device to keep the user posted as to the progress of the optimization. The standard interactive

version of LINGO displays a status window showing the iteration count, objective value, and various

other model statistics each time the solver is invoked. In addition, the user has the ability to interrupt

the solver by clicking on a button in the status window. You can provide similar functionality to users

through the LINGO DLL by supplying LINGO with a callback function—so named because the code

calls the LINGO solver, and the LINGO solver then calls back to the supplied callback routine.

In the next section, the calling sequences used in establishing a callback function are discussed. After

that, there are sample callback routines to the Visual C++ and Visual Basic staff scheduling examples

illustrated above.

Specifying a Callback Function
To specify a callback function, the LINGO exported routine LSsetCallbackSolverLng() needs to be

called before calling LINGO’s script processor. The callback function will be called frequently by the

LINGO solver.

You will recall from above the calling sequence for LSsetCallbackSolverLng:

int LSsetCallbackSolverLng(pLSenvLINGO pL, lngCBFuncError_t pcbf, void* pUserData)
Arguments:

pL Pointer to a LINGO environment created by a previous call to

LScreateEnvLng().

pcbf Pointer to your callback routine.

pUserData This is a user specified pointer. You may use it to point to any data you might

need to reference from your callback function. LINGO merely passes the

value of this pointer through to your callback function. You may set this

pointer to NULL if it is not required.

524 CHAPTER 11

Return Value:

Returns 0 if no error occurred. Otherwise, it returns one of the nonzero error codes listed

below in the section LINGO DLL Error Codes.

The callback function must use the standard call convention and must have the following interface:

int MySolverCallback(pLSenvLINGO pL, int nReserved, void* pUserData);

Your computer will most likely crash if this interface specification is not followed exactly. The

nReserved argument is reserved for future use and may be ignored.

Once the callback function has control, information regarding the solver’s status can be retrieved from

LINGO using the LSgetCallbackInfoLng()function. See the section Functions Exported by the LINGO

DLL above for more information on the LSgetCallbackInfoLng() interface.

A Visual C++ Callback Function
We will now extend the Visual C++ staffing example presented above by introducing a callback

function. The callback function in this example will post a small dialog box each time the solver finds

a better integer solution. The dialog box will display the solver’s iteration count, the objective value

for the new solution, the bound on the objective, and also include a button to allow the user to interrupt

the solver if they desire. You can find the complete project for this sample in the directory

LINGO14\Programming Samples\VC++\STAFF2.

The first step is to design the dialog box that we will post whenever a new integer solution is found.

Here is a look at the dialog box for this example:

The box has three edit fields for the iterations, objective, and bound. There are two buttons—one to

interrupt the solver and the other to clear the dialog box.

INTERFACING WITH OTHER APPLICATIONS 525

The next step is to use the ClassWizard to attach a handler class to the new dialog box. This class was

named CNewIPDlg. When a class has been attached to the dialog box, then the ClassWizard must be

used to assign member variables to handle the Iterations, Objective, and Bound edit fields. Once this is

done, the header file for the dialog box will resemble:

// NewIPDlg.h : header file

//

//

// CNewIPDlg dialog

class CNewIPDlg : public CDialog

{

// Construction

public:

 CNewIPDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data

 //{{AFX_DATA(CNewIPDlg)

 enum { IDD = IDD_NEW_IP_SOLUTION };

 CString m_csBound;

 CString m_csIteration;

 CString m_csObjective;

 //}}AFX_DATA

// Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CNewIPDlg)

 protected:

 virtual void DoDataExchange(CDataExchange* pDX);

 //}}AFX_VIRTUAL

// Implementation

protected:

// Generated message map functions

 //{{AFX_MSG(CNewIPDlg)

// NOTE: the ClassWizard will add member functions here

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

 Callback Dialog Header File (NewIPDlg.h)

526 CHAPTER 11

Here is the code to handle events from the new dialog box:

// NewIPDlg.h : header file

//

///

// CNewIPDlg dialog

class CNewIPDlg : public CDialog

{

// Construction

public:

 CNewIPDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data

 //{{AFX_DATA(CNewIPDlg)

 enum { IDD = IDD_NEW_IP_SOLUTION };

 CString m_csBound;

 CString m_csIteration;

 CString m_csObjective;

 //}}AFX_DATA

// Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CNewIPDlg) protected:

 virtual void DoDataExchange(CDataExchange* pDX);

 //}}AFX_VIRTUAL

// Implementation

protected:

 // Generated message map functions

 //{{AFX_MSG(CNewIPDlg)

 // NOTE: the ClassWizard will add member functions here

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

Callback Dialog Handler (NewIPDlg.cpp)

The code in these two files was entirely generated by the ClassWizard, requiring no actual user input.

INTERFACING WITH OTHER APPLICATIONS 527

Next, the code for the callback function must be added. Here is a copy of the global routine that was

added for this purpose:

int __stdcall MyCallback(void* pModel, int nReserved,

 void* pUserData)

{

// Callback function called by the LINGO solver

//

// return value: >= 0 if solver is to continue, else < 0 to interrupt

 // Get current best IP

 int nErr;

 double dBestIP;

 nErr = LSgetCallbackInfoLng(pModel,

LS_DINFO_MIP_BEST_OBJECTIVE_LNG, &dBestIP);

 if (nErr) return(0);

 // Get best IP value published in dialog box

 double* pdBestIPShown = (double*) pUserData;

 // Is current better than incumbent?

 if (dBestIP < *pdBestIPShown)

 {

 // Yes ... save its value

 *pdBestIPShown = dBestIP;

 // Get iteration count from LINGO

 int nIterations;

 LSgetCallbackInfoLng(pModel, LS_IINFO_ITERATIONS_LNG,

 &nIterations);

 // Get bound on solution

 double dBound;

 LSgetCallbackInfoLng(pModel, LS_DINFO_MIP_BOUND_LNG, &dBound);

 // Create a dialog to show the current solution value

 CNewIPDlg dlgNewIP;

 // Initialize the fields of the dialog

 dlgNewIP.m_csIteration.Format("%d", nIterations);

 dlgNewIP.m_csObjective.Format("%d", (int) dBestIP);

 dlgNewIP.m_csBound.Format("%d", (int) dBound);

 // Post the dialog and check for a user interrupt

 if (dlgNewIP.DoModal() == IDCANCEL) return(-1);

 }

 return(0);

}

 Callback Routine

528 CHAPTER 11

Of course, this routine has the same interface that was described in the previous section:

int __stdcall MySolverCallback(pLSenvLINGO pL, int nReserved, void* pUserData)

The following code uses the LSgetCallbackInfo routine to get the value of the current best integer

solution:

// Get current best IP

int nErr;

double dBestIP;

nErr = LSgetCallbackInfoLng(pModel,

 LS_DINFO_MIP_BEST_OBJECTIVE_LNG, &dBestIP);

if (nErr) return(0);

The constant, LS_DINFO_MIP_BEST_OBJECTIVE, is defined in the LINGD11.H header file.

We then get the value for the best integer solution that we have currently posted in the dialog box with

the statement:

// Get best IP value published in dialog box

double* pdBestIPShown = (double*)pUserData;

Note that this statement references the user data pointer, pUserData. This pointer is passed to LINGO

when the callback function is established, and it is useful as a means of accessing the data from within

the callback function. In this particular case, a single variable is being pointing to. If needed, the

pointer could reference a large data structure containing whatever data desired.

Next, test to see if the latest integer solution is better than the incumbent solution with the statement:

// Is current better than incumbent?

if (dBestIP < *pdBestIPShown)

If the new solution is better, then we get additional information from LINGO on the iteration count and

solution bound. Also, an instance of the callback dialog box to display the latest information in is

created with the line:

// Create a dialog to show the current solution value

CNewIPDlg dlgNewIP;

The new data is then loaded into the fields of the dialog box:

// Initialize the fields of the dialog

dlgNewIP.m_csIteration.Format("%d", nIterations);

dlgNewIP.m_csObjective.Format("%d", (int) dBestIP);

dlgNewIP.m_csBound.Format("%d", (int) dBound);

As the final step in this callback routine, we display the dialog box, and if the user hits the interrupt

button we return a –1, indicating that the solver should stop and return with the best answer found so

far:

// Post the dialog and check for a user interrupt

if (dlgNewIP.DoModal() == IDCANCEL) return(-1);

INTERFACING WITH OTHER APPLICATIONS 529

At this point, there is one more piece of code to add. We must make a call to the

LSsetCallbackSolverLng() routine to pass LINGO a pointer to our callback routine. A good place to

do this is right after creating the LINGO environment in the OnSolve() handler code for our Solve

button. The changes are listed below in bold type:

// create the LINGO environment object

pLSenvLINGO pLINGO;

pLINGO = LScreateEnvLng();

if (!pLINGO)

{

 AfxMessageBox("Unable to create LINGO Environment");

 return;

}

// Pass LINGO a pointer to our callback function

nError = LSsetCallbackSolverLng(pLINGO, &MyCallback,

 &dBestIPShown);

if (nError) goto ErrorExit;

// Open LINGO's log file

nError = LSopenLogFileLng(pLINGO, "LINGO.log");

if (nError) goto ErrorExit;

A Visual Basic Callback Function
We will now extend the Visual Basic staffing example presented above by introducing a callback

function. The callback function in this example will post a small dialog box each time the solver finds

a better integer solution. The dialog box will display the solver’s iteration count, the objective value

for the new solution, and the bound on the objective. You can find the complete project for this sample

in the directory LINGO14\Programming Samples\VBasic\STAFF2.

First, we need to construct a callback function and place it in a separate Module file (.bas file) . Here

are the contents of the callback function file Module1.bas:

Public Function MySolverCallback(ByVal pModel As Long, _

 ByVal nReserved As Long, ByRef dBestIP As Double) As Long

' Callback function called by the LINGO DLL

' during model solution.

'

' Return value: >= 0 if solver is to continue,

' else < 0 to interrupt the solver

 Dim nReturnVal As Long

 nReturnVal = 0

' Get current best IP

 Dim dObj As Double

 Dim nError As Long

 nError = LSgetCallbackInfoDoubleLng(pModel, _

 LS_DINFO_MIP_BEST_OBJECTIVE_LNG, dObj)

530 CHAPTER 11

' Check for any error

 If (nError = LSERR_NO_ERROR_LNG) Then

' Is it better than the best one displayed so far?

 If (dObj < dBestIP) Then

' Yes ... display this solution

' Save the new best objective value

 dBestIP = dObj

' Get the iteration count from LINGO

 Dim nIterations As Long

 nResult = LSgetCallbackInfoLongLng(pModel, _

 LS_IINFO_ITERATIONS_LNG, nIterations)

' Get the objective bound from LINGO

 Dim dBound As Double

 nResult = LSgetCallbackInfoDoubleLng(pModel, _

 LS_DINFO_MIP_BOUND_LNG, dBound)

' Display the information in a dialog box

 Dim nButtonPressed

 Dim cMessage As String

 cMessage = "Objective:" + Str(dBestIP) _

 + Chr(10) + "Bound:" + Str(dBound) _

 + Chr(10) + "Iterations:" + Str(nIterations)

 nButtonPressed = MsgBox(cMessage, vbOKCancel)

 If (nButtonPressed = vbCancel) Then

 nReturnVal = -1

 End If

 End If

 End If

 MySolverCallback = nReturnVal

End Function

 VB Callback Module (Module1.bas)

Note: A VB callback function must be placed in a Module file (.bas file) . The callback function

will not work if it is placed in a Forms file (.frm file). Also, the callback function and the

module file must have different names. If the module file has the same name as the callback

function, then the VB AddressOf operator will not be able to return the address of the callback

function.

You will recall from the section Specifying a Callback Function above that the callback routine must

use the following calling sequence:

int __stdcall MySolverCallback(pLSenvLINGO pL, int nReserved, void* pUserData)

INTERFACING WITH OTHER APPLICATIONS 531

An equivalent function definition using VB code is:

Public Function MySolverCallback(ByVal pModel As Long, _

 ByVal nReserved As Long, ByRef dBestIP As Double) As Long

VB uses the standard call (__stdcall) convention by default, so we need not specify this explicitly.

We will make use of the user data pointer to pass the value of the best objective displayed so far in the

dBestIP argument. This variable will hold the objective value of the best integer solution found so far.

We compare each new objective value to the best one found so far. If the latest is an improvement

over the incumbent, then we display a dialog box summarizing the new solution.

The following code uses the LSgetCallbackInfo routine to get the value of the current best integer

solution:

' Get current best IP

 Dim dObj As Double

 Dim nError As Long

 nError = LSgetCallbackInfoDoubleLng(pModel, _

 LS_DINFO_MIP_BEST_OBJECTIVE_LNG, dObj)

In the VB header file for LINGO (LINGD14.BAS), we created two aliases for the

LSgetCallbackInfoLng() function: LSgetCallbackInfoDoubleLng() and LSgetCallbackInfoLongLng().

These were for retrieving, respectively, double and long data from LINGO. This is required due to VB

not supporting the void data type found in C. We use LSgetCallbackInfoDoubleLng() to retrieve the

objective value given that it is a double precision quantity.

Next, we check for any errors in retrieving the objective value. If none occurred, we check to see if the

latest objective is better than the incumbent:

' Check for any error

 If (nError = LSERR_NO_ERROR_LNG) Then

' Is it better than the best one displayed so far?

 If (dObj < dBestIP) Then

If the new objective is better than the incumbent, then we save the new objective value, and retrieve

the iteration count and objective bound:

' Save the new best objective value

 dBestIP = dObj

' Get the iteration count from LINGO

 Dim nIterations As Long

 nResult = LSgetCallbackInfoLongLng(pModel, _

 LS_IINFO_ITERATIONS_LNG, nIterations)

' Get the objective bound from LINGO

 Dim dBound As Double

 nResult = LSgetCallbackInfoDoubleLng(pModel, _

 LS_DINFO_MIP_BOUND_LNG, dBound)

532 CHAPTER 11

We post a summary of the new solution in a dialog box:

' Display the information in a dialog box

 Dim nButtonPressed

 Dim cMessage As String

 cMessage = "Objective:" + Str(dBestIP) _

 + Chr(10) + "Bound:" + Str(dBound) _

 + Chr(10) + "Iterations:" + Str(nIterations)

 nButtonPressed = MsgBox(cMessage, vbOKCancel)

If the user pressed the Cancel button, as opposed to the OK button, then we set the return value to –1

before returning, which will cause the LINGO solver to interrupt:

 If (nButtonPressed = vbCancel) Then

 nReturnVal = -1

 End If

 End If

 End If

 MySolverCallback = nReturnVal

End Function

At this point, there is one more piece of code to add. We must make a call to the

LssetCallbackSolverLng() routine to pass LINGO a pointer to our callback routine. This is

accomplished at the start of the Solve button handler routine with the call:

' Pass LINGO a pointer to the callback routine

 Dim nError As Long

 Dim dBestObj As Double

 dBestObj = 1E+30

 nError = LSsetCallbackSolverLng(pLINGO, _

 AddressOf MySolverCallback, dBestObj)

Note the use of the VB AddressOf operator in the call to LSsetCallbackSolverLng(). This operator

may be used only in function calls to pass the address of routines contained in module files.

Note: The AddressOf operator was added to VB starting with release 5.0. Thus, earlier releases of

VB won’t be able to exploit the callback feature in LINGO. Also, Visual Basic for

Applications (VBA), the VB macro capability supplied with Microsoft Office, does not

support the AddressOf operator. Thus, VBA applications calling LINGO will also not be able

to establish callback routines.

INTERFACING WITH OTHER APPLICATIONS 533

Summary
The LINGO DLL has a very simple structure. You need only acquaint yourself with a handful of

functions in order to access the DLL and add the power of the LINGO solver to your applications.

We’ve given brief examples on calling the DLL from Visual Basic and Visual C++. Additional

examples are provided in the Programming Samples. Application developers working in other

environments should be able to access the LINGO DLL in a fashion similar to the examples given

here.

Finally, keep in mind that any application you build that makes use of the LINGO DLL is protected

under the LINGO License Agreement. Thus, you may not distribute such applications without explicit

permission from LINDO Systems. If you would like to make arrangements for distributing your

application, please feel free to contact LINDO Systems regarding available runtime licensing

arrangements.

User Defined Functions
The @USER function allows the use of custom functions of your own design in LINGO. In Windows

versions of LINGO, you provide a Dynamic Link Library (DLL) that contains your @USER function.

Most programming languages that support Windows should allow you to build a DLL. For platforms

other than Windows, you provide LINGO with a compiled C or FORTRAN subroutine containing

your @USER function.

From the perspective of a LINGO modeler, an @USER function is a function that can take any number

of arguments, but must take at least one. It returns a result calculated by the user-written routine.

From the perspective of the programmer writing the custom function, an @USER function takes only

two input arguments and returns a single result. The two input arguments consist of:

1. an integer specifying the number of arguments encountered in the @USER

reference in the LINGO model, and

2. a vector containing the values of the arguments in the order in which they

were encountered in the @USER reference in double precision format (i.e.,

an 8 byte floating point format).

In other words, although to the LINGO modeler an @USER function can appear to take any number of

arguments, to the programmer implementing the @USER function, only two input arguments are

passed.

It is possible to use multiple functions with @USER by writing and compiling each function as a

separate subroutine and taking an argument to @USER as the index number of the subroutine that you

want to branch to.

534 CHAPTER 11

Installing @USER Under Windows
When LINGO for Windows starts up, it searches for the DLL file called MYUSER.DLL. LINGO

searches for this file in your startup directory. The startup directory is the directory where you

installed the LINGO program. If LINGO finds MYUSER.DLL, it loads the DLL into memory and calls

the exported MYUSER routine every time a model references an @USER function.

On platforms other than Windows, you must link a compiled FORTRAN or C subroutine with the

LINGO libraries in order to provide a customized @USER function. Refer to the README file for

your version of LINGO for technical information on how to link your custom routines with LINGO.

In the following section, we illustrate the details of building such a DLL using Microsoft Visual C++.

Visual C++ Example
In this section, we will use Microsoft Visual C/C++ to create a 32-bit DLL that contains an @USER

function to perform the square root function. This is very easy to do if we make use of the AppWizard

in Visual C++ to build the base code for the DLL. Or, you will find the code for this example in the

USER\VC++ subdirectory off of your main LINGO directory. To build the base code, start the Visual

C++ Developer Studio and do the following:

1. Issue the File|New command.

2. You should now see a New dialog box. Select the Project Workspace

options and then click OK.

3. You will now see a New Project Workspace dialog box. Give the project the

name sqroot. In the Type box, select the MFC AppWizard (dll) option. Click

on the Create button.

4. A new MFC AppWizard dialog box should appear. Simply click on the

Finish button.

INTERFACING WITH OTHER APPLICATIONS 535

5. You should now see a New Project Information box containing a summary

of the options selected for your project that resembles:

Click the OK button to finish creating the base code for our DLL.

536 CHAPTER 11

Now, edit the SQROOT.CPP file and add the modifications listed below in bold:

// sqroot.cpp : Defines the initialization

// routines for the DLL.

//

#include "stdafx.h"

#include "sqroot.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

///

// CSqrootApp

BEGIN_MESSAGE_MAP(CSqrootApp, CWinApp)

 //{{AFX_MSG_MAP(CSqrootApp)

 //NOTE-the ClassWizard will add and

 // remove mapping macros here.

 // DO NOT EDIT what you see in these

 // blocks of generated code!

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

CSqrootApp::CSqrootApp()

{

// The constructor

 // Remove next line for a "quiet" version

 // of MyUser.DLL

 AfxMessageBox("@USER DLL installed");

}

CSqrootApp theApp;

#include <math.h>

extern "C" __declspec(dllexport)

 void MyUser(int* pnNumberOfArgs,

 double* pdArgs, double* dResult)

{

// This is an @USER routine callable by LINGO. In

// this particular case we simply take the

// square root of the first argument.

 *dResult = sqrt(*pdArgs);

}

File: SQROOT.CPP

INTERFACING WITH OTHER APPLICATIONS 537

You should now be able to build the DLL. When Visual C++ completes the build, copy the

SQROOT.DLL file to LINGO’s startup directory (the one where LINGO14.EXE or LINGO64-14.EXE

is located) and rename SQROOT.DLL to be MYUSER.DLL. Now, start LINGO and you should see the

following dialog box confirming the DLL was successfully loaded:

Input a small model to compute the square root of 9 and solve it to get the following results:

If you don’t have a copy of Visual C++, you may experiment with this @USER routine by copying the

DLL supplied with LINGO into your LINGO startup directory. You can find the SQROOT.DLL file in

the USER\VC++ subdirectory off the main LINGO directory.

539

12 Developing More
Advanced Models

In this chapter, we will walk through the development of models in a handful of different application

areas. The goal here is twofold. On the one hand, walking through a number of different models should

help hone your skills at building LINGO models. Secondly, by applying LINGO to an array of

different application areas, we hope to illustrate the potential benefits of mathematical modeling in

almost any business situation. Below is a list of the application areas we will be touching upon in this

chapter:

 Production Management

 Logistics

 Finance

 Queuing

 Marketing

The reader interested in additional examples of LINGO modeling should refer to Optimization

Modeling with LINGO, by Linus Schrage, published by LINDO Systems. This book contains an

exhaustive set of modeling examples from a wide array of application areas. In many cases, you should

be able to find a model that will suit your needs with only modest modifications. Interested readers

may also refer to Appendix A, Additional Examples of LINGO Modeling, to find additional samples of

LINGO models.

540 CHAPTER 12

Production Management Models
Blending Model Model Name: Blend

Background
In blending problems, two or more raw materials are to be blended into one or more finished goods

satisfying one or more quality requirements on the finished goods. Blending problems are of interest in

a number of different fields. Some examples include determining an optimal blend for animal feed,

finding the least costly mix of ores that produce an alloy with specified characteristics, or deciding on

the most efficient combination of advertising media purchases to reach target audience percentages.

The Problem in Words
As a production manager at a fuel processing plant, you would like to maximize profit from blending

the raw materials butane, catalytic reformate, and naphtha into the two finished products Regular and

Premium. These final products must satisfy quality requirements on octane, vapor pressure, and

volatility. Each raw material has a known limited availability and cost per unit. You know the

minimum required for each finished good, the maximum you will be able to sell, and the profit

contribution per unit.

The Model
MODEL:

 TITLE BLEND;

 SETS:

 !Each raw material has an availability

 and cost/unit;

 RAWMAT/ BUTANE, CATREF, NAPHTHA/: AVAIL, COST;

 !Each finished good has a min required,

 max sellable, selling price,

 and batch size to be determined;

 FINGOOD/ REGULAR, PREMIUM/:

 MINREQ, MAXSELL, PRICE, BATCH;

 !Here is the set of quality measures;

 QUALMES/ OCTANE, VAPOR, VOLATILITY/;

 !For each combo of raw material and

 quality measure there is a quality

 level;

 RXQ(RAWMAT, QUALMES): QLEVEL;

 !For each combination of quality

 measure and finished good there are

 upper and lower limits on quality,

 and a slack on upper quality to be

 determined;

 QXF(QUALMES, FINGOOD):

 QUP, QLOW, QSLACK;

Developing More Advanced Models 541

 !For each combination of raw material

 and finished good there is an amount

 of raw material used to be solved for;

 RXF(RAWMAT, FINGOOD): USED;

 ENDSETS

 DATA:

 !Raw material availability;

 AVAIL = 1000, 4000, 5000;

 !Raw material costs;

 COST = 7.3, 18.2, 12.5;

 !Quality parameters of raw

 materials;

 QLEVEL = 120, 60, 105,

 100, 2.6, 3,

 74, 4.1, 12;

 !Limits on finished goods;

 MINREQ = 4000, 2000;

 MAXSELL = 8000, 6000;

 !Finished goods prices;

 PRICE = 18.4, 22;

 !Upper and lower limits on

 quality for each finished good;

 QUP = 110, 110,

 11, 11,

 25, 25;

 QLOW = 90, 95,

 8, 8,

 17, 17;

 ENDDATA

 !Subject to raw material availability;

 @FOR(RAWMAT(R):

 [RMLIM] @SUM(FINGOOD(F): USED(R, F))

 <= AVAIL(R);

);

 @FOR(FINGOOD(F):

 !Batch size computation;

 [BATCOMP] BATCH(F) =

 @SUM(RAWMAT(R): USED(R, F));

 !Batch size limits;

 @BND(MINREQ, BATCH, MAXSELL);

 !Quality restrictions for each

 quality measure;

 @FOR(QUALMES(Q):

542 CHAPTER 12

 [QRESUP] @SUM(RAWMAT(R):

 QLEVEL(R, Q) * USED(R, F))

 + QSLACK(Q, F) = QUP(Q, F) *

 BATCH(F);

 [QRESDN] QSLACK(Q, F) <=

 (QUP(Q, F) - QLOW(Q, F)) *

 BATCH(F);

);

);

 ! We want to maximize the profit contribution;

 [OBJECTIVE] MAX =

 @SUM(FINGOOD: PRICE * BATCH) -

 @SUM(RAWMAT(R): COST(R) *

 @SUM(FINGOOD(F): USED(R, F)));

END

Model: BLEND

The Sets
We have three primitive sets in this model raw materials (RAWMAT), finished goods (FINGOOD),

and quality measures (QUALMES).

From these three primitive sets, we create three derived sets.

The first derived set, RXQ, is a dense derived set and is a cross on the raw materials set and the quality

measures set. We need this derived set in order to define an attribute to hold the quality values for the

raw materials.

The second derived set, QXF, is a cross on the quality measures and the finished goods. We need this

set because we will be concerned with the levels of the quality measures in the finished goods.

The final derived set, RXF, is a cross on the raw materials and finished goods. We need this set

because we need to compute the amount of raw material used in each finished good.

The Variables
The primary variable that drives this model is the amount of each raw material used in each finished

good (USED). We have also added two other variables for computation purposes. First, there is the

BATCH variable, which is used to compute the batch size of each finished good. There is also the

QSLACK variable, which computes the slack on the upper quality limit for each finished good and

each quality measure.

The Objective
The objective in this model is to maximize the total profit contribution. This is computed using the

following expression:

[OBJECTIVE] MAX =

 @SUM(FINGOOD: PRICE * BATCH) -

 @SUM(RAWMAT(R): COST(R) *

 @SUM(FINGOOD(F): USED(R, F)));

Developing More Advanced Models 543

Total profit, of course, is total revenue minus total expenses. Total revenue is the sum over the finished

goods of the price of each finished good multiplied by the batch size of each finished good, or, in

LINGO syntax:

@SUM(FINGOOD: PRICE * BATCH)

Total expenses are computed by taking the sum over the raw materials of the price of the raw material

multiplied by the amount of each raw material used. This is computed with the expression:

@SUM(RAWMAT(R): COST(R) *

 @SUM(FINGOOD(F): USED(R, F))

The Constraints
There are four sets of constraints in this model. Two of them are merely computational.

This first computational set of constraints computes the batch size of each finished good with the

following expression:

!Batch size computation;

 [BATCOMP] BATCH(F) =

 @SUM(RAWMAT(R): USED(R, F));

In words, the batch size of finished good F is the sum of all the raw materials used in the production of

the finished good.

The second set of computational constraints computes the slack on the upper quality limit for each

finished good and each quality measure as follows:

[QRESUP] @SUM(RAWMAT(R):

 QLEVEL(R, Q) * USED(R, F))

 + QSLACK(Q, F) = QUP(Q, F) *

 BATCH(F);

In words, the actual quality level plus the slack on the upper quality level is equal to the upper quality

level.

The first true constraint is on the finished products’ batch sizes, which must fall within minimum and

maximum levels. We use the @BND function to set this up as follows:

!Batch size limits;

@BND(MINREQ, BATCH, MAXSELL);

Note that we could have entered explicit constraints for the batch size limits, but the @BND function is

more efficient at handling simple bounds on variables.

The final constraint forces the quality level of each finished good for each quality measure to fall

within specifications. We do this with the following:

[QRESDN] QSLACK(Q, F) <=

 (QUP(Q, F) - QLOW(Q, F)) *

 BATCH(F);

In words, the slack must be less than the difference between the upper limit and the lower limit. If this

were not true, quality would be beneath the lower limit. The fact that the slack variable cannot be

negative guarantees we won’t exceed the quality limit.

544 CHAPTER 12

The Solution
Rounding all solution values to the nearest whole integer, total profit is $44,905 with batch sizes of

4,000 Regular and 4,095 Premium. The following matrix shows the recommended quantities of each

raw material to use in the Regular and Premium blends:

Raw Material Regular Premium

Butane 534 466

Catalytic Reformate 1,516 2,484

Naphtha 1,950 1,146

Developing More Advanced Models 545

Material Requirements Planning Model: MRP

Background
Material Requirements Planning, or MRP, is used to generate production schedules for the

manufacture of complex products. MRP uses the demand schedule for a finished product, the lead

times to produce the finished product, and all the various subcomponents that go into the finished

product to work backwards and develop a detailed just-in-time production schedule that meets the

demand schedule.

MRP’s main focus is finding a feasible just-in-time production schedule to meet demand. MRP does

not, however, attempt to optimize the production schedule to minimize total production costs. In many

cases, the problems solved by MRP are so complex optimization would be prohibitive.

The Problem in Words
Suppose you are a manufacturer of human powered vehicles. You have a given schedule of demands

for finished products over time. You need to know when and how many of each component,

subcomponent, etc. is needed to meet demand.

Your final products are as follows:

1. Unicycles, made from a seat and a wheel,

2. Bicycles, made from a seat, two wheels, and a chain,

3. Tandems (bicycles built for two), made from two seats, two wheels, and

two chains.

Each product is assembled from a set of components. Each component in turn may be assembled from

other subcomponents. For simplicity and generality, we will refer to all products, components, and

subcomponents as parts.

The subcomponents are as follows:

1. Seats,

2. Wheels, made from a hub and 36 spokes,

3. Chains, made from 84 links,

4. Hubs,

5. Spokes, and

6. Links.

It takes a certain amount of time, called the lead-time, to produce each batch of parts. The component

parts for each part must be on hand when you begin production of a part.

The sales department has estimated demand for two months (eight weeks) in the future. According to

their findings, there will be a demand for 10 unicycles in week eight, and 20 bicycles and 20 tandems

in week nine.

546 CHAPTER 12

The Model
MODEL:

! Data for this model is read from MRP.LDT;

SETS:

! The set of parts;

 PART: LT;

 ! LT(i) = Lead time to produce part i;

! The set of time periods;

 TIME;

! A relationship called USES between pairs of parts;

 USES(PART, PART): NEEDS;

 ! Parent part i needs NEEDS(i, j) units of

 child part j;

! For each part and time period we're interested in;

 PXT(PART, TIME): ED, TD;

 ! ED(i, j) = External demand for part i at time j;

 ! TD(i, j) = Total demand for part i at time j;

ENDSETS

DATA:

! Load the data from an external file;

 ! Parts list;

 PART = @FILE('MRP.LDT');

 ! Time periods;

 TIME = @FILE('MRP.LDT');

 ! Get the parent child relations and the

 number of parts required;

 USES, NEEDS = @FILE('MRP.LDT');

! Get the lead times from the file;

 LT = @FILE('MRP.LDT');

! Get the external demands

 over time for each part;

 ED = @FILE('MRP.LDT');

ENDDATA

! Set NP = no. of time periods in the problem;

 NP = @SIZE(TIME);

! For each part P and period T, the total demand =

Developing More Advanced Models 547

 external demand + demand generated by parents

 one lead time in the future;

 @FOR(PXT(P, T) | T + LT(P) #LE# NP :

 TD(P, T) = ED(P, T + LT(P)) +

 @SUM(USES(P2, P): TD(P2, T + LT(P)) *

 NEEDS(P2, P));

);

DATA:

! Display a table showing the production schedule;

 @TEXT() = ' The production schedule:';

 @TEXT() = @TABLE(TD);

ENDDATA

END

Model: MRP

The Data
An interesting feature of this model is all of the data is imported from an external text file using the

@FILE function (for more information on @FILE, see Chapter 8, Interfacing with External Files).

More specifically, @FILE reads all the data from a single file, MRP.LDT, that is pictured below:

! Parts list;

 U, ! Unicycles;

 B, ! Bicycles;

 T, ! Tandems;

 S, ! Seats;

 W, ! Wheels;

 C, ! Chains;

 H, ! Hubs;

 P, ! sPokes;

 L~ ! Links;

! The set of periods;

 1..9 ~

! The parent-child use relationships

 (i.e., Unicycles use Seats, etc.)

 The number of child parts required

 in each parent- child relationship,

 respectively (i.e, Unicycles use 1

 Seat, Wheels use 36 sPokes, etc.);

U S 1, U W 1, B S 1, B W 2, B C 1,

T S 2, T W 2, T C 2, W H 1, W P 36,

C L 84~

! The lead times for each part;

 1, 2, 1, 1, 3, 1, 1, 2, 2~

548 CHAPTER 12

! The external demands or master schedule;

! Time period;

! 1 2 3 4 5 6 7 8 9;

 ! U; 0, 0, 0, 0, 0, 0, 0,10, 0,

 ! B; 0, 0, 0, 0, 0, 0, 0, 0,20,

 ! T; 0, 0, 0, 0, 0, 0, 0, 0,20,

 ! S; 0, 0, 0, 0, 0, 0, 0, 0, 0,

 ! W; 0, 0, 0, 0, 0, 0, 0, 0, 0,

 ! C; 0, 0, 0, 0, 0, 0, 0, 0, 0,

 ! H; 0, 0, 0, 0, 0, 0, 0, 0, 0,

 ! P; 0, 0, 0, 0, 0, 0, 0, 0, 0,

 ! L; 0, 0, 0, 0, 0, 0, 0, 0, 0

File: MRP.LDT

You will recall the tilde (~) is LINGO’s end-of-record mark. Whenever a tilde is encountered in a data

file, LINGO stops reading input from the data file and begins reading where it left off in the model

file.

The Sets
We have two primitive sets in this modelthe component parts (PARTS) and the time periods (TIME).

From these two primitive sets, we create two derived sets.

The first derived set, USES, is a sparse set derived from the cross of the PARTS set on itself. We use

this set to construct a data table, or input-output matrix (NEEDS), containing the parts usage data,

which tells us how many of each of the other parts are required to produce a given part. The set is

sparse because not all parts are required in the production of certain other parts (e.g., chains are not

required to produce a spoke).

The other derived set, PXT, is a dense set formed from the cross on the parts and time periods sets. We

need this set because we will be concerned with the demand for each part in each period and the

amount of each part to begin producing in each period.

The Variables
The only unknown in this model is the total demand (TD) attribute, where TD(p, t) is the total demand

for product p in period t. Total demand stems from two sources—external demand (ED) from

customers and internal demand for production requirements. We compute TD by incorporating the

part’s lead time. Thus, when TD is nonzero in a period, production must begin in that period.

The Formulas
The key computation in this model is:

! For each part P and period T, the total demand =

 external demand + demand generated by parents

 one lead time in the future;

 @FOR(PXT(P, T) | T + LT(P) #LE# NP:

 TD(P, T) = ED(P, T + LT(P)) +

 @SUM(USES(P2, P): TD(P2, T + LT(P)) *

 NEEDS(P2, P));

);

Developing More Advanced Models 549

For each part in each time period, the amount of that part we must begin producing in the period is the

amount we will need one lead time away to satisfy 1) external demand, and 2) internal production

requirements. The subexpression that gives external demand is simply:

ED(P, T + LT(P))

The remainder of the expression:

@SUM(USES(P2, P): TD(P2, T + LT(P)) *

 NEEDS(P2, P));

sums up the amount of the part needed for internal production of all other parts one lead time away.

Note, we place a logical condition on the outer @FOR loop in this calculation (shown here in bold):

@FOR(PXT(P, T) | T + LT(P) #LE# NP:

Without this condition, the calculation would extend beyond the final period in the TIME set.

The Solution
Solving the model, we get the following nonzero values for TD:

 Variable Value

 TD(U, 7) 10.00000

 TD(B, 7) 20.00000

 TD(T, 8) 20.00000

 TD(S, 6) 30.00000

 TD(S, 7) 40.00000

 TD(W, 4) 50.00000

 TD(W, 5) 40.00000

 TD(C, 6) 20.00000

 TD(C, 7) 40.00000

 TD(H, 3) 50.00000

 TD(H, 4) 40.00000

 TD(P, 2) 1800.000

 TD(P, 3) 1440.000

 TD(L, 4) 1680.000

 TD(L, 5) 3360.000

Solution: MRP

550 CHAPTER 12

Putting this solution in tabular form, we get the following production schedule:

 2 3 4 5 6 7 8

Unicycles 10

Bicycles 20

Tandems 20

Seats 30 40

Wheels 50 40

Chains 20 40

Hubs 50 40

Spokes 1,800 1,440

Links 1,680 3,360

MRP Production Schedule

Note the use of the @TABLE output function in the data section at the end of the model that displays

the TD attribute in table form similar to the table above:

 The production schedule:

 1 2 3 4 5 6 7 8 9

 U 0 0 0 0 0 0 10 0 0

 B 0 0 0 0 0 0 20 0 0

 T 0 0 0 0 0 0 0 20 0

 S 0 0 0 0 0 30 40 0 0

 W 0 0 0 50 40 0 0 0 0

 C 0 0 0 0 0 20 40 0 0

 H 0 0 50 40 0 0 0 0 0

 P 0 1800 1440 0 0 0 0 0 0

 L 0 0 0 1680 3360 0 0 0 0

Developing More Advanced Models 551

Assembly Line Balancing Model: ASLBAL

Background
In the assembly line balancing problem, tasks are assigned to workstations on an assembly line, so the

line’s cycle time is minimized. An assembly line consists of a series of workstations, which each

perform one or more specialized tasks in the manufacture of a final product. The cycle time is the

maximum time it takes any workstation to complete its assigned tasks. The goal in balancing an

assembly line is to assign tasks to stations, so equal amounts of work are performed at each station.

Improperly balanced assembly lines will experience bottlenecksworkstations with less work are

forced to wait on preceding stations that have more work assigned.

The problem is complicated further by precedence relations amongst the tasks, where some tasks must

be completed before others may begin (e.g., when building a computer, installing the disk drives must

precede putting on the outer casing). The assignment of tasks to workstations must obey the

precedence relations.

The Problem in Words
For our example, we have eleven tasks (A through K) to assign to four stations (1 through 4). The task

precedence diagram looks like this:

 A B C

 D E

 F

 G

 H

 I

 J K

The times to complete the various tasks are given in the table below:

Task: A B C D E F G H I J K

Minutes: 45 11 9 50 15 12 12 12 12 8 9

We need to find an assignment of tasks to workstations that minimize the assembly line's cycle time.

552 CHAPTER 12

The Model
MODEL:

 ! Assembly line balancing model;

 !This model involves assigning tasks to stations in an

 assembly line so bottlenecks are avoided. Ideally, each

 station would be assigned an equal amount of work.;

 SETS:

 ! The set of tasks to be assigned are A through

 K, and each task has a time to complete, T;

 TASK/ A B C D E F G H I J K/: T;

 ! Some predecessor,successor pairings must be

 observed(e.g. A must be done before B, B

 before C, etc.);

 PRED(TASK, TASK)/ A,B B,C C,F C,G F,J G,J

 J,K D,E E,H E,I H,J I,J /;

 ! There are 4 workstations;

 STATION/1..4/;

 TXS(TASK, STATION): X;

 ! X is the attribute from the derived set TXS

 that represents the assignment. X(I,K) = 1

 if task I is assigned to station K;

 ENDSETS

 DATA:

 ! Data taken from Chase and Aquilano, POM;

 ! There is an estimated time required for each

 task:

 A B C D E F G H I J K;

 T = 45 11 9 50 15 12 12 12 12 8 9;

 ENDDATA

 ! The model;

 ! *Warning* may be slow for more than 15 tasks;

 ! For each task, there must be one assigned station;

 @FOR(TASK(I): @SUM(STATION(K): X(I, K)) = 1);

 ! Precedence constraints;

 ! For each precedence pair, the predecessor task

 I cannot be assigned to a later station than

 its successor task J;

 @FOR(PRED(I, J):

 @SUM(STATION(K):

 K * X(J, K) - K * X(I, K)) >= 0);

Developing More Advanced Models 553

 ! For each station, the total time for the assigned tasks must

 less than the maximum cycle time, CYCTIME;

 @FOR(STATION(K):

 @SUM(TXS(I, K): T(I) * X(I, K)) <= CYCTIME);

 ! Minimize the maximum cycle time;

 MIN = CYCTIME;

 ! The X(I,J) assignment variables are

 binary integers;

 @FOR(TXS: @BIN(X));

END

Model: ASLBAL

The Sets
We have two primitive sets in this modelthe tasks (TASK) and the workstations (STATION). From

these two primitive sets, we create two derived sets.

The first derived set, PRED, is a sparse derived set and is based on a cross of the TASK set on itself.

The members of this set are the precedence relations amongst the tasks. For instance, the first member

of this set is the pair (A,B), indicating task A must precede task B.

The other derived set, TXS, is a dense derived set formed by taking the cross of the task set on the

workstation set. We need this set because we will be determining what tasks get assigned to what

workstations.

The Variables
The decision variables in this model are the members of the X attribute that is defined in the TXS set.

X(t, s) is a binary variable that is 1 if task t is assigned to station s, otherwise 0. The X attribute is

forced to being binary in the expression:

! The X(I,J) assignment variables are

 binary integers;

 @FOR(TXS: @BIN(X));

We also introduce the scalar variable, CYCTIME, to represent the entire assembly line’s cycle time,

which is computed by taking the maximum cycle time over the workstations.

The Objective
The objective in this model is simply to minimize total cycle time for the line and is given as:

! Minimize the maximum cycle time;

MIN = CYCTIME;

554 CHAPTER 12

The Constraints
We have the following three types of constraints in this model:

1. each task must be assigned to one station,

2. precedence relations must be observed amongst the tasks, and

3. the line cycle time variable, CYCTIME, must be greater-than-or-equal-to the

actual cycle time.

The following expression sums up the assignment variable for each task, and sets the sum to equal 1:

! For each task, there must be one assigned station;

 @FOR(TASK(I): @SUM(STATION(K): X(I, K)) = 1);

This forces each task to be assigned to a single station.

We use the following expression to enforce the precedence relationships amongst the tasks:

! Precedence constraints;

 ! For each precedence pair, the predecessor task

 I cannot be assigned to a later station than its

 successor task J;

 @FOR(PRED(I, J):

 @SUM(STATION(K):

 K * X(J, K) - K * X(I, K)) >= 0);

Suppose task I is a predecessor to task J. If I were incorrectly assigned to a workstation later than J, the

sum of the terms K * X(I, K) would exceed the sum of the terms K * X(J, K) and the constraint would

be violated. Thus, this constraint effectively enforces the predecessor relations.

We restrain the cycle time using the following constraints:

! For each station, the total time for the

 assigned tasks must be less than the maximum

 cycle time, CYCTIME;

 @FOR(STATION(K):

 @SUM(TXS(I, K): T(I) * X(I, K)) <= CYCTIME);

The quantity:

@SUM(TXS(I, K): T(I) * X(I, K))

in this constraint computes the cycle time for station K. We use the @FOR statement to make the

CYCTIME variable greater-than-or-equal-to the cycle times for all the workstations. If we couple this

with the fact that we are minimizing CYCTIME in the objective, CYCTIME will be “squeezed” into

exactly equaling the maximum of the cycle times for the workstations.

By “squeezing” CYCTIME to the correct value, we avoid using the @MAX function. Had the @MAX

function been used, LINGO would have had to resort to its nonlinear solver to handle the piecewise

linear @MAX. Avoiding nonlinear models whenever possible is a critical modeling practice.

Developing More Advanced Models 555

The Solution
Solving the model, we get the following nonzero values for the assignment X variable:

Variable Value

 X(A, 2) 1.000000

 X(B, 3) 1.000000

 X(C, 4) 1.000000

 X(D, 1) 1.000000

 X(E, 3) 1.000000

 X(F, 4) 1.000000

 X(G, 4) 1.000000

 X(H, 3) 1.000000

 X(I, 3) 1.000000

 X(J, 4) 1.000000

 X(K, 4) 1.000000

Solution: ASLBAL

Summarizing this solution, we have:

Workstation Assigned Tasks Cycle Time

1 D 50

2 A 45

3 B, E, H, I 50

4 C, F, G, J, K 50

The cycle time for the entire line is 50 minutesthe maximum of the cycle times across all the

workstations. We have a well-balanced line in that only workstation 2 has slack time totaling 5

minutes.

556 CHAPTER 12

Logistics Models
Capacitated Plant Location Model: CAPLOC

Background
The capacitated plant location model is a generalization of the transportation model we introduced in

Chapter 1, Getting Started with LINGO. The capacitated plant location problem allows greater latitude

of decision making in that the points of origin (plant locations) are variable. Manufacturers and

wholesale businesses are likely to encounter problems of this sort in matching existing customer

demand to product availability and minimizing transportation costs.

The Problem in Words
Your firm has a choice of three locations to operate a manufacturing facility in. Four customers exist

with a known demand for your product. Each potential plant location has an associated monthly

operating cost, and shipping routes to the demand cities have varying costs. In addition, each potential

plant will have a shipping capacity that must not be exceeded. You need to determine what plant(s) to

open and how much of a product to send from each open plant to each customer to minimize total

shipping costs and fixed plant operating costs.

The Model
MODEL:

! Capacitated Plant Location Problem;

 SETS:

 PLANTS: FCOST, CAP, OPEN;

 CUSTOMERS: DEM;

 ARCS(PLANTS, CUSTOMERS) : COST, VOL;

 ENDSETS

DATA:

 ! The plant, their fixed costs

 and capacity;

 PLANTS, FCOST, CAP =

 P1 91 39

 P2 70 35

 P3 24 31;

 ! Customers and their demands;

 CUSTOMERS, DEM =

 C1 15

 C2 17

 C3 22

 C4 12;

 ! The plant to cust cost/unit

 shipment matrix;

 COST = 6 2 6 7

 4 9 5 3

 8 8 1 5;

Developing More Advanced Models 557

 ENDDATA

 ! The objective;

 [TTL_COST] MIN = @SUM(ARCS: COST * VOL) +

 @SUM(PLANTS: FCOST * OPEN);

 ! The demand constraints;

 @FOR(CUSTOMERS(J): [DEMAND]

 @SUM(PLANTS(I): VOL(I, J)) >= DEM(J)

);

 ! The supply constraints;

 @FOR(PLANTS(I): [SUPPLY]

 @SUM(CUSTOMERS(J): VOL(I, J)) <=

 CAP(I) * OPEN(I)

);

 ! Make OPEN binary(0/1);

 @FOR(PLANTS: @BIN(OPEN));

 END

Model: CAPLOC

The Sets
We have two primitive sets in this modelthe plants (PLANTS) and the customers (CUSTOMERS).

From these two primitive sets, we create a dense derived set, ARCS, which is the cross of the plants

and customers sets. We use this set to represent the shipping arcs between the plants and customers.

The Variables
There are two sets of decision variables in this model. The VOL attribute, defined on the ARCS set,

represents the shipment volume from the plants to the customers along each arc. The OPEN attribute,

defined on the PLANTS set, is used to represent the plants that are open. Specifically, OPEN(p) is 1 if

plant p is opened, else it is 0. The members of the OPEN attribute are set to being binary using the

expression:

! Make OPEN binary(0/1);

 @FOR(PLANTS: @BIN(OPEN));

The Objective
The objective in this model is to minimize total costs, which is the sum of the shipping costs and fixed

plant costs. This is computed using the following expression:

! The objective;

 [TTL_COST] MIN = @SUM(ARCS: COST * VOL) +

 @SUM(PLANTS: FCOST * OPEN);

558 CHAPTER 12

The shipping cost component of the objective is computed with:

@SUM(ARCS: COST * VOL)

while the fixed plant costs component is given by:

@SUM(PLANTS: FCOST * OPEN)

The Constraints
There are two sets of constraints in the model:

1. each customer must be sent enough product to satisfy demand, and

2. each plant can’t supply more than its capacity.

The following expression guarantees each customer receives the quantity of product demanded:

! The demand constraints;

 @FOR(CUSTOMERS(J): [DEMAND]

 @SUM(PLANTS(I): VOL(I, J)) >= DEM(J)

);

For each customer, we sum the amount being shipped to that customer and set it to be

greater-than-or-equal-to the customer’s demand.

To limit shipments from a plant to the plant’s capacity, we use:

! The supply constraints;

 @FOR(PLANTS(I): [SUPPLY]

 @SUM(CUSTOMERS(J): VOL(I, J)) <=

 CAP(I) * OPEN(I)

);

For each plant, we sum up the amount being shipped from the plant and set this quantity to be

less-than-or-equal-to the plant’s capacity multiplied by the plant’s 0/1 OPEN indicator. Note that, in

order for the plant to be able to ship any quantity of product, the OPEN binary variable will be forced

to 1 by these constraints.

Developing More Advanced Models 559

The Solution
Solving the model, we get the following solution:

 Global optimal solution found.

 Objective value: 327.0000

 Extended solver steps: 4

 Total solver iterations: 25

 Variable Value

 OPEN(P1) 1.000000

 OPEN(P3) 1.000000

 VOL(P1, C1) 15.00000

 VOL(P1, C2) 17.00000

 VOL(P1, C4) 3.000000

 VOL(P3, C3) 22.00000

 VOL(P3, C4) 9.000000

Total costs are minimized at 327 by opening plants 1 and 3. From plant 1, we ship 15, 17, and 3 units

respectively to customers 1, 2, and 4. From plant 3, we ship 22 units to customer 3, and 9 units to

customer 4.

560 CHAPTER 12

Shortest Route Problem Model: DYNAMB

Background
In the shortest route problem, we want to find the shortest distance from point A to point B in a

network.

We will use an approach called dynamic programming (DP) to solve this problem. Dynamic

programming involves breaking a large, difficult problem up into a series of smaller, more manageable

problems. By solving the series of smaller problems, we are able to construct the solution to the initial

large problem. Typically, the most difficult aspect of DP is not the mathematics involved in solving the

smaller subproblems, but coming up with a scheme, or recursion, for decomposing the problem.

To find the distance of the shortest path through the network, we will use the following DP recursion:

F(i) = min [D(i, j) + F(j)]

 j

where F(i) is the minimal travel distance from point i to the final destination point, and D(i, j) is the

distance from point i to point j. In words, the minimal distance from node i to the terminal node is the

minimum over all points reachable along a single arc from i of the sum of the distance from i to the

adjoining node plus the minimal distance from the adjoining node to the terminal node.

The Problem in Words
Suppose we have the following network of cities:

1 10

9

8

7

6

5

4

3

2

Links are assumed to be one-way. The distances between the cities are given to us. We want to

determine the shortest distance between cities 1 and 10.

Developing More Advanced Models 561

The Model
SETS:

 ! Dynamic programming illustration (see

 Anderson, Sweeney & Williams, An Intro to Mgt

 Science, 6th Ed.). We have a network of 10

 cities. We want to find the length of the

 shortest route from city 1 to city 10.;

 ! Here is our primitive set of ten cities,

 where F(i) represents the shortest path

 distance from city i to the last city;

 CITIES /1..10/: F;

 ! The derived set ROADS lists the roads that

 exist between the cities (note: not all city

 pairs are directly linked by a road, and

 roads are assumed to be one way.);

 ROADS(CITIES, CITIES)/

 1,2 1,3 1,4

 2,5 2,6 2,7

 3,5 3,6 3,7

 4,5 4,6

 5,8 5,9

 6,8 6,9

 7,8 7,9

 8,10

 9,10/: D;

 ! D(i, j) is the distance from city i to j;

ENDSETS

DATA:

 ! Here are the distances that correspond to the

 above links;

 D =

 1 5 2

 13 12 11

 6 10 4

 12 14

 3 9

 6 5

 8 10

 5

 2;

ENDDATA

! If you are already in City 10, then the cost

 to travel to City 10 is 0;

 F(@SIZE(CITIES)) = 0;

! The following is the classic dynamic

 programming recursion. In words, the shortest

 distance from City i to City 10 is the minimum

 over all cities j reachable from i of the sum

 of the distance from i to j plus the minimal

562 CHAPTER 12

 distance from j to City 10;

 @FOR(CITIES(i)| i #LT# @SIZE(CITIES):

 F(i) = @MIN(ROADS(i, j): D(i, j) + F(j))

);

Model: DYNAMB

The Sets
We have the single primitive set, CITIES, which corresponds to the cities in the network. From this

primitive set, we form a single derived set, ROADS, to represent the links between the cities. We

specify the members of this set. Thus, ROADS is a sparse derived set.

The Variables
The F attribute defined on the CITIES set is used to store the distance from each city to the destination

city.

The Formulas
The recursion, discussed above, is entered in LINGO with the following statement:

@FOR(CITIES(i)| i #LT# @SIZE(CITIES):

 F(i) = @MIN(ROADS(i, j): D(i, j) + F(j))

);

The Solution
Solving the model, we get the following values for F:

Variable Value

 F(1) 19.00000

 F(2) 19.00000

 F(3) 14.00000

 F(4) 20.00000

 F(5) 8.000000

 F(6) 7.000000

 F(7) 12.00000

 F(8) 5.000000

 F(9) 2.000000

 F(10) 0.000000

F(1), the shortest distance from city 1 to city 10, gives us the distance of the shortest path of 19. For

the curious reader, this distance corresponds to the path 135810. Refer to model

DYNAMB2.LG4 to see how to extend this model to compute the actual path as well as its distance.

Developing More Advanced Models 563

Financial Models
Markowitz Portfolio Selection Model: GENPRT

Background
In the March, 1952 issue of Journal of Finance, Harry M. Markowitz published an article titled

Portfolio Selection. In the article, he demonstrates how to reduce the risk of asset portfolios by

selecting assets whose values aren’t highly correlated. At the same time, he laid down some basic

principles for establishing an advantageous relationship between risk and return. This has come to be

known as diversification of assets. In other words, don’t put all your eggs in one basket.

A key to understanding the Markowitz model is to be comfortable with the statistic known as the

variance of a portfolio. Mathematically, the variance of a portfolio is:

i

j
 X

i
 X

j

i,j

where,

X
i
 is the fraction of the portfolio invested in asset i,

i,j
 for ij: the covariance of asset i with asset j, and

 for i=j: the variance of asset i.

Variance is a measure of the expected fluctuation in return—the higher the variance, the riskier the

investment. The covariance is a measure of the correlation of return fluctuations of one stock with the

fluctuations of another. High covariance indicates an increase in one stock’s return is likely to

correspond to an increase in the other. A covariance close to zero means the return rates are relatively

independent. A negative covariance means that an increase in one stock’s return is likely to correspond

to a decrease in the other.

The Markowitz model seeks to minimize a portfolio’s variance, while meeting a desired level of

overall expected return.

The Problem in Words
You’re considering investing in three stocks. From historical data, you have calculated an expected

return, the variance of the return rate, and the covariance of the return between the different stocks.

You want to reduce variability, or risk, by spreading your investment wisely amongst the three stocks.

You have a target growth rate of 12%. As an additional safety feature, you decide to invest no more

than 75% in any single asset. What percentages of your funds should you invest in the three stocks to

achieve this target and minimize the risk of the portfolio?

564 CHAPTER 12

The Model

! GENPRT: Generic Markowitz portfolio;

 SETS:

 ASSET/1..3/: RATE, UB, X;

 COVMAT(ASSET, ASSET): V;

 ENDSETS

 DATA:

! The data;

! Expected growth rate of each asset;

 RATE = 1.3 1.2 1.08;

! Upper bound on investment in each;

 UB = .75 .75 .75;

! Covariance matrix;

 V = 3 1 -.5

 1 2 -.4

 -.5 -.4 1;

! Desired growth rate of portfolio;

 GROWTH = 1.12;

ENDDATA

! The model;

! Min the variance;

 [VAR] MIN = @SUM(COVMAT(I, J):

 V(I, J) * X(I) * X(J));

! Must be fully invested;

 [FULL] @SUM(ASSET: X) = 1;

! Upper bounds on each;

 @FOR(ASSET: @BND(0, X, UB));

! Desired value or return after 1 period;

 [RET] @SUM(ASSET: RATE * X) >= GROWTH;

Model: GENPRT

The Sets
We define a single primitive set, ASSETS, corresponding to the three stocks in the model. From the

ASSETS set, we derive the dense set named COVMAT, which is the cross of the ASSETS set on itself.

We use the COVMAT set for defining the covariance matrix.

The Attributes
We define four attributes in this model.

The RATE, UB and V attributes are for storing data. RATE stores the expected return for each asset, UB

stores the upper bound on the fraction of the asset allowed in the portfolio, and V stores the covariance

matrix. (Note the covariance matrix is symmetric and larger portfolio models would benefit from

storing just half of the matrix, rather than the entire matrix as we have done here for simplicity

reasons.)

Developing More Advanced Models 565

The final attribute, X, constitutes the decision variables for the model. Specifically, X(i) is the fraction

of the portfolio devoted to asset i.

The Objective
The objective in this model is to minimize the portfolio’s risk. As we mentioned above, we use the

portfolio’s variance as a measure of risk in the following expression:

! Min the variance;

 [VAR] MIN = @SUM(COVMAT(I, J):

 V(I, J) * X(I) * X(J));

The Constraints
There are three forms of constraints in the model:

1. we must be fully invested,

2. we can’t invest too much in any one asset, and

3. expected return should meet, or exceed, our threshold level of 12%.

The following expression enforces the 100% investment requirement:

! Must be fully invested;

 [FULL] @SUM(ASSET: X) = 1;

In words, the sum of all the weights of all the assets in the portfolio must equal 1. Without this

constraint, LINGO will tend to under invest in order to get a lower variance. You can confirm this by

dropping the constraint and running the model.

To keep the solution from investing too much in any one asset, we use the @BND function:

! Upper bounds on each;

 @FOR(ASSET: @BND(0, X, UB));

As you recall, the @BND function is the most efficient method for placing simple bounds on variables.

We constrain the portfolio’s expected return to be greater-than-or-equal-to our target with the

expression:

! Desired value or return after 1 period;

 [RET] @SUM(ASSET: RATE * X) >= GROWTH;

The left-hand side of this expression is the expected rate of return, and is the sum of the fractions

invested in each asset weighted by each asset’s return.

566 CHAPTER 12

The Solution
Solving the model, we get the following solution:

 Local optimal solution found.
 Objective value: 0.4173749

 Total solver iterations: 13

 Variable Value

 X(1) 0.1548631

 X(2) 0.2502361

 X(3) 0.5949008

 Row Slack or Surplus

 VAR 0.4173749

 FULL 0.0000000

 RET 0.2409821E-01

Solution: GENPRT

Total variance is minimized at .4174 when we put 15.5% in asset 1, 25% in asset 2, and 59.5% in asset

3.

Developing More Advanced Models 567

Scenario Portfolio Selection Model: PRTSCEN

Background
Scenarios are outcomes of events with an influence on the return of a portfolio. Examples might

include an increase in interest rates, war in the Middle East, etc. In the scenario-based approach to

portfolio selection, the modeler comes up with a set of scenarios, each with a certain probability of

occurring during the period of interest. Given this set of scenarios and their probabilities, the goal is to

select a portfolio that minimizes risk, while meeting a target return level.

In the Markowitz portfolio model, presented above, we used a portfolio’s variance as a measure of

risk. As one might imagine, variance is not the only possible measure of risk. Variance is a measure of

the fluctuation of return above and below its average. As a statistic, variance weights a scenario that

returns 20% above average the same as a scenario that returns 20% below average. If you’re like most

investors, you’re probably more worried about the risk that return will be below average. In our

scenario-based model, we will expand our options by including two new measures of risk that focus on

returns below the target level—downside risk and semi-variance risk.

Both semi-variance and downside risk only consider the option that returns will be below the target.

Downside risk is a measure of the expected difference between the target and returns below the target,

while semi-variance is a measure of the squared expected difference between the target and returns

below the target. Therefore, semi-variance puts a relatively higher weight on larger shortfalls.

The Problem in Words
Again, you are considering investing in three stocks (ATT, GM, and USX). You have determined there

are 12 equally likely scenarios in the forthcoming period. You have come up with predicted rates of

return for the stocks under the twelve scenarios. You have a target growth rate of 15% for your

portfolio. Your goal is to construct optimal portfolios that minimize expected risk while meeting the

expected level of return using three different risk measures—variance, downside, and semi-variance.

The Model
! Scenario portfolio model;

SETS:

 SCENE/1..12/: PRB, R, DVU, DVL;

 STOCKS/ ATT, GMT, USX/: X;

 SXI(SCENE, STOCKS): VE;

ENDSETS

DATA:

 TARGET = 1.15;

! Data based on original Markowitz example;

 VE =

 1.300 1.225 1.149

 1.103 1.290 1.260

 1.216 1.216 1.419

 0.954 0.728 0.922

 0.929 1.144 1.169

 1.056 1.107 0.965

568 CHAPTER 12

 1.038 1.321 1.133

 1.089 1.305 1.732

 1.090 1.195 1.021

 1.083 1.390 1.131

 1.035 0.928 1.006

 1.176 1.715 1.908;

! All scenarios happen to be equally likely;

 PRB= .08333;

ENDDATA

! Compute expected value of ending position;

 AVG = @SUM(SCENE: PRB * R);

! Target ending value;

 AVG >= TARGET;

 @FOR(SCENE(S):

! Compute value under each scenario;

 R(S) = @SUM(STOCKS(J): VE(S, J) * X(J));

! Measure deviations from average;

 DVU(S) - DVL(S) = R(S) - AVG

);

! Budget;

 @SUM(STOCKS: X) = 1;

! Our three measures of risk;

 [VARI] VAR = @SUM(SCENE: PRB * (DVU+DVL)^2);

 [SEMI] SEMIVAR = @SUM(SCENE: PRB * (DVL) ^2);

 [DOWN] DNRISK = @SUM(SCENE: PRB * DVL);

! Set objective to VAR, SEMIVAR, or DNRISK;

 [OBJ] MIN = VAR;

Model: PRTSCEN

The Sets
We define two primitive setsSCENE and STOCKS. The SCENE set corresponds to the set of 12

scenarios, while STOCKS is the set of three candidate stocks. We form a single dense derived set,

STXSC, which is the cross of these two sets. We need the STXSC set in order to establish the table of

returns for each stock under each scenario.

The Attributes
We define four attributes on the scenarios setPRB, R, DVU, and DVL. PRB stores the probabilities

of the scenarios. R is the expected rate of return under each scenario for a given allocation amongst the

stocks. DVU is the deviation above average return for each scenario for a given stock allocation.

Finally, DVL is the deviation below average return for each scenario for a given stock allocation.

The X attribute is defined on the stocks set. X denotes the fraction of the portfolio allocated to each

stock. The members of X must be determined and constitute the decision variables of the model.

Developing More Advanced Models 569

Finally, on the SXI set, we define the VE attribute, which stores the table containing the returns of each

stock under each scenario.

The Objective
Once again, the objective in this model is to minimize the portfolio’s risk. The default version of the

objective minimizes variance as follows:

! Set objective to VAR, SEMIVAR, or DNRISK;

 [OBJ] MIN = VAR;

To solve using the other two measures of risk, simply change the name of the variable from VAR to

either SEMIVAR or DNRISK.

The Formulas
There are six categories of formulas in this model:

1. computing the expected rate of return (AVG),

2. constraining the expected rate of return to exceed our target,

3. computing the expected rate of return under each scenario (R),

4. computing deviations from average return for each scenario (DVU and

DVL),

5. constraining the portfolio to be fully invested, and

6. computing the three measures of risk (VAR, SEMIVAR, and DNRISK).

The following expression computes the expected rate of return for the entire portfolio:

! Compute expected value of ending position;

 AVG = @SUM(SCENE: PRB * R);

We do this by taking the sum of the expected returns for each scenario (R) weighted by the

probabilities of the scenarios (PRB).

We constrain expected return to be greater-than-or-equal-to our target using the constraint:

! Target ending value;

 AVG >= TARGET;

The expected return under scenario S is computed using:

R(S) = @SUM(STOCKS(J): VE(S, J) * X(J));

This is just the sum of the return of each stock under the scenario weighted by the fraction of the

portfolio in each stock.

570 CHAPTER 12

The deviations from average return for the scenarios are computed with:

DVU(S) - DVL(S) = R(S) - AVG

If the expected return from the scenario is greater than the average, DVU will be positive. If the

expected return is less than average, DVL will be positive. Given the fact that DVL and DVU impact

the objective, there will never be an optimal solution where both DVL and DVU are greater than 0. If

both are greater than 0, then a better solution can always be obtained by driving one of the two to zero.

By setting things up this way, we have partitioned the deviations into two parts. DVU represents

deviations above the average, which only the variance measure is concerned with. On the other hand,

DVL represents deviations below average, which both the downside risk and semi-variance measures

are computed from.

The following constraint forces us to be fully invested and should be familiar from the discussion of

the Markowitz model:

! Budget;

 @SUM(STOCKS: X) = 1;

We compute our three measures of risk using:

! Our three measures of risk;

 [VARI] VAR = @SUM(SCENE: PRB * (DVU + DVL)^2);

 [SEMI] SEMIVAR = @SUM(SCENE: PRB * (DVL) ^2);

 [DOWN] DNRISK = @SUM(SCENE: PRB * DVL);

These are simply the sum of a measure of deviation across the scenarios weighted by the probabilities

of the scenarios. The variance measure takes the square of both the above and below average

deviations. The semi-variance measure squares just the below average deviation. While, the downside

risk measure uses the below average deviations without squaring.

The Solution
If we solve the model using the three risk measures in the objective, we get the following three

solutions:

 Variance Semi-variance Downside Risk

ATT .530 .575 .511

GMT .357 .039 .489

USX .113 .386 .000

The fraction of the portfolio devoted to ATT is fairly consistent. However, the fractions of GMT and

USX can vary significantly when the risk measure changes.

Developing More Advanced Models 571

Options Pricing Model: OPTION

Background
A call option is a financial instrument that gives the holder the right to buy one share of a stock at a

given price (the exercise price) on or before some specified expiration date. A frequent question is,

“How much should one be willing to pay for such an option?” We can easily come up with some broad

bounds on what we would be willing to pay.

Suppose the stock price is $105 and we have a chance to buy an option with an exercise price of $100.

We should certainly be willing to pay up to $5 for the option, because, as a minimum, we could buy

the stock for $100 and immediately sell it for $105, realizing a profit of $5. Thus, when the stock price

exceeds the exercise price, we should be willing to pay at least the difference in the two prices.

When the exercise price exceeds the stock price, buying at the exercise price and selling at the market

price would not be an intelligent option. In this instance, we should be willing to “pay” at least $0.

In any case, the most we would ever be willing to pay for an option is the current price of the

underlying stock. Suppose the option price was more than the stock price. Then, we could get the same

expected return at a lower price by buying the stock.

The following graph illustrates these bounds on an option’s value as a function of the price of the

underlying stock:

Exercise
Price

Stock Price

Option
Value

P

Unfortunately, these bounds are not very tight. In reality, the option value function will resemble the

curve P in the graph. The exact shape of this curve is influenced by three additional factors. These are,

1) the time to expiration, 2) the volatility, or variance, in the price movements of the stock, and 3) the

interest rate. The underlying formula for curve P eluded researchers for many years until Fischer Black

and Myron Scholes derived it in 1973. A Nobel Prize was subsequently awarded for their work in

1997.

572 CHAPTER 12

The Problem in Words
You believe that the stock of National Semiconductor (symbol: NSM) is about to go up. To capitalize

on this belief, you would like to purchase call options on NSM. Checking the quotes on NSM options

with your online brokerage service, you find that NSM call options are trading at 6 5/8 per share.

These call options have an exercise price of $40, and expire in 133 days from today. The current price

of NSM shares is 40 3/4. Are the options trading at a fair price?

The Model
! Computing the value of an option using the Black

 & Scholes formula (see "The Pricing of Options

 and Corporate Liabilities", Journal of Political

 Economy, May-June, 1973);

SETS:

! We have 27 weeks of prices P(t), LOGP(t) is log

 of prices;

 WEEK/1..27/: P, LOGP;

ENDSETS

DATA:

! Weekly prices of National Semiconductor;

 P = 26.375, 27.125, 28.875, 29.625, 32.250,

 35.000, 36.000, 38.625, 38.250, 40.250,

 36.250, 41.500, 38.250, 41.125, 42.250,

 41.500, 39.250, 37.500, 37.750, 42.000,

 44.000, 49.750, 42.750, 42.000, 38.625,

 41.000, 40.750;

! The current share price;

 S = 40.75;

! Time until expiration of the option, expressed

 in years;

 T = .3644;

! The exercise price at expiration;

 K = 40;

! The yearly interest rate;

 I = .163;

ENDDATA

SETS:

! We will have one less week of differences;

 WEEK1(WEEK)| &1 #LT# @SIZE(WEEK): LDIF;

ENDSETS

! Take log of each week's price;

 @FOR(WEEK: LOGP = @LOG(P));

! and the differences in the logs;

 @FOR(WEEK1(J): LDIF(J) =

 LOGP(J + 1) - LOGP(J));

Developing More Advanced Models 573

! Compute the mean of the differences;

 MEAN = @SUM(WEEK1: LDIF)/ @SIZE(WEEK1);

! and the variance;

 WVAR = @SUM(WEEK1: (LDIF - MEAN)^2)/

 (@SIZE(WEEK1) - 1);

! Get the yearly variance and standard deviation;

 YVAR = 52 * WVAR;

 YSD = YVAR^.5;

! The Black & Scholes option pricing formula;

 Z = ((I + YVAR/2) *

 T + @LOG(S/ K))/(YSD * T^.5);

! where VALUE is the expected value of the option;

 VALUE = S *@PSN(Z) - K *@EXP(- I * T) *

 @PSN(Z - YSD *T^.5);

! LDIF may take on negative values;

 @FOR(WEEK1: @FREE(LDIF));

! The price quoted in the Wall Street Journal for

 this option when there were 133 days left was $6.625;

Model: OPTION

The Sets and Attributes
In this model, there is a single primitive set, WEEK, which corresponds to the 27 weeks of price data.

We define the two attributes P and LOGP on this set. P stores the raw price data on NSM, while

LOGP stores the logarithm of the prices.

The Formulas
It is beyond the scope of this document to get into the theoretical details behind the Black & Scholes

pricing model. The interested reader should refer to Black and Scholes (1973) for the details. However,

we will briefly discuss some of the mechanics of the key formulas involved in the model.

In our model, we compute the option’s value in two key steps. First, we compute Z as follows:

Z = ((I + YVAR/2) * T + @LOG(S/ K))/(YSD * T^.5);

where,

I = the yearly interest rate,

YVAR = variance of the stock’s price,

T = time until expiration in years,

S = current share price,

K = exercise price, and

YSD = standard deviation on stock’s price.

574 CHAPTER 12

We then use the value of Z in the following formula to determine the expected value of the option:

VALUE = S *@PSN(Z)-K *@EXP(- I * T) * @PSN(Z-YSD *T^.5);

where,

@PSN(Z) = returns the cumulative standard normal probability, and

@EXP(X) = returns ex.

The Solution
Solving the model, LINGO comes up with a value of $6.58 for the call option―not too far from the

quoted price of $6.63.

Developing More Advanced Models 575

Bond Portfolio Optimization Model: PBOND

Background
In certain situations, a business or individual may be faced with financial obligations over a future

number of periods. In order to defease (i.e., eliminate) this future debt, the debtor can determine a

minimal cost mix of current assets (e.g., cash and bonds) that can be used to cover the future stream of

payments. This problem is sometimes referred to as the cash flow matching problem or the debt

defeasance problem.

The Problem in Words
You are the head of your state’s lottery office. Lottery prizes are not paid out immediately, but are

parceled out over a 15 year period. You know exactly how much your office needs to pay out in prizes

over the next 15 years. You would like to set aside enough money from lottery receipts to invest in

secure government bonds to meet this future stream of payments. All remaining lottery receipts will be

turned over to the state’s treasurer to help fund the education system. You would like to turn over as

many of the receipts as possible to the treasurer, so your plan is to purchase a minimal cost mix of

bonds that just meets your future cash needs.

Here is the amount of cash you will need (in millions) to make future prize payments:

Year 0 1 2 3 4 5 6 7 8 9 10 11 12

Needs $10 $11 $12 $14 $15 $17 $19 $20 $22 $24 $26 $29 $31

There are two bonds currently being offered that you feel are of sufficient quality to guarantee the

future stream of prize payments. These bonds are listed below:

Bond Years to Maturity Price ($M) Coupon ($M)

A 6 .98 .06

B 13 .965 .065

If funds are not invested in bonds, they can be placed into short-term money market funds. You

conservatively estimate that short-term rates will be about 4% over the 15 year time horizon.

How many of each bond should you buy, and how much additional cash should you allocate to money

market funds to minimize your total outlay while still being able to meet all the future prize payments?

576 CHAPTER 12

The Model
! Bond portfolio/cash matching problem. Given cash

 needs in a series of future periods, what

 collection of bonds should we buy to meet these

 needs?;

SETS:

 BOND/A B/ :

 MATAT, ! Maturity period;

 PRICE, ! Price;

 CAMNT, ! Coupon;

 BUY; ! Amount to buy;

 PERIOD/1..15/:

 NEED, !Cash needed each period;

 SINVEST; !Short term investment each period;

ENDSETS

DATA:

 STRTE = .04; !Short term interest rate;

 MATAT = 6, 13; !Years to maturity;

 PRICE = .980, .965; !Bond purchase prices;

 CAMNT = .060, .065; !Bond coupon amounts;

 NEED = 10, 11, 12, 14, 15, 17, 19, 20, 22, 24,

 26, 29, 31, 33, 36; ! Cash needs;

ENDDATA

!Minimize total investment required to generate

 the stream of future cash needs;

 MIN = LUMP;

! First period is slightly special;

 LUMP = NEED(1) + SINVEST(1) +

 @SUM(BOND: PRICE * BUY);

! For subsequent periods;

 @FOR(PERIOD(I)| I #GT# 1:

 @SUM(BOND(J)| MATAT(J) #GE# I:

 CAMNT(J) * BUY(J)) +

 @SUM(BOND(J)| MATAT(J) #EQ# I:

 BUY(J)) +

 (1 + STRTE) * SINVEST(I - 1) =

 NEED(I) + SINVEST(I);

);

! Can only buy integer bonds;

 @FOR(BOND(J): @GIN(BUY(J)));

Model: PBOND

The Sets
We define two primitive setsBOND and PERIOD. The BOND set corresponds to the two bonds,

while PERIOD is the set of 15 years in the time horizon.

Developing More Advanced Models 577

The Attributes
We define four attributes on the BONDS setMATAT, PRICE, CAMNT, and BUY. MATAT stores the

bonds’ maturities, PRICE the price, CAMNT the coupon amount, and BUY the number of each bond to

buy.

The NEED and SINVEST attributes are defined on the PERIOD set. NEED stores the cash needs in

each period and SINVEST stores the amount in short-term investments in each period.

The Objective
The objective of this model is to minimize the initial cash outlay. The initial cash outlay, or lump sum,

is stored in the LUMP variable. Thus, our objective is written simply as:

! Minimize the total investment required to generate

 the stream of future cash needs;

 MIN = LUMP;

The Formulas
There are three categories of formulas in this model:

1. computing the initial lump sum payment (LUMP),

2. sources=uses constraints, which enforce the condition that all sources of

cash in a period must equal uses for cash in a period, and

3. integer restrictions on the BUY variable limiting us to buying only whole

numbers of bonds.

The following expression computes the lump outflow of cash in the initial period:

LUMP = NEED(1) + SINVEST(1) +

 @SUM(BOND: PRICE * BUY);

Cash is needed for three purposes in the initial period:

1. payment of lottery prizes (NEED(1)),

2. allocations to short-term money funds (SINVEST(1)), and

3. bond purchases (@SUM(BOND: PRICE * BUY)).

In the remaining 14 periods, sources of cash must equal uses of cash. We enforce this condition with:

! For subsequent periods;

 @FOR(PERIOD(I)| I #GT# 1:

 @SUM(BOND(J)| MATAT(J) #GE# I:

 CAMNT(J) * BUY(J)) +

 @SUM(BOND(J)| MATAT(J) #EQ# I:

 BUY(J)) +

 (1 + STRTE) * SINVEST(I - 1) =

 NEED(I) + SINVEST(I);

);

578 CHAPTER 12

The sources of cash in a period are threefold:

1. coupon receipts:

@SUM(BOND(J)| MATAT(J) #GE# I:

 CAMNT(J) * BUY(J))

2. maturing bonds:

@SUM(BOND(J)| MATAT(J) #EQ# I:

 BUY(J))

3. maturing short-term investments from the previous period:

(1 + STRTE) * SINVEST(I - 1)

These sources must equal the following two uses:

1. lottery prize payments:

NEED(I)

2. new short-term investments:

SINVEST(I)

Finally, to force bond purchases to be whole numbers, we add:

! Can only buy integer bonds;

 @FOR(BOND(J): @GIN(BUY(J)));

Developing More Advanced Models 579

The Solution
If we solve the model, we get the following values:

Global optimal solution found.

 Objective value: 195.7265

 Extended solver steps: 4

 Total solver iterations: 27

 Variable Value

 LUMP 195.7265

 BUY(A) 96.00000

 BUY(B) 90.00000

 SINVEST(1) 4.796526

 SINVEST(2) 5.598387

 SINVEST(3) 5.432322

 SINVEST(4) 3.259615

 SINVEST(5) 0.000000

 SINVEST(6) 90.61000

 SINVEST(7) 81.08440

 SINVEST(8) 70.17778

 SINVEST(9) 56.83489

 SINVEST(10) 40.95828

 SINVEST(11) 22.44661

 SINVEST(12) 0.1944784

 SINVEST(13) 65.05226

 SINVEST(14) 34.65435

 SINVEST(15) 0.4052172E-01

Solution: PBOND

You have been able to cover a total future debt of $319 million with a lump payment of $195.73

million. To do this, you buy 96 A bonds, 90 B bonds, put $4.8 million into short-term investment

funds, and hold $10 million in cash to pay prizes in the initial period.

580 CHAPTER 12

Queuing Models
Erlang Queuing Models Model: EZQUEUE

Background
The telephone, communications, and computer industries have long used queuing models to estimate

the performance of a service system in the face of random demand. The two most frequently used

models are the Erlang loss and Erlang waiting models. In both cases, customers arrive randomly at a

number of identical servers. In the Erlang loss model, there is no queue, so any customer finding all

servers busy is lost. In the Erlang waiting model, there is an infinite queue space, so any customer

finding all servers busy waits until a server is free. In either case, the major measure of performance is

the fraction of customers that find all servers busy.

To compute a system’s performance, we must know the load placed on the system per unit of time and

the number of servers. The load is a unitless measure of the amount of work arriving per unit of time.

For example, if 20 customers arrive each hour and each requires ½ hour of work, then the arriving load

is 10 (20 customers per hour multiplied by ½ hour per customer).

The most crucial probabilistic assumption in both cases is the number of arrivals per unit of time is

Poisson distributed with a constant mean. The held case (with a queue) further requires that service

times be exponentially distributed. If the arriving load is denoted AL and the number of servers by NS,

then the expected fraction finding all servers busy is given in the loss case by @PEL(AL, NS) and in

the held case by @PEB(AL, NS).

The Problem in Words
You manage the customer service department of your business. Calls arrive at the rate of 25 customers

per hour. Each call requires an average of 6 minutes to process. How many service representatives

would be required for no more than 5% of customers to receive a busy signal?

The Model
! Arrival rate of customers/ hour;

 AR = 25;

! Service time per customer in minutes;

 STM = 6;

! Service time per customer in hours;

 STH = STM/ 60;

! Fraction customers finding all servers busy;

 FB = .05;

! The PEL function finds number of servers

 needed, NS;

 FB = @PEL(AR * STH, NS);

Model: EZQUEUE

Developing More Advanced Models 581

The Solution
Feasible solution found at step: 0

 Variable Value

 AR 25.00000

 STM 6.000000

 STH 0.1000000

 FB 0.5000000E-01

 NS 5.475485

Because we cannot have fractional servers, we need at least six servers to meet our requirement that no

more than 5% of customers find all servers busy.

Suppose you install a sufficient number of incoming lines, so customers finding all servers busy can

wait. Further, you will still use six servers. You want to find the following:

 the fraction of customers finding all servers busy,

 the average waiting time for customers who wait,

 the average overall waiting time, and

 the average number waiting.

The following variation on the previous model computes these four statistics:

! Arrival rate of customers/ hour;

 AR = 25;

! Service time per customer in minutes;

 STM = 6;

! Service time per customer in hours;

 STH = STM/ 60;

! The number of servers;

 NS = 6;

! The PEL function finds number of servers

 needed, NS;

 FB = @PEB(AR * STH, NS);

! The conditional wait time for those who wait;

 WAITC = 1 / (NS / STH - AR);

! The unconditional wait time;

 WAITU = FB * WAITC;

! The average number waiting;

 NWAIT = AR * WAITU;

582 CHAPTER 12

Note how we now use the @PEB function, rather than @PEL, to account for the presence of a queue

to hold callers finding all lines busy. The solution to the modified model is:

 Variable Value

 AR 25.00000

 STM 6.000000

 STH 0.1000000

 NS 6.000000

 FB 0.4744481E-01

 WAITC 0.2857143E-01

 WAITU 0.1355566E-02

 NWAIT 0.3388915E-01

Remember the unit of time is an hour, so the expected waiting time for those who wait is

.2857 * 60 = 1.7 minutes.

Developing More Advanced Models 583

Machine Repairman Models Model: EZMREPAR

Background
Another queuing model illustrates service demand from a finite population of users. The underlying

assumption is, if a significant fraction of these users are already waiting for service, then the arrival

rate of further service demands decreases until more of the users are serviced and returned to the

calling community. Models of this class are referred to as Machine Repairman models because the

calling population can be viewed as a set of machines where individual machines occasionally break

down and need repair.

The @PFS ((Poisson Finite Source) function computes the expected number of customers either in

repair or waiting for repair, given the number of customers, number of repairmen, and the limiting load

of the queue. The following model illustrates the use of the @PFS function to model a computer

timesharing system. Each incoming port can be thought of as a customer. Usually, the number of

incoming ports is limited. Thus, the finite source assumption is appropriate.

The Problem in Words
You manage the accounting department in your company. You are contemplating installing a new

server to handle the growing computing needs of your department. However, you have your doubts as

to whether or not the system proposed by the computing services department will be adequate to meet

your current and future needs. Your department has 32 employees who will make continuous use of

the server throughout the day. You do some research and determine the mean time between server

requests is 40 seconds per user. On average, it will take the proposed server 2 seconds to process a user

request. Will the proposed server provide the horsepower needed by your department?

584 CHAPTER 12

The Model
 ! Model of a computer timesharing system;

 ! The mean think time for each user (more

 generally, Mean Time Between Failures in a

 repair system);

 MTBF = 40;

 ! The mean time to process each compute request

 (more generally, Mean Time To Repair in

 seconds);

 MTTR = 2;

 ! The number of users;

 NUSER = 32;

 ! The number of servers/repairmen;

 NREPR = 1;

 ! The mean number of users waiting or in service

 (more generally, the mean number of machines

 down);

 NDOWN =

 @PFS(MTTR * NUSER/ MTBF, NREPR, NUSER);

 ! The overall request for service rate (more

 generally, overall failure rate), FR, must

 satisfy;

 FR = (NUSER - NDOWN)/ MTBF;

 ! The mean time waiting for or in service (more

 generally, the mean time down), MTD, must

 satisfy;

 NDOWN = FR * MTD;

Model: EZMREPAR

The Solution
 Variable Value

 MTBF 40.00000

 MTTR 2.000000

 NUSER 32.00000

 NREPR 1.000000

 NDOWN 12.06761

 FR 0.4983098

 MTD 24.21707

Solution: EZMREPAR

This would probably be considered a heavily loaded systemon average, about 12 users are waiting

for a response from the server. Each request for processing requires an expected elapsed time of over

24 seconds, even though the average request is for only two seconds of processing. As a group, users

request service at the rate of almost one request every 2 seconds.

Developing More Advanced Models 585

Steady State Queuing Model Model: QUEUEM

Background
A useful approach for tackling general queuing models is to use the Rate In = Rate Out Principle

(RIRO) to derive a set of steady state equations for a queuing system. RIRO assumes a system can

reach a state of equilibrium. In equilibrium, the tendency to move out of a certain state must equal the

tendency to move towards that state. Given the steady state equations derived from this assumption,

we can solve for the probability that a system is in a given state at any particular moment.

The following example assumes a system with multiple servers and “customers” that arrive in batches.

The Problem in Words
You operate a motor rebuilding business that services auto repair shops throughout a several state area.

Motors arrive on trucks in batches of up to four motors per truck. On average, trucks arrive 1.5 times a

day. The probabilities that a truck contains 1, 2, 3 or 4 motors are, respectively, .1, .2, .3 and .4. You

presently have five workstations that can each rebuild two motors per day.

You would like to introduce a priority service that, in exchange for a higher fee, guarantees your

customers a one day turnaround. To do this effectively, at least one workstation must be free 90

percent of the time in order to begin immediate repair of any incoming priority job. Are your current

facilities adequate for this level of service?

The Model
! Model of a queue with arrivals in batches. In

 this particular example, arrivals may show up in

 batches of 1, 2, 3, or 4 units;

SETS:

! Look at enough states so P(i) for large i is

 effectively zero, where P(i) is the steady state

 probability of i-1 customers in the system;

 STATE/ 1..41/: P;

! Potential batch sizes are 1, 2, 3 or 4 ,

 customers and A(i) = the probability that an

 arriving batch contains i customers;

 BSIZE/ 1..4/: A;

ENDSETS

DATA:

 ! Batch size distribution;

 A = .1, .2, .3, .4;

 ! Number of batches arriving per day;

 LMDA = 1.5;

 ! Number of servers;

 S = 5;

586 CHAPTER 12

 ! Number of customers a server can

 process per day;

 MU = 2;

ENDDATA

! LAST = number of STATES;

 LAST = @SIZE(STATE);

! Balance equations for states where the number of

 customers in the system is less than or equal to

 the number of servers;

 @FOR(STATE(N)| N #LE# S:

 P(N) * ((N - 1)* MU + LMDA) =

 P(N + 1) * MU * N +

 LMDA * @SUM(BSIZE(I)| I #LT# N: A(I)

 * P(N - I))

);

! Balance equations for states where number in

 system is greater than the number of servers,

 but less than the limit;

 @FOR(STATE(N)| N #GT# S #AND# N #LT# LAST:

 P(N) * (S * MU + LMDA) =

 P(N + 1) * MU * S +

 LMDA * @SUM(BSIZE(I)| I #LT# N: A(I) *

 P(N - I))

);

! Probabilities must sum to 1;

 @SUM(STATE: P) = 1;

Model: QUEUEM

The Formulas
The model computes the probabilities P(i), i = 1 to 41, where P(i) is the probability there are i - 1

motors in the system for repair. We have chosen to stop at 41 because the probability the system would

have more than 40 machines waiting for repair is effectively 0.

In order to solve for the 41 unknown P(i), we will need 41 equations. One of these equations comes

from the fact that the probabilities must all sum to 1:

! Probabilities must sum to 1;

 @SUM(STATE: P) = 1;

Developing More Advanced Models 587

The remaining 40 equations are derived from the steady state assumptions that the rate of movement

into any state must equal the rate out. We partition these balance equations into two types. In the first

case, there are the states where the number of motors in the system is less-than-or-equal-to the number

of servers. The balance equations in this case are:

@FOR(STATE(N)| N #LE# S:

 P(N) * ((N - 1)* MU + LMDA) =

 P(N + 1) * MU * N +

 LMDA * @SUM(BSIZE(I)| I #LT# N: A(I)

 * P(N - I))

);

For each state where the number of motors in the system is less-than-or-equal-to the number of

servers, we set the rate of flow out of the state:

P(N) * ((N - 1)* MU + LMDA)

equal to the rate of flow into the state:

P(N + 1) * MU * N +

 LMDA * @SUM(BSIZE(I)| I #LT# N: A(I)

 * P(N - I))

The rate of flow out is the rate of flow to states with more motors, LMDA, plus the rate of flow to

lesser states, (N - 1) * MU, multiplied by the probability of being in the state, P(N). The rate of flow in

is the rate of flow in from higher states, P(N + 1) * MU * N, plus the expected rate of flow in from

lower states, LMDA * @SUM(BSIZE(I)| I #LT# N: A(I) * P(N - I)).

We generate equivalent balance equations for the higher states where the number of motors exceeds

the number of servers with the following:

@FOR(STATE(N)| N #GT# S #AND# N #LT# LAST:

 P(N) * (S * MU + LMDA) =

 P(N + 1) * MU * S +

 LMDA * @SUM(BSIZE(I)| I #LT# N: A(I) *

 P(N - I))

);

588 CHAPTER 12

The Solution
An excerpt from the full solution report showing the first 10 values of P is listed below:

 Variable Value

 LMDA 1.500000

 S 5.000000

 MU 2.000000

 LAST 41.00000

 P(1) 0.2450015

 P(2) 0.1837511

 P(3) 0.1515947

 P(4) 0.1221179

 P(5) 0.9097116E-01

 P(6) 0.5707410E-01

 P(7) 0.4276028E-01

 P(8) 0.3099809E-01

 P(9) 0.2187340E-01

 P(10) 0.1538003E-01

The probability at least one workstation is free is the probability that four or fewer motors are in the

system, in other words, the sum of the first five P(i). In this case, it works out that at least one

workstation will be free only about 70% of the time. Experimenting with the model by increasing the

number of servers reveals you will need at least seven workstations to provide the level of service

required by the new priority plan.

Developing More Advanced Models 589

Marketing Models
Markov Chain Model Model: MARKOV

Background
A standard approach used in modeling random variables over time is the Markov chain approach.

Refer to an operations research or probability text for complete details. The basic idea is to think of the

system as being in one of a discrete number of states at each point in time. The behavior of the system

is described by a transition probability matrix that gives the probability the system will move to a

specified other state from some given state. Some example situations are:

System States Cause of Transition

Consumer brand

switching

Brand of product most

recently purchased by

consumer

Consumer changes mind,

advertising

Inventory System Amount of inventory on

hand

Orders for new material,

demands

An interesting problem is to determine the long-term, steady state probabilities of the system. If we

assume the system can reach equilibrium, then it must be true the probability of leaving a particular

state must equal the probability of arriving in that state. You will recall this is the Rate In = Rate Out

Principle (RIRO) we used above in building the multi-server queuing model, QUEUEM. If we let:

i
= the steady state probability of being in state i, and

p
ij
 = the transition probability of moving from state i to j,

then, by our RIRO assumption, for each state i:

ji

p
j
 p

ji
 =

i
 (1 - p

jj
)

Rewriting the above, we get:

i
 =

j

j
 p

ji

This gives us n equations to solve for the n unknown steady state probabilities. Unfortunately, it turns

out this system is not of full rank. Thus, there is not a unique solution. To guarantee a valid set of

probabilities, we must make use of one final condition—the sum of the probabilities must be 1.

590 CHAPTER 12

The Problem in Words
Your company is about to introduce a new detergent and you’re interested in whether it will clean up

in the market. It will be competing against three other existing brands. As a result of a small test

market and interviews with consumers familiar with all four detergents, we have derived the following

purchase transition matrix:

 Next Purchase:

Previous

Purchase:

 A B C D

A .75 .1 .05 .1

B .4 .2 .1 .3

C .1 .2 .4 .3

D .2 .2 .3 .3

Our new detergent is brand A in this matrix. The interpretation of the matrix is, for example, if

someone most recently purchased brand A, then with probability .75 his next purchase of this product

will also be brand A. Similarly, someone who most recently purchased brand B will next purchase

brand D with probability .3. An associate of yours who looked at this matrix said, “Aha, we should

expect to get 75% of the market in the long run with brand A.” Do you think your associate is correct?

The Model
! Markov chain model;

SETS:

 ! There are four states in our model and over

 time the model will arrive at a steady state

 equilibrium.

 SPROB(J) = steady state probability;

 STATE/ A B C D/: SPROB;

 ! For each state, there's a probability of moving

 to each other state. TPROB(I, J) = transition

 probability;

 SXS(STATE, STATE): TPROB;

ENDSETS

DATA:

 ! The transition probabilities. These are proba-

 bilities of moving from one state to the next

 in each time period. Our model has four states,

 for each time period there's a probability of

 moving to each of the four states. The sum of

 probabilities across each of the rows is 1,

 since the system either moves to a new state or

 remains in the current one.;

 TPROB = .75 .1 .05 .1

 .4 .2 .1 .3

 .1 .2 .4 .3

 .2 .2 .3 .3;

ENDDATA

Developing More Advanced Models 591

! Steady state equations;

! Only need N equations, so drop last;

 @FOR(STATE(J)| J #LT# @SIZE(STATE):

 SPROB(J) = @SUM(SXS(I, J): SPROB(I) *

 TPROB(I, J))

);

! The steady state probabilities must sum to 1;

 @SUM(STATE: SPROB) = 1;

! Check the input data, warn the user if the sum

 of probabilities in a row does not equal 1.;

 @FOR(STATE(I):

 @WARN('Probabilities in a row must sum to 1.',

 @ABS(1 - @SUM(SXS(I, K): TPROB(I, K)))

 #GT# .000001);

);

Model: MARKOV

The Sets
The primitive STATE set represents the four states of purchasing detergents A, B, C, and D. We build

one derived set, SXS that is the cross of the STATE set on itself. The SXS set is used to establish the

state transition matrix.

The Attributes
We have two attributes. The first, SPROB, is defined on the STATES set and is used to store the steady

state probabilities of the system. We will be solving for the values of the SPROB attribute. The second

attribute, TPROB, is defined on the two-dimensional SXS set and is used to store the values of the state

transition matrix.

The Formulas
First off, to ensure data integrity, we use the @WARN function to verify the probabilities in each row

of the state transition matrix sum to 1 using:

! Check the input data, warn the user if the sum of

 probabilities in a row does not equal 1.;

 @FOR(STATE(I):

 @WARN('Probabilities in a row must sum to 1.',

 @ABS(1 - @SUM(SXS(I, K): TPROB(I, K)))

 #GT# .000001);

Due to the potential for roundoff error, we allow for a modest transgression by using a tolerance factor

of .000001. If the probabilities in a row sum up to more than 1.000001 or less than .999999, the user

will receive a warning.

Next, the steady state probabilities must be exhaustive. We guarantee this by setting their sum to 1

with:

! The steady state probabilities must sum to 1;

 @SUM(STATE: SPROB) = 1;

592 CHAPTER 12

Finally, in addition to this last equation, we need an additional n-1 equations to solve for the n steady

state probabilities. We get these equations from the RIRO derivation above using:

! Steady state equations;

! Only need N equations, so drop last;

 @FOR(STATE(J)| J #LT# @SIZE(STATE):

 SPROB(J) = @SUM(SXS(I, J): SPROB(I) *

 TPROB(I, J))

);

The Solution
The solution is:

 Variable Value

 SPROB(A) 0.4750000

 SPROB(B) 0.1525000

 SPROB(C) 0.1675000

 SPROB(D) 0.2050000

Solution: MARKOV

So, we see the long run share of our new brand A will only amount to about 47.5% of the market,

which is considerably less than the conjectured share of 75%.

Developing More Advanced Models 593

Conjoint Analysis Model: CONJNT

Background
When designing a product, it is useful to know how much customers value various attributes of that

product. This allows us to design the product most preferred by consumers within a limited budget. For

instance, if we determine consumers place a very high value on a long product warranty, then we

might be more successful in offering a long warranty with fewer color options.

The basic idea behind conjoint analysis is, while it may be difficult to get consumers to accurately

reveal their relative utilities for product attributes, it’s easy to get them to state whether they prefer one

product configuration to another. Given these rank preferences, you can use conjoint analysis to work

backwards and determine the implied utility functions for the product attributes.

The Problem in Words
Your company is about to introduce a new vacuum cleaner. You have conducted customer surveys and

you determined the relative preferences for the following warranty/price product configurations (9

being the most preferred):

 $129 $99 $79

2 Years 7 8 9

1 Year 3 4 6

None 1 2 5

In order to derive an optimal product configuration, you need to know the utility functions for

warranty length and price implied by the preferences in the table above.

The Model
! Conjoint analysis model to decide how much

 weight to give to the two product attributes of

 warranty length and price;

SETS:

! The three possible warranty lengths;

 WARRANTY /LONG, MEDIUM, SHORT/ : WWT;

! where WWT(i) = utility assigned to warranty i;

! The three possible price levels (high,

 medium, low);

 PRICE /HIGH, MEDIUM, LOW/ : PWT;

! where PWT(j) = utility assigned to price j;

! We have a customer preference ranking for each

 combination;

 WP(WARRANTY, PRICE) : RANK;

ENDSETS

DATA:

! Here is the customer preference rankings running

 from a least preferred score of 1 to the most

594 CHAPTER 12

 preferred of 9. Note that long warranty and low

 price are most preferred with a score of 9,

 while short warranty and high price are least

 preferred with a score of 1;

 RANK = 7 8 9

 3 4 6

 1 2 5;

ENDDATA

SETS:

! The next set generates all unique pairs of

 product configurations such that the second

 configuration is preferred to the first;

 WPWP(WP, WP) | RANK(&1, &2) #LT#

 RANK(&3, &4): ERROR;

! The attribute ERROR computes the error of our

 estimated preference from the preferences given

 us by the customer;

ENDSETS

! For every pair of rankings, compute the amount

 by which our computed ranking violates the true

 ranking. Our computed ranking for the (i,j)

 combination is given by the sum WWT(i) + PWT(j).

 (NOTE: This makes the bold assumption that

 utilities are additive!);

 @FOR(WPWP(i, j, k, l): ERROR(i, j, k, l) >=

 1 + (WWT(i) + PWT(j)) - (WWT(k) + PWT(l))

);

! The 1 is required on the right-hand-side of the

 above equation to force ERROR to be nonzero in

 the case where our weighting scheme incorrectly

 predicts that the combination (i,j) is equally

 preferred to the (k,l) combination.

 Since variables in LINGO have a default lower

 bound of 0, ERROR will be driven to zero when we

 correctly predict (k,l) is preferred to (i,j).

 Next, we minimize the sum of all errors in order

 to make our computed utilities as accurate as possible;

 MIN = @SUM(WPWP: ERROR);

Model: CONJNT

The Sets
We have two primitive sets in the model: WARRANTY is the set of warranty lengths and PRICE is the

set of prices. We form the derived set WP by taking the cross of WARRANTY and PRICE in order to

create an attribute to store the preferences for each (WARRANTY, PRICE) pair.

Developing More Advanced Models 595

The interesting set in this model is the sparse derived set WPWP:

! The next set generates all unique pairs of product

 configurations such that the second configuration

 is preferred to the first;

 WPWP(WP, WP) | RANK(&1, &2) #LT#

 RANK(&3, &4): ERROR;

This set is derived from the cross of WP on itself. Each member of this set contains two product

configurations. Furthermore, we use a membership condition to limit the set to combinations of

product configurations where the first configuration is preferred to the second configuration. We need

this set because our model will be testing its proposed utility functions against all unique pairings of

configurations.

Note that this set grows on the order of n2, where n is the number of product configurations. Thus, it

will tend to get big for large numbers of product configurations.

The Attributes
The model defines four attributes: WWT, PWT, RANK and ERROR. WWT and PWT are used to store

the utilities of the warranty and price configurations, respectively. The model will solve for values of

WWT and PWT that minimize total prediction error. These values will then give us the implied utility

functions for the two product attributes. RANK is used to store the customer preference rankings.

Finally, ERROR stores the error in predicting the preference of one configuration over another given

the implied utility values contained in WWT and PWT.

The Objective
The objective is quite simplewe want to minimize the total prediction error over all the unique

product configurations:

MIN = @SUM(WPWP: ERROR);

The Constraints
The model has just one class of constraints that computes the error term in predicting the preferences

over each product configuration:

@FOR(WPWP(i, j, k, l): ERROR(i, j, k, l) >=

 1 + (WWT(i) + PWT(j)) -

 (WWT(k) + PWT(l))

);

We need to add a 1 to the right-hand side of the constraint to account for the case where we predict

that configuration (i,j) is equally preferred to (k,l). Because of the way that we defined the WPWP set,

(i,j) will always be preferred to (k,l). Thus, it would be an error to predict they are equally preferred.

Note, also, because the lower bound on ERROR is 0 and we are also minimizing ERROR,

ERROR(i,j,k,l) will be driven to 0 when the model correctly predicts that (i,j) is preferred to (k,l).

596 CHAPTER 12

The Solution
Portions of the solution are reproduced below:

Global optimal solution found at step: 35

Objective value: 0.000000

 Variable Value

 WWT(LONG) 7.000000

 WWT(MEDIUM) 2.000000

 WWT(SHORT) 0.000000

 PWT(HIGH) 0.000000

 PWT(MEDIUM) 1.000000

 PWT(LOW) 4.000000

Solution: CONJNT

Short, medium and long warranties rate utilities of 0, 2, and 7, while high, medium and low prices rate

utilities of 0, 1, and 4. Note that, given the objective value of zero, this utility weighting scheme

exactly predicts preferences for each pair of product configurations.

597

13 Programming LINGO
Up to this point, we have primarily been concerned with self-contained models, which are solved once

and don’t receive input from, nor pass output to, other models. However, in many modeling situations,

there may be requirements for one, or more, models to be run in a sequence. Furthermore, the outputs

of one model may be required as inputs to a subsequent model. Such a series of models will typically

be run in a loop until some termination criterion is met. LINGO provides a number of programming

control structures to automate processing in situations where one has multiple, dependent models that

one must run in a sequence.

In the section immediately following, we will provide a brief introduction to the programming features

available in LINGO. We will then illustrate the use of these features in several models.

Programming Features
The programming capabilities in LINGO fall into seven categories:

 Model control

 Flow of control

 Model generation

 Output statements

 Setting parameters

 Stochastic Programming

 Utility functions

Model Control
In this category we have two types of statements. First are the SUBMODEL and ENDSUBMODEL

statements used to identify submodels, which are separate models contained within larger models. We

also have the @SOLVE statement for use in solving submodels.

SUBMODEL and ENDSUBMODEL:
These two statements are used to bracket a submodel within a larger, composite model. The

SUBMODEL statement must be followed immediately by a unique name that follows the normal

LINGO naming conventions. The name must then be followed by a colon. You must also place a

ENDSUBMODEL statement immediately after the last statement of your submodel. Submodels may

only exist in the model section and are not allowed in data, init and calc sections.

598 CHAPTER 13

As an example, the following illustrates a submodel for solving a knapsack type model:

SUBMODEL Pattern_Gen:

 [R_OBJ] MAX = @SUM(FG(i): PRICE(i)* Y(i));

 [R_WIDTH] @SUM(FG(i): WIDTH(i)*Y(i)) <= RMWIDTH;

 @FOR(FG(i): @GIN(Y(i)));

ENDSUBMODEL

In this example, the submodel is titled Pattern_Gen and contains one objective, R_OBJ, one constraint,

R_WIDTH, and one @FOR loop to force the Y variables to be general integers via the @GIN function.

@DEBUG([SUBMODEL_NAME[, …, SUBMODEL_NAME_N]])
Infeasible or unbounded submodels may be debugged in a calc section with the use of the @DEBUG

statement. Refer to the LINGO|Debug command for more information of model debugging.

If your model contains submodels, you can choose to debug a particular submodel by specifying its

name as an argument to @DEBUG. If desired, you may also specify more than one submodel name,

in which case, LINGO will simultaneously debug all the specified models as one combined model. If

a submodel name is omitted, LINGO will solve all model statements occurring before the @DEBUG

statement and not lying within a submodel section. It is the user’s responsibility to make sure the

submodels together make sense, e.g., at most one submodel in an @DEBUG invocation can have an

objective function.

In the following example, we solve a small submodel and then invoke the debugger if the solution is

found to be non-optimal:

MODEL:

SUBMODEL M:

 MIN = X + Y;

 X>4;

 Y<3;

 Y>X;

ENDSUBMODEL

CALC:

 @SOLVE(M);

 @IFC(@STATUS() #NE# 0: @DEBUG(M));

ENDCALC

END

Note: Submodels must be defined in the model prior to any references to them via the @DEBUG

statement.

PROGRAMMING LINGO 599

@SOLVE([SUBMODEL_NAME[, …, SUBMODEL_NAME_N]])
Submodels may be solved in a calc section with the use of the @SOLVE statement. If your model

contains submodels, you can choose to solve a particular submodel by specifying its name as an

argument to @SOLVE. If desired, you may also specify more than one submodel name, in which case,

LINGO will simultaneously solve all the specified models as one combined model. If a submodel

name is omitted, LINGO will solve all model statements occurring before the @SOLVE statement and

not lying within a submodel section. It is the user’s responsibility to make sure the submodels together

make sense, e.g., at most one submodel in an @SOLVE can have an objective function.

As an example, to solve the submodel Pattern_Gen listed immediately above, you would add the

following statement to a calc section:

@SOLVE(Pattern_Gen);

Note: Submodels must be defined in the model prior to any references to them via the @SOLVE

statement.

Charting
LINGO has a number of features to generate charts of your data. Chart types currently included are

Bar, Bubble, Contour, Curve, Histogram, Line, Network (node based and arc based), Pie, Radar,

Scatter and Surface. A description of the functions for each of the various chart types follows.

@CHARTBAR('TITLE', 'X-AXIS LABEL', 'Y-AXIS LABEL', 'LEGEND1', ATTRIBUTE1[, ...,
'LEGENDN', ATTRIBUTEN]);

@CHARTBAR will generate a bar chart of one or more attributes. The bar chart will be displayed in a

new window. @CHARTBAR argument descriptions follow:

TITLE - This is the title to display at the top of the chart. The title must be in quotes.

X-AXIS LABEL - The x-axis label in quotes.

Y-AXIS LABEL - The y-axis label in quotes.

LEGENDi - The legend to be used to label attribute i in quotes.

ATTRIBUTEi - This is the attribute to chart. At least one attribute argument must appear. If

multiple attributes appear, the bars will be grouped together.

As an example, consider the following model, CHARTSTAFF, which is a modified version of the staff

scheduling example presented in section Primitive Set Example in Chapter 2, Using Sets:

600 CHAPTER 13

MODEL:

SETS:

DAYS: REQUIRED, START, ONDUTY;

ENDSETS

DATA:

DAYS = MON TUE WED THU FRI SAT SUN;

REQUIRED = 23 16 13 16 19 14 12;

ENDDATA

SUBMODEL MODSTAFF:

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

ONDUTY(J) =

@SUM(DAYS(I) | I #LE# 5:

START(@WRAP(J - I + 1, 7)));

ONDUTY(J) >= REQUIRED(J)

);

ENDSUBMODEL

CALC:

! Solve the staffing model;

@SOLVE(MODSTAFF);

! Bar chart of required vs. actual staffing;

@CHARTBAR(

'Staffing Example', !Chart title;

'Day', !X-Axis label;

'Employees', !Y-Axis label;

'Employees Required', !Legend 1;

REQUIRED, !Attribute 1;

'Employees On Duty', !Legend 2;

ONDUTY !Attribute 2;

);

ENDCALC

END

Model: CHARTSTAFF

Here, we've added a reference to @CHARTBAR to generate a bar chart of staffing requirements vs.

staff on duty for each day of the week. Here's is the bar chart that is generated:

PROGRAMMING LINGO 601

Note that since we specified more than one attribute, the bars for the two attributes for each day of the

week are grouped together. LINGO also automatically labeled each bar using the attributes' parent set

DAYS. From the chart it's easy to see that staffing requirements are just met on days Monday through

Saturday, while on Sunday we have slightly more staffing than is actually required.

All arguments to charting function are optional, with the exception of the attribute values. In many

cases, if an argument is omitted, LINGO will provide a reasonable default. For example, if the title is

omitted as we have done here:

602 CHAPTER 13

! Bar chart of required vs. actual staffing;

@CHARTBAR(

, !Chart title will default to file name;

'Day', !X-Axis label;

'Employees', !Y-Axis label;

'Employees Required', !Legend 1;

REQUIRED, !Attribute 1;

'Employees On Duty', !Legend 2;

ONDUTY !Attribute 2;

);

Then LINGO will use the model's file name instead. Note that you must still include the comma

separator when omitting an argument.

The complete list of charting functions supported is given in the table below. You may also be

interested in running the CHARTS.LG4 sample model, which generates examples of all the chart types.

Chart

Type

Syntax Notes

Bar

@CHARTBAR('Title', 'X-Axis Label', 'Y-Axis Label',

'Legend1', Attribute1[, ..., 'Legendn', Attributen]);

Multiple attributes will result in

bars being grouped.

Bubble

@CHARTBUBBLE('Title', 'X-Axis Label', 'Y-Axis

Label', 'Legend1', X1, Y1, Size1,[, ..., 'Legendn', Xn,

Yn, Sizen]);

Each series of bubbles is

represented as a triplet of (x-

location, y-location, bubble

size).

Contour

@CHARTCONTOUR('Title', 'X-Axis Label', 'Y-Axis

Label', 'Legend', X, Y, Z);

You can thinks of a contour

chart as a 3-dimensional surface

chart compressed into two

dimensions. Only one series is

allowed and it is represented by

a grid (x,y,z) coordinates.

Curve

@CHARTCURVE('Title', 'X-Axis Label', 'Y-Axis

Label', 'Legend1', X1, Y1[, ..., 'Legendn, Xn, Yn]);

Curves are good for representing

two-dimensional (x,y) plots,

e.g., y=sin(x) . Multiples curves

may be drawn in a single chart,

with each curve represented as a

series of (x,y) coordinates. See

the sample model

CHARTDISTRO for an

example of a curve chart.

PROGRAMMING LINGO 603

Histogram

@CHARTHISTO('Title', 'X-Axis Label', 'Y-Axis',

'Legend', Bins, X);

If the bin count, Bins, is omitted,

LINGO will automatically

compute a number of bins that

results in a resonably distributed

histogram. Only one histogram

may be displayed per chart.

Line

@CHARTLINE('Title', 'X-Axis Label', 'Y-Axis Label',

'Legend1', X1[, ..., 'Legendn', Xn]);

Multiple lines can be displayed

on a single chart, with each

being drawn in a different color.

Netarc

@CHARTNETARC('Title', 'X-Axis', 'Y-Axis',

'Legend1', X1, Y1, X2, Y2[, ..., 'Legendn', X1n, Y1n,

X2n, Y2n]);

Netarc charts are network charts,

where the network is

represented by a list of 4-tuples,

(x1,y1,x2,y2), where (x1,y1)-i is

one end point of arc i and

(x2,y2)-i is the other end point

of arc i. Multiple networks may

be displayed on a single chart.

Netnode

@CHARTNETNODE('Title', 'X-Axis Label', 'Y-Axis'

Label, 'Legend1', X1, Y1, I1, J1[, ..., 'Legendn', Xn, Yn,

In, Jn]);

Netnode charts are network

charts, where the network is

represented by a two lists of 2-

tuples, (x,y) and (i,j), where the

(x,y) are the coordinates of each

node in the network and the (i,j)

give the indices of two nodes

from the (x,y) list that exist as

an arc in the network. Multiple

networks may be displayed on a

single chart.

Pie

@CHARTPIE('Title', 'Legend', X);

Only one attribute may be

displayed in a pie chart.

Radar

@CHARTRADAR('Title', 'Legend1', X1[, ...,

'Legendn', Xn]);

Multiple attributes can be

displayed, with each being in a

different color.

Scatter

@CHARTSCATTER('Title', 'X-Axis Label', 'Y-Axis

Label', 'Legend1', X1, Y1[, ..., 'Legendn', Xn, Yn]);

Each scatter plot is represented

by a list of (x,y) coordinates

604 CHAPTER 13

 giving the location of each point

in the scatter. Multiple scatter

plots can be displayed in a

single chart, with each being in a

different color.

Surface

@CHARTSURFACE('Title', 'X-Axis Label', 'Y-Axis

Label', 'Z-Axis Label', 'Legend', X, Y, Z);

Each surface plot is represented

by a list of (x,y,z) coordinates,

each containing the location of a

points on the surface. A

sufficient number of points

should be included to avoid

excessive interpolation between

points. Only one surface may be

drawn on a chart. See the sample

model CHARTSURF below for

an example of a surface chart.

As another example, we will show how to create a surface chart by supplying a grid of (x,y,z) points

lying on the surface: z = x * sin(y) + y * sin(x) using the following model, CHARTSURF:

PROGRAMMING LINGO 605

MODEL:

! Creates a surface chart of z = x * sin(y) + y * sin(x);

SETS:

!Set up a 21x21 grid of (X,Y,Z) points on the surface;

SURF1 /1..21/;

SURF2(SURF1, SURF1): X, Y, Z;

ENDSETS

CALC:

!First point;

XS = @FLOOR(- (@SIZE(SURF1) / 2) + .5);

YS = XS;

!Generate remaining points and compute z;

@FOR(SURF2(I, J):

X(I, J) = XS + I - 1;

Y(I, J) = YS + J - 1;

Z(I, J) = X(I, J) * @SIN(Y(I, J)) + Y(I, J) * @SIN(X(I, J));

);

!Create the chart;

@CHARTSURFACE(

'z = x * sin(y) + y * sin(x)', !Title;

'X', 'Y', 'Z', !Axis labels;

'(X,Y,Z)', !Legend;

X, Y, Z !Points on the surface;

);

ENDCALC

END

Model: CHARTSURF

First off, the CHARTSURF creates a 21x21 grid of points on the (X,Y) plane centered around (0,0) and

computes Z for each of these points:

606 CHAPTER 13

!First point;

XS = @FLOOR(- (@SIZE(SURF1) / 2) + .5);

YS = XS;

!Generate remaining points and compute z;

@FOR(SURF2(I, J):

X(I, J) = XS + I - 1;

Y(I, J) = YS + J - 1;

Z(I, J) = X(I, J) * @SIN(Y(I, J)) + Y(I, J) * @SIN(X(I, J));

);

We then use the @CHARTSURFACE function to create the surface chart:
!Create the chart;

@CHARTSURFACE(

'z = x * sin(y) + y * sin(x)', !Title;

'X', 'Y', 'Z', !Axis labels;

'(X,Y,Z)', !Legend;

X, Y, Z !Points on the surface;

);

The resulting chart will appear as follows:

PROGRAMMING LINGO 607

Simplified Chart Function Formats
All the chart functions above support a simplified format where all the arguments, with the exception

of the data attributes, are omitted. For instance, in the bar chart example above, we could have simply

used the following:

! Bar chart of required vs. actual staffing;

@CHARTBAR(REQUIRED, ONDUTY);

In which case, the resulting chart would be:

608 CHAPTER 13

Note the following differences between the charts created using the simplified chart format and the

example above where we specified all the arguments:

 The chart title is now the file name.

 The legends are simply the names of the attributes.

 The X and Y axis labels have been omitted.

The simplified syntax for each of the charting functions appears below:

Chart Type Simplified Syntax

Bar @CHARTBAR(Attribute1[, ..., Attributen]);

Bubble @CHARTBUBBLE(X1, Y1, Size1,[, ..., Xn, Yn, Sizen]);

Contour @CHARTCONTOUR(X, Y, Z);

Curve @CHARTCURVE(X1, Y1[, ..., Xn, Yn]);

PROGRAMMING LINGO 609

Histogram @CHARTHISTO(X);

Line @CHARTLINE(X1[, ..., Xn]);

Netarc @CHARTNETARC(X1, Y1, X2, Y2[, ..., X1n, Y1n, X2n, Y2n]);

Netnode @CHARTNETNODE(X1, Y1, I1, J1[, ..., Xn, Yn, In, Jn]);

Pie @CHARTPIE(X);

Radar @CHARTRADAR(X1[, ..., Xn]);

Scatter @CHARTSCATTER(X1, Y1[, ..., Xn, Yn]);

Surface @CHARTSURFACE(X, Y, Z);

Using Procedures to Specify Chart Points

For curve, surface and contour charts you may use a procedure to specify the function to be plotted.

LINGO will automatically call this procedure to generate function points for the chart, thereby

allowing you to skip the step of explicitly generating the points. The syntax for these procedure based

charting functions is as follows:

Chart Type Simplified Syntax

Contour @CHARTPCONTOUR('Title', 'X-Axis Label', 'Y-Axis Label', 'Z-Axis Label',

PROCEDURE, X, XL, XU, Y, YL, YU, 'Legend', Z);

Curve @CHARTPCURVE('Title', 'X-Axis Label', 'Y-Axis Label', PROCEDURE, X,

XL, XU, 'Legend1', Y1[, ...,'LegendN', YN]);

Surface @CHARTPSURFACE('Title', 'X-Axis Label', 'Y-Axis Label', 'Z-Axis Label',

PROCEDURE, X, XL, XU, Y, YL, YU, 'Legend', Z);

In the case of the two-dimensional curve chart, the PROCEDURE argument is the name of the

procedure containing the formula for the curve, X is the independent variables, XL and XU its upper

and lower bounds and Y1 is the dependent variable that gets assigned the function's value. The three-

dimensional contour and surface charts have two independent variables (X and Y) and the dependent

variable Z. As an example, the model below uses the @CHARTPSURFACE function to generate the

same surface chart presented above:

610 CHAPTER 13

MODEL:

! Creates surface chart of z = x * sin(y) + y * sin(x);

! Function points are provided by the WAVE procedure;

PROCEDURE WAVE:

Z = X * @SIN(Y) + Y * @SIN(X);

ENDPROCEDURE

CALC:

B = 10;

@CHARTPSURFACE(

'z = x * sin(y) + y * sin(x)', !Title;

'X','Y','Z', !Axis labels;

WAVE, !Procedure name;

X, -B, B, !Independent var 1 and its bounds;

Y, -B, B, !Independent var 2 and its bounds;

'Z', !Legend;

Z !Dependent var/function value;

);

ENDCALC

END

Model: CHARTPSURF

Note: Charting capabilities are only available in the interactive version of LINGO for Windows. If

you are using the LINGO API and need a charting capability, then you should investigate

third-party solutions or use charting tools available in your development environment.

Flow of Control
In a calc section, model statements are normally executed sequentially. Flow of control statements can

be used to alter the execution order of statements. In effect, this gives you a programming, or

scripting, capability within the LINGO environment.

@IFC and @ELSE
These statements provide you with conditional IF/THEN/ELSE branching capabilities. The syntax is as

follows:

@IFC(<conditional-exp>:

 statement_1[; …; statement_n;]

[@ELSE

 statement_1[; …; statement_n;]]

);

with the @ELSE block of statements being optional in case a pure if statement is desired.

Note: Be aware of the use of the letter ‘C’ in @IFC. This is to distinguish the flow of control if

statement (@IFC) from the arithmetic if (@IF).Miscellaneous_Functions

PROGRAMMING LINGO 611

To illustrate, the following sample code uses if/then/else blocks as part of a binary search for a key

value in an array:

@IFC(KEY #EQ# X(INEW):

 LOC = INEW;

@ELSE

 @IF(KEY #LT# X(INEW):

 IE = INEW;

 @ELSE

 IB = INEW;

);

);

@FOR
You’ve encountered the @FOR set looping statement previously as a way to generate constraints in

the model section. @FOR is also allowed in the calc section to perform looping. The main difference

is that @FOR does not generate constraints when used in the calc section. Instead, it immediately

executes any assignment statements contained within its scope. The following example shows a

@FOR loop extracted from a portfolio model. The loop is used to solve the portfolio model for a

number of different levels of desired return. For each level of return, the model minimizes variance,

and the variance is stored for later use.

@FOR(POINTS(I):

 ! Compute new return level;

 RET_LIM = RET_MIN + (I-1)*INTERVAL;

 ! Re-solve the model;

 @SOLVE();

 ! Store the return value;

 YRET(I) = RET_LIM;

 ! Store the variance too;

 XSTD(I) = VARIANCE^0.5;

);

@WHILE
The @WHILE statement is used for looping over a group of statements until some termination

criterion is met. The syntax is as follows:

@WHILE(<conditional-exp>: statement_1[; …; statement_n;]);

As long as the conditional expression is true, the @WHILE function will keep looping over its block of

statements.

612 CHAPTER 13

As an example, the following code uses an @WHILE loop to search for a key value in an array as part

of a binary search procedure:

@WHILE(KEY #NE# X(LOC):

 INEW = @FLOOR((IE + IB) / 2);

 @IFC (KEY #EQ# X(INEW):

 LOC = INEW;

 @ELSE

 @IF (KEY #LT# X(INEW):

 IE = INEW - 1;

 @ELSE

 IB = INEW + 1;

);

);

);

In this case, the loop executes until the current value selected from the array, X(LOC), is equal to the

key value, KEY.

@BREAK
The @BREAK statement is used to break out of the current loop. Execution resumes at the first

statement immediately following the end of the current loop. The @BREAK statement is valid only

within @FOR and @WHILE loops in calc sections and does not take any arguments. As an example,

we extend the @WHILE loop in the binary search example above to include an @BREAK statement

that will be executed when the key value can’t be found:

PROGRAMMING LINGO 613

@WHILE(KEY #NE# X(LOC):

 !exit loop if key can’t be found;

 @IFC(IE – IB #LE# 1:

 @PAUSE('Unable to find key!!!');

 @BREAK;

);

 INEW = @FLOOR((IE + IB) / 2);

 @IFC (KEY #EQ# X(INEW):

 LOC = INEW;

 @ELSE

 @IF (KEY #LT# X(INEW):

 IE = INEW - 1;

 @ELSE

 IB = INEW + 1;

);

);

);

@STOP([‘MESSAGE’])
The @STOP statement terminates execution of the current model. The @STOP statement is valid only

within calc sections and takes on optional text argument. When an @STOP is executed, LINGO will

display error message 258:

[Error Code: 258]

Model execution halted. STOP statement encountered.

If a text argument is included in the @STOP, then it will also be displayed as part of this error

message.

As an example, we extend the @WHILE loop in the binary search example above to include an

@STOP statement that will be executed when the key value can’t be found:

@WHILE(KEY #NE# X(LOC):

 !exit if key can’t be found;

 @IFC(IE –IB #LE# 1:

 @STOP('Unable to find key!!!');

);

 INEW = @FLOOR((IE + IB) / 2);

 @IFC (KEY #EQ# X(INEW):

 LOC = INEW;

 @ELSE

 @IF (KEY #LT# X(INEW):

 IE = INEW;

 @ELSE

 IB = INEW;

);

);
);

614 CHAPTER 13

Model Generation
The commands in this category are related to the model generator, i.e., the component in LINGO that

translates your model’s statements into a format compatible with the solver.

@GEN([SUBMODEL_NAME[, … SUBMODEL_NAME_N]])
The @GEN statement generates a model and displays the generated equations. @GEN converts the

model into the appropriate format for the solver engine; however, it does not actually call the solver.

You will primarily use @GEN for debugging your models.

@GEN produces a report showing all the equations in the expanded model. This report is identical to

the report created by the LINGO|Generate command. By default, the report will be sent to the

terminal output window. You may use the @DIVERT statement to route the report to a file.

The @GEN statement accepts an optional argument of one or more submodel names. If a submodel is

specified, LINGO will only generate the model contained within the specified submodel section. If

multiple submodel names are specified, LINGO will combine them all into a single, larger model. If

submodel names are omitted entirely, then LINGO will generate only those model statements

occurring before the @GEN statement and not contained in any submodels.

As an example, below is a small staffing model that uses the @GEN statement in a calc section:

MODEL:

SETS:

 DAY / MON, TUE, WED, THU,

 FRI, SAT, SUN/ :

 NEED, START, COST;

ENDSETS

! Minimize total staffing costs;

[OBJ] MIN = @SUM(DAY(TODAY) :

 START(TODAY) * COST(TODAY));

! Subject to meeting daily needs;

 @FOR(DAY(TODAY): [CONS]

 @SUM(DAY(COUNT)| COUNT #LE# 5:

 START(@WRAP(TODAY - COUNT+1,

 @SIZE(DAY)))) >= NEED(TODAY));

DATA:

 NEED = 18 15 12 16 19 14 12;

COST = 400;

ENDDATA

CALC:

 @GEN();

ENDCALC

END

PROGRAMMING LINGO 615

Running this sample model yields the following generated model report:

MODEL:

[OBJ] MIN= 400 * START_MON + 400 * START_TUE +

 400 * START_WED + 400 * START_THU + 400 * START_FRI +

 400 * START_SAT + 400 * START_SUN ;

[CONS_MON] START_MON + START_THU + START_FRI +

 START_SAT + START_SUN >= 18 ;

[CONS_TUE] START_MON + START_TUE + START_FRI +

 START_SAT + START_SUN >= 15 ;

[CONS_WED] START_MON + START_TUE + START_WED +

 START_SAT + START_SUN >= 12 ;

[CONS_THU] START_MON + START_TUE + START_WED +

 START_THU + START_SUN >= 16 ;

[CONS_FRI] START_MON + START_TUE + START_WED +

 START_THU + START_FRI >= 19 ;

[CONS_SAT] START_TUE + START_WED + START_THU +

 START_FRI + START_SAT >= 14 ;

[CONS_SUN] START_WED + START_THU + START_FRI +

 START_SAT + START_SUN >= 12 ;

END

@GENDUAL([SUBMODEL_NAME[, …, SUBMODEL_NAME_N]])
The @GENDUAL statement generates the dual formulation of a linear programming model and

displays the generated equations. Every linear programming model has a corresponding, mirror-image

formulation called the dual. If the original model has M constraints and N variables, then its dual will

have N constraints and M variables.

Some interesting properties of the dual are that any feasible solution to the dual model provides a

bound on the objective to the original, primal model, while the optimal solution to the dual has the

same objective value as the optimal solution to the primal problem. It's also true that the dual of the

dual model is, once again, the original primal model. You may wish to refer to any good linear

programming text for a further discussion of duality theory.

For instance, replacing the @GEN statement with an @GENDUAL statement in the staffing model

above, we’d have the following calc section:

CALC:

 @GENDUAL();

ENDCALC

Running this sample model yields the following generated model report showing the original model's

dual formulation:

616 CHAPTER 13

MODEL:

MAX = 18 * CONS_MON + 15 * CONS_TUE + 12 * CONS_WED + 16 *

CONS_THU + 19 * CONS_FRI + 14 * CONS_SAT + 12 * CONS_SUN;

[START_MON] CONS_MON + CONS_TUE + CONS_WED + CONS_THU

+

CONS_FRI <= 400;

[START_TUE] CONS_TUE + CONS_WED + CONS_THU + CONS_FRI

+

CONS_SAT <= 400;

[START_WED] CONS_WED + CONS_THU + CONS_FRI + CONS_SAT

+

CONS_SUN <= 400;

[START_THU] CONS_MON + CONS_THU + CONS_FRI + CONS_SAT

+

CONS_SUN <= 400;

[START_FRI] CONS_MON + CONS_TUE + CONS_FRI + CONS_SAT

+

CONS_SUN <= 400;

[START_SAT] CONS_MON + CONS_TUE + CONS_WED + CONS_SAT

+

CONS_SUN <= 400;

[START_SUN] CONS_MON + CONS_TUE + CONS_WED + CONS_THU

+

CONS_SUN <= 400;

END

Note that the dual is the transpose of the original linear program, with variables becoming the new row

names and row names becoming the new variable names.

@PIC([SUBMODEL_NAME[, …, SUBMODEL_NAME_N]])
The @PIC statement works much like @GEN, with the exception that it displays a matrix picture

rather than the generated equations. For instance, replacing the @GEN statement with an @PIC

statement in the staffing model above, we’d have the following calc section:

CALC:

 @PIC();

ENDCALC

PROGRAMMING LINGO 617

Running the modified model will generate the following matrix picture:

 S S S S S S S

 T T T T T T T

 A A A A A A A

 R R R R R R R

 T T T T T T T

 (((((((

 M T W T F S S

 O U E H R A U

 N E D U I T N

)))))))

 OBJ: C C C C C C C MIN

CONS(MON): 1 1 1 1 1 > B

CONS(TUE): 1 1' ' 1'1 1 > B

CONS(WED): 1 1 1 ' 1 1 > B

CONS(THU): 1 1 1 1 1 > B

CONS(FRI): 1 1'1 1 1' ' > B

CONS(SAT): ' 1 1 1 1 1 ' > B

CONS(SUN): ' 1 1 1 1 1 > B

Refer to the PICTURE command for a discussion on how to interpret matrix picture reports.

@SMPI(‘FILE_NAME’[, SUBMODEL_NAME[, …, SUBMODEL_NAME_N]])
The @SMPI statement generates the model and then writes it to a specified file in MPI format. MPI is

a special format developed by LINDO Systems for representing all classes of mathematical programs:

linear, integer, and nonlinear. This format is not intended for permanent storage of your models.

LINDO API users may be interested in this format for exporting models to the LINDO API.

The @SMPI statement also accepts an optional argument of one or more submodel names. If a single

submodel is specified, LINGO will only generate and save the model contained within the specified

submodel section. If multiple submodel names are specified, LINGO will group them all together as

one larger, combined model before writing the MPI file. If no submodel name is specified, then only

the model statements occurring before the @GEN statement and not contained in any submodels will

be used in generating the MPI file.

As an example, we could write the staffing example listed above to an MPI file by modifying the calc

section to be:

CALC:

 @SMPI(’MYMPIFILE.MPI’);
ENDCALC

@SMPS(‘FILE_NAME’[, SUBMODEL_NAME[, …, SUBMODEL_NAME_N]])
The @SMPS statement generates the model and then writes it to a specified file in MPS format file.

The MPS file format is an industry standard format developed by IBM, and is useful for passing

models from one solver or platform to another. LINDO API users may be interested in this format for

exporting models to the LINDO API.

618 CHAPTER 13

The @SMPS statement also accepts an optional argument of one or more submodel names. If a single

submodel is specified, LINGO will only generate and save the model contained within the specified

submodel section. If multiple submodel names are specified, LINGO will group them all together as

one larger, combined model before writing the MPS file. If no submodel name is specified, then only

the model statements occurring before the @GEN statement and not contained in any submodels will

be used in generating the MPI file.

As an example, we could write the staffing example listed above to an MPS file by modifying the calc

section to be:

CALC:

 @SMPS(’MYMPSFILE.MPS');
ENDCALC

Note 1: A model must be linear or quadratic to successfully export it in MPS format.

Note 2: When exporting an MPS file, LINGO truncates all variable names to 8 characters. For

instance, the two distinct LINGO names SHIP(WH1, C1) and SHIP(WH1, C2) would both

be truncated to the single 8 character name SHIPWH1C under MPS. Either choose names to

avoid collisions of truncated names, or enable the option for converting names to RC format

when doing MPS I/O. LINGO will display an error message if potential collisions exist.

Note 3: The MPS file format is intended primarily for exporting models to other applications or

platforms. The MPS format is purely scalar in nature—all set-based information is lost upon

converting a LINGO model to MPS format. Thus, when saving copies of a model on your

own machine, you should always use the File|Save command in order to preserve your model

in its entirety.

@STATS([SUBMODEL_NAME[, …, SUBMODEL_NAME_N]])
The @STATS statement works much like @GEN, with the exception that it displays a report

containing summary statistics about the size of the generated model. Please refer to the

LINGO|Model Statistics command for more information on the fields of a STATS report.

@RELEASE(VARIABLE_NAME)
When a variable is assigned a value in a calc section, that variable is marked by LINGO as being

permanently fixed at the value, i.e., subsequent optimization via @SOLVE will not affect the variable’s

value. The @RELEASE statement is used to release such a fixed variable so that it may once again

become optimizable.

PROGRAMMING LINGO 619

The following calc section, developed for the staff scheduling model presented above, will help to

illustrate the use of @RELEASE:

CALC:

 @SOLVE();

 @FOR(DAY(D):

 ! Force starts to 0 for today;

 START(D) = 0;

 @SOLVE();

 OBJ0(D) = OBJ;

 ! Allow START(D) to be optimizable again;

 @RELEASE(START(D));

);

 @FOR(DAY(D):

 @WRITE(DAY(D), 10*' ', OBJ0(D), @NEWLINE(1));

);

ENDCALC

This calc section loops through each day of the week and does the following:

1. Sets the number of employees starting on the day to zero: START(D) = 0

2. Solves for the low-cost staffing pattern given that the current day will have no starting

employees: @SOLVE()

3. Stores the objective for a later report: OBJ0(D) = OBJ

4. Releases the number of employee starts for the current day so that it can be optimized in

the next solve: RELEASE(DAY(D))

The last part of the calc section writes the following report summarizing the results:

MON 9800

TUE 9000

WED 8600

THU 9600

FRI 9200

SAT 8800

SUN 8600

Output Statements
The features in this section are for displaying output. In addition to the output functions discussed

here, all the reporting functions discussed in Chapter 7, Report Functions, for data and init sections are

also available for use in calc section scripts. The one exception is that the @TABLE function is only

available for use in data sections.

@SOLU([0|1[, MODEL_OBJECT[, 'REPORT_HEADER']]])
The @SOLU statement mimics the functionality of the SOLU command-line command. If all

arguments are omitted, then @SOLU will display the default, LINGO solution report. All reports are

sent to the screen unless an @DIVERT (see below) command is in effect, routing output to a text file.

620 CHAPTER 13

If the first argument to @SOLU is 0, then only nonzero variables and binding rows will be displayed.

If the first argument is 1, then all information will be displayed.

If you wish to narrow the scope of the solution report, then the optional MODEL_OBJECT argument

can be either an attribute or row name. In which case, the report will be restricted to the specified

object.

The optional third argument, 'REPORT_HEADER', is used when you wish to place a header string on

the report.

You can refer to the LOOPOLE model in the Samples folder for an example of a model that uses the

@SOLU command

@WRITE(‘TEXT1’|VALUE1[, …, ‘TEXTN’|VALUEN])
The @WRITE statement is the primary tool you’ll use for displaying output in calc sections. @WRITE

can display both text and variable values. Text strings are delimited with single or double-quotes. All

output will be directed to the screen unless @DIVERT (discussed below) is used to route output to a

file.

@WRITE is useful for both debugging your calc section code and for generating custom reports. As

an example, the following product mix model uses @WRITE statements in a calc section to construct a

custom report:

MODEL:

 [PROFIT] MAX = 200 * WS + 300 * NC;

 [CHASSIS1] WS <= 60;

 [CHASSIS2] NC <= 40;

 [DRIVES] WS + 2 * NC <= 120;

CALC:

 @SOLVE();

 @WRITE('Total profit = ', PROFIT, @NEWLINE(1));

 @WRITE('Production:', @NEWLINE(1));

 @WRITE(' WS = ', WS, @NEWLINE(1),

 ' NC = ', NC, @NEWLINE(1),

 'Total units = ', WS + NC,

 @NEWLINE(2)

);

 @WRITE('Dual analysis:', @NEWLINE(1),

 ' Chassis1: ', @DUAL(CHASSIS1),

 @NEWLINE(1),

 ' Chassis2: ', @DUAL(CHASSIS2),

 @NEWLINE(1),

 ' Drives: ', @DUAL(DRIVES),

 @NEWLINE(1)

);

ENDCALC

END

PROGRAMMING LINGO 621

Running this model will yield the following report:

Total profit = 21000

Production:

 WS = 60

 NC = 30

Total units = 90

Dual analysis:

 Chassis1: 50

 Chassis2: 0

 Drives: 150

Note that in addition to the @WRITE statement, we also made use of both the @NEWLINE report

function to produce line feeds and the @DUAL report function to return the dual values, or shadow

prices, on the constraints. Additional information on these and other report functions may be found in

section Report Functions of Chapter 7.

@PAUSE(‘TEXT1’|VALUE1[, …, ‘TEXTN’|VALUEN])
The @PAUSE statement has the same syntax as the @WRITE statement, however, @PAUSE causes

LINGO to pause execution and wait for a user response. For example, under Windows, the following

reference to @PAUSE:

CALC:

 @PAUSE('An example of @PAUSE running on Windows.');

ENDCALC

will cause the following dialog box to be displayed:

The user has the option of pressing either the Resume button to continue normal processing, or the

Interrupt button to immediately terminate execution of the model. On platforms other than Windows,

the output will be routed to the terminal and LINGO will wait for the user to press the Enter key.

622 CHAPTER 13

@DIVERT([‘FILE_NAME’])
By default, output generated by the @WRITE statement will be sent to the screen. However, you may

wish to capture this output in a file. @DIVERT allows you to do this. As an example, we modified the

product mix example from above to route its custom report to file MYREPORT.TXT as follows:

CALC:

 @SOLVE();

 @DIVERT('MYREPORT.TXT');

 @WRITE('Total profit = ', PROFIT, @NEWLINE(1));

 @WRITE('Production:', @NEWLINE(1));

 @WRITE(' WS = ', WS, @NEWLINE(1),

 ' NC = ', NC, @NEWLINE(1),

 'Total units = ', WS + NC,

 @NEWLINE(2)

);

 @WRITE('Dual analysis:', @NEWLINE(1),

 ' Chassis1: ', @DUAL(CHASSIS1),

 @NEWLINE(1),

 ' Chassis2: ', @DUAL(CHASSIS2),

 @NEWLINE(1),

 ' Drives: ', @DUAL(DRIVES),

 @NEWLINE(1)

);

 @DIVERT();

ENDCALC

Note the two occurrences of @DIVERT. In the first instance, we specify the file we want to open, and

subsequent @WRITE output is diverted to that file. The second reference to @DIVERT closes the file

and reverts output back to the terminal device.

@DIVERT also accepts an optional second argument of the letter ‘A’. If this argument is present,

LINGO will append output to the end of the file if it already exists. If the argument is omitted, LINGO

will overwrite the file if it already exists

Note: @DIVERT statements can be nested so that multiple levels of output files may be

simultaneously in use.

PROGRAMMING LINGO 623

Setting Parameters
LINGO has many optional settings that can be controlled with the LINGO|Options command. At times, you

may find it necessary to alter these parameters dynamically in your model’s calc sections. For this reason,

LINGO provides the @SET statement, which gives you access to the entire set of system parameters. There

is also and additional function, @APISET, for setting more obscure parameters in the LINDO API

(LINGO’s solver library) that aren’t available through the standard LINGO options set.

@SET(‘PARAM_NAME’, PARAMETER_VALUE)
To change a parameter’s setting, @SET requires that you pass it a parameter name as a text string,

along with the parameter’s new value. For example, to set the integer solver’s relative optimality

tolerance to .05 we’d use:

 @SET(’IPTOLR’, .05);

A list of all the parameter names can be found in Chapter 6’s discussion of the SET command-line

command.

A parameter may be returned to its default value by omitting the parameter_value argument. For

instance,

 @SET(’IPTOLR’);

would return the IPTOLR parameter to its default value.

Use:

 @SET(’DEFAULT ’);

to return all parameters to their default settings:

Note: Parameters whose values have been changed with @SET in a calc section will be restored to

their original settings once the model run is completed.

@APISET(PARAM_INDEX, ‘INT|DOUBLE’, PARAMETER_VALUE)
LINGO uses the LINDO API solver library as its underlying solver engine. The LINDO API has a

wealth of parameters that may be set by the user. Many of these parameters would be of use only in

rare instances. Given this, LINGO does not provide direct access to all possible LINDO API

parameters. However, if you need access to certain API parameters that aren’t in the standard LINGO

set, you may do so with the @APISET command.

To change a parameter’s setting, @APISET requires that you pass it a parameter index, a text string of

either ‘INT’ or “DOUBLE’ indicating if the parameter is an integer or double precision quantity, along

with the parameter’s new value. You can refer to the LINDO API documentation (available on

LINDO Systems’ Web site) for a list of available parameters. A list of parameters and their indices is

also in the lindo.h file included as part of your LINGO installation.

As an example, the LINDO API adds cuts in the branch-and-bound tree every 10 nodes. If you would

like to add cuts more frequently, say every 5 nodes, then you could do so with the:

624 CHAPTER 13

 @APISET(318, ‘INT’, 5);

You may also force all API parameters back to their default values with:

 @APISET(‘DEFAULT’);

Note: Parameters whose values have been changed with @APISET will be restored to their original

settings once the model run is completed.

Procedures
PROCEDURE and ENDPROCEDURE:

LINGO allows for blocks of code known as procedures. These blocks can be called from anywhere in

a calc section by simply referring to the procedure's name. Procedures can be useful for portions of

calc sections that must be executed multiple times. The PROCEDURE and ENDPROCEDURE

statements are used to bracket a procedure's code. The PROCEDURE statement must be followed

immediately by a unique name that follows the normal naming conventions. The name must then be

followed by a colon. You must also place an ENDPROCEDURE statement immediately after the last

statement of your procedure. Procedures form their own model section that must lie outside data, init

and calc sections. Unlike a calc section, procedures are not automatically executed when solving a

model. Instead, you must reference the procedure's name in a calc section to execute its code.

As an example, the following procedure was extracted from the sample model, PROCEDURE.LG4:

 PROCEDURE PRINT_REPORT:

 @WRITE(' Start: ');

 @WRITEFOR(DAY: @FORMAT(START, '6.0f'));

 @WRITE(@FORMAT(@SUM(DAY: COST*START), '8.0f'));

 @WRITE(@NEWLINE(1));

 @WRITE(' On Duty: ');

 @WRITEFOR(DAY: @FORMAT(NEED + EXCESS, '6.0f'));

 @WRITE(@NEWLINE(1));

 @WRITE(' Required: ');

 @WRITEFOR(DAY: @FORMAT(NEED, '6.0f'));

 @WRITE(@NEWLINE(1));

 @WRITE(' Excess: ');

 @WRITEFOR(DAY: @FORMAT(EXCESS, '6.0f'));

 @WRITE(@NEWLINE(2));

 ENDPROCEDURE

This procedure prints a small report for a staffing model. The procedure is called several times from

the model's main calc section to print solution reports for several permutations of the original model.

Here is a code fragment from the models calc section that illustrates calling the procedure:

 @WRITE('Solution 1 - min cost:', @NEWLINE(1));

 PRINT_REPORT;

PROGRAMMING LINGO 625

The first line prints a header file for the report, while the second line generates the actual report by

calling the PRINT_REPORT procedure above. A sample of one of the reports follows:

 MON TUE WED THU FRI SAT SUN

TOTAL

Solution 1 - min cost:

 Start: 5 4 0 6 2 2 4

4600

 On Duty: 19 17 15 19 17 14 14

 Required: 19 17 15 19 17 14 12

 Excess: 0 0 0 0 0 0 2

You may wish to open PROCECURE.LG4 in LINGO to experiment with the use of procedure calls.

Stochastic Programming
LINGO 12.0 introduced a stochastic programming solver (SP) for multistage stochastic programs with

recourse. Details may be found in Chapter 14, Stochastic Programming. Some additional

programming features were also added for use with SP models. These additional programming

features are discussed delow.

@SPLOADSCENE(SCENARIO_INDEX)
This function loads the solution for scenario index SCENARIO_INDEX. The solution for this scenario

then becomes the current/active solution. As an example, the following would load the solution for

scenario 1:

@SPLOADSCENE(1);

Suppose you have an SP model with an objective row call PROFIT_ROW. The following code will

compute the expected/average profit over each scenario:

I = 1;

EXP_PROFIT = 0;

@WHILE (I #LE# @SPNUMSCENE()):

 @SPLOADSCENE(I);

 EXP_PROFIT = EXP_PROFIT + PROFIT_ROW;

 I = I + 1;

);

EXP_PROFIT = EXP_PROFIT / @SPNUMSCENE();

@WRITE('Expected Profit = ', EXP_PROFIT);

@SPNUMSCENE()
Use @SPNUMSCENE to retrieve the total number of scenarios in the model. You can refer to the

code example immediately above for an example of using @SPNUMSCENE() to compute the

expected/average profit over each scenario in an SP model.

@SPPRBSCENE(SCENARIO_INDEX)
Use @SPPRBSCENE to retrieve the probability of a specified scenario index, SCENARIO_INDEX. In

the following example, we loop to display the probabilities for each scenario in the model:

626 CHAPTER 13

CALC:

 ! Solve the SP;

 @SOLVE();

 ! Loop to display scenario probabilities;

 I = 1;

 @WHILE(I #LE# @SPNUMSCENE():

 @WRITE(' Scenario: ', I, ' Probability: ',

 @SPPRBSCENE(I), @NEWLINE(1));

 I = I + 1;

);

ENDCALC

The output from the loop is:

 Scenario: 1 Probability: 0.1666666666666667
 Scenario: 2 Probability: 0.3333333333333333

 Scenario: 3 Probability: 0.5

Utility Functions

RANKING_OF_ATTRIBUTE = @RANK(ATTRIBUTE_TO_BE_RANKED)
The @RANK function ranks the values of an attribute in ascending order. This can be a useful

function when you need to sort the members of an attribute. @RANK is available for use only in calc

sections.

As an example, consider the following small model:

model:

sets:

 s1: x, rankx;

endsets

data:

 x = 3.2 -1.1 5.7;

enddata

calc:

 rankx = @rank(x);

endcalc

end

The @RANK function will place the following values into the RANKX attribute: 2, 1, 3, indicating that

X(1) is the second from smallest value, X(2) is the smallest, and X(3) is the largest.

PROGRAMMING LINGO 627

The following is another illustration of the use of @RANK. Here, we generate a list of random

numbers and then sort them through the use of @RANK:

model:

! Generates 40,000 random numbers, ranks them

 with @RANK(), and then moves them into sorted

 order.;

sets:

 s1 /1..40000/: xrand, xrank, xsort;

endsets

calc:

 @set('terseo', 2);

 seed = .5;

 t0 = @time();

 @for(s1(i):

 xrand(i) = @rand(seed);

 seed = xrand(i);

);

 t1 = @time();

 xrank = @rank(xrand);

 t2 = @time();

 @for(s1(i):

 xsort(xrank(i)) = xrand(i);

);

 t3 = @time();

 @write(

 ' Time to generate: ', @format(t1 - t0, '8.2g'),

@newline(1), ' Time to rank: ',

@format(t2 - t1, '8.2g'), @newline(1),

' Time to move: ', @format(t3 - t2, '8.2g'),

@newline(2)

);

endcalc

end

Model: SORTRAND

The following code generates the random numbers through the use of the @RAND function:

628 CHAPTER 13

 @for(s1(i):

 xrand(i) = @rand(seed);

 seed = xrand(i);

);

Then, we rank the random values via @RANK with:

 xrank = @rank(xrand);

The random values are then moved into sorted order with the loop:

 @for(s1(i):

 xsort(xrank(i)) = xrand(i);

);

Finally, we display the time these three operations used with the @WRITE statement:

 @write(

 ' Time to generate: ', @format(t1 - t0, '8.2g'),

@newline(1), ' Time to rank: ',

@format(t2 - t1, '8.2g'), @newline(1),

' Time to move: ', @format(t3 - t2, '8.2g'),

@newline(2)

);

Running the model in LINGO will yield a report similar to the following:

 Time to generate: 0.07

 Time to rank: 0.01

 Time to move: 0.05

Programming Example: Binary Search
In this section we will illustrate some of LINGO’s programming features by developing a model to

perform a binary search. Binary searches are an efficient way to look up a key in a sorted list. In the

worst case, a binary search should perform no more than log2(n) comparisons to determine if a key is

on a sorted list, where n is the number of items on the list.

The basic idea behind a binary search is that you bracket the key in the list. You then iterate by

reducing the size of the bracket by a factor of 2 each pass. This process continues until you either find

the key, or conclude that the key is not on the list when the bracket size becomes 0.

Note: A binary search is not typically something you would do in LINGO, and we use it here

merely as an example of a simple algorithm for illustrative purposes.

PROGRAMMING LINGO 629

The Model
The following model is an example of implementing a binary search in LINGO:

MODEL:

! Illustrates programming looping

 capabilities of LINGO by doing a

 binary search;

SETS:

 S1: X;

ENDSETS

DATA:

 ! The key for which we will search;

 KEY = 16;

 ! The list (must be in sorted

 increasing order);

 X = 2 7 8 11 16 20 22 32;

ENDDATA

! Do a binary search for key;

CALC:

 ! Set begin and end points of search;

 IB = 1;

 IE = @SIZE(S1);

 ! Loop to find key;

 @WHILE(IB #LE# IE:

 ! Cut bracket in half;

 LOC = @FLOOR((IB + IE)/2);

@IFC(KEY #EQ# X(LOC):

 @BREAK; ! Do no more loops;

 @ELSE

 @IFC(KEY #LT# X(LOC):

 IE = LOC-1;

 @ELSE

 IB = LOC+1;

);

);

);

@IFC(IB #LE# IE)

 ! Display key's location;

 @PAUSE('Key is at position: ', LOC);

 @ELSE

 ! Key not in list;

 @STOP(' Key not on list!!!');

 @ENDIF

ENDCALC

END

Model: LOOPBINS

630 CHAPTER 13

The Details
Our first step is to define a set, S1, and give it the attribute X using the following sets section:

SETS:

 S1: X;

ENDSETS

The X attribute will store the list that we will search for the key value. We populate X and input our

key in the data section:

DATA:

 ! The key for which we will search;

 KEY = 16;

 ! The list (must be in sorted

 increasing order);

 X = 2 7 8 11 16 20 22 32;

ENDDATA

Note that for the purposes of this example, the list of values must be input in sorted order. An

interesting exercise would be to extend this model so that it tests to determine if the data is sorted. Or,

if you are really ambitious, extend the model so that it will sort a list with arbitrary ordering.

Next comes the calc section, which contains our code to do the binary search. In the first part of the

calc section:

CALC:

 ! Set begin and end points of search;

 IB = 1;

 IE = @SIZE(S1);

we bracket the key by pointing to the beginning of the list, IB, and the end of the list, IE. Note that we

make use of the @SIZE function to dynamically compute the size of the list.

Next, we have the @WHILE loop to search for the key value:

! Loop to find key;

 @WHILE(IB #LE# IE:

 ! Cut bracket in half;

 LOC = @FLOOR((IB + IE)/2);

 @IFC(KEY #EQ# X(LOC))

 @BREAK; ! Do no more loops;

 @ELSE
 @IFC(KEY #LT# X(LOC):

 IE = LOC-1;

 @ELSE

 IB = LOC+1;

);

);

);

The @WHILE loop tests if the candidate range has become empty at the start of each iteration:

@WHILE(IB #LE# IE:

PROGRAMMING LINGO 631

If not, we continue by dissecting the bracket in half:

!cut bracket in half;

INEW = @FLOOR((IE + IB) / 2);

We then determine if the new bracket point resides above or below the key and set IB and IE

accordingly:

@IFC(KEY #EQ# X(LOC):

 @BREAK; ! Do no more loops;

@ELSE

 @IFC(KEY #LT# X(LOC):

 IE = LOC-1;

 @ELSE

 IB = LOC+1;

);

);

Finally, when we fall out of the @WHILE loop we display the result of our search:

@IFC(IB #LE# IE:

 ! Display key's location;

 @PAUSE('Key is at position: ', LOC);

 @ELSE

 ! Key not in list;

 @STOP(' Key not on list!!!');

);

If the eligible range is empty, then we did not find the key. Otherwise, the key was found and report

its location on the list.

If you run this model, LINGO should successfully find the key and display:

632 CHAPTER 13

Programming Example: Markowitz Efficient
Frontier
In the March 1952 issue of Journal of Finance, Harry M. Markowitz published an article titled

Portfolio Selection. In the article, he demonstrates how to reduce the risk of asset portfolios by

selecting assets whose values aren't highly correlated. The concepts behind the Markowitz portfolio

model were discussed in detail in the previous chapter in section Markowitz Portfolio Selection Model.

The basic idea is that, given a desired level of expected return, one should select a basket of assets that

minimizes risk (i.e., variance in return). Any other basket of assets would be inefficient in that it

entails taking on extra risk without extra compensation.

The Markowitz model allows you to evaluate tradeoffs between risk and return. By running the model

for a series of different levels of return, you can see how portfolio risk must increase as desired return

increases. The return/risk tradeoff may be graphed, and this graph is known as the efficient frontier. If

we place risk on the vertical axis and return on the horizontal, then portfolios to the left of the efficient

frontier are inefficient. This is because portfolios exist with the same amount of return but less risk.

Conversely, all (return,risk) pairs that lie to the right of the curve cannot be achieved given the current

available asset pool. Finally, all portfolios with (return,risk) combinations that lie on the curve are

efficient—no portfolio can be found with the same level of return and lower risk.

We will now demonstrate how you can use the programming capabilities in LINGO to generate points

along the efficient frontier by repeatedly solving the Markowitz model for a series of portfolio return

values.

The Model
Here’s the model we will use to generate points along the efficient frontier:

MODEL:

! Solves the generic Markowitz portfolio

 model in a loop to generate the points

 on the efficient frontier;

SETS:

 ASSET: RATE, UB, X;

 COVMAT(ASSET, ASSET): V;

 POINTS: XRET, YVAR;

ENDSETS

DATA:

! Number of points on the

 efficient frontier graph;

 NPOINTS = 10;

 POINTS = 1..NPOINTS;

! The stocks;

 ASSET = GOOGLE, YAHOO, CISCO;

! Expected growth rate of each asset;

 RATE = 1.3 1.2 1.08;

PROGRAMMING LINGO 633

! Upper bound on investment in each;

 UB = .75 .75 .75;

! Covariance matrix;

 V = 3 1 -.5

 1 2 -.4

 -.5 -.4 1;

ENDDATA

! Below are the three objectives we'll use;

SUBMODEL SUB_RET_MAX:

 [OBJ_RET_MAX] MAX = RETURN;

ENDSUBMODEL

SUBMODEL SUB_RET_MIN:

 [OBJ_RET_MIN] MIN = RETURN;

ENDSUBMODEL

SUBMODEL SUB_MIN_VAR:

 [OBJ_MIN_VAR] MIN =

 @SUM(COVMAT(I, J): V(I, J) * X(I) * X(J));

ENDSUBMODEL

!and the constraints;

SUBMODEL SUB_CONSTRAINTS:

 ! Compute return;

 RETURN = @SUM(ASSET: RATE * X);

 ! Must be fully invested;

 @SUM(ASSET: X) = 1;

 ! Upper bounds on each;

@FOR(ASSET: @BND(0, X, UB));

 ! Must achieve target return;

 RETURN >= RET_LIM;

ENDSUBMODEL

CALC:

! Set some parameters;

 ! Reset all params;

 @SET('DEFAULT');

 ! Minimize output;

 @SET('TERSEO', 1);

 ! Suppress status window;

 @SET('STAWIN', 0);

! Capture unwanted output;

 @DIVERT('LINGO.LOG');

! Solve to get maximum return;

 RET_LIM = 0;

 @SOLVE(SUB_RET_MAX, SUB_CONSTRAINTS);

! Save maximum return;

 RET_MAX = OBJ_RET_MAX;

634 CHAPTER 13

! Solve to get minimum return;

 @SOLVE(SUB_RET_MIN, SUB_CONSTRAINTS);

! Save minimum return;

 RET_MIN = OBJ_RET_MIN;

! Interval between return points;

 INTERVAL =

 (RET_MAX - RET_MIN) / (NPOINTS-1);

! Loop over range of possible returns

 minimizing variance;

 RET_LIM = RET_MIN;

 @FOR(POINTS(I):

 @SOLVE(SUB_MIN_VAR, SUB_CONSTRAINTS);

 XRET(I) = RET_LIM;

 YVAR(I) = OBJ_MIN_VAR;

 RET_LIM = RET_LIM + INTERVAL;

);

! Close log file;

 @DIVERT();

! Display the results;

 @WRITE(' Return Variance', @NEWLINE(1));

 @FOR(POINTS: @WRITE(@FORMAT(XRET, '#12.6G'),

 @FORMAT(YVAR, '#12.6G'), @NEWLINE(1))

);

ENDCALC

END

Model: LOOPPORT

The Details

First consider the sets section:

SETS:

 ASSET: RATE, UB, X;

 COVMAT(ASSET, ASSET): V;

 POINTS: XRET, YVAR;

ENDSETS

It defines three sets: ASSET, COVMAT and POINTS.

The ASSET set will contain the set of assets available for investment. Each asset has an expected rate

of return (RETURN), an upper bound on the amount of the asset we’ll allow in the portfolio (UB), and

the fraction of the portfolio devoted to the asset (X). Note that the fraction of the portfolio devoted to

each asset, X, constitutes our decision variables.

The COVMAT set is a cross of the ASSET set on itself. We create this set for the attribute V, which

will store the covariance matrix for all the assets.

PROGRAMMING LINGO 635

The POINTS set is used to represent the points on the efficient frontier that we will be generating. For

each point, we will determine its x-coordinate, XRET, and its y-coordinate, YVAR. Note that the x-

coordinate will represent risk, while the y-coordinate will represent return. What we intend to do is to

solve a portfolio model once for each member of the POINTS set to get a new point on the efficient

frontier. These points will be stored in XRET and YVAR. Once the loop is completed, the list of points

in XRET and YVAR will give us a glimpse of what the efficient frontier looks like.

Next we have the data section:

DATA:

! Number of points on the

 efficient frontier graph;

 NPOINTS = 10;

 POINTS = 1..NPOINTS;

! The stocks;

 ASSET = GOOGLE, YAHOO, CISCO;

! Expected growth rate of each asset;

 RATE = 1.3 1.2 1.08;

! Upper bound on investment in each;

 UB = .75 .75 .75;

! Covariance matrix;

 V = 3 1 -.5

 1 2 -.4

 -.5 -.4 1;

ENDDATA

In this data section we are setting the number of points that we will generate along the efficient frontier

(NPOINTS) to 10. Once we have the number of points established, we dynamically create the POINTS

set. Next, we input the set of assets, their expected rate of return, their upper bounds, and their

covariance matrix.

The next section of the model:

! Below are the three objectives we'll use;

SUBMODEL SUB_RET_MAX:

 [OBJ_RET_MAX] MAX = RETURN;

ENDSUBMODEL

SUBMODEL SUB_RET_MIN:

 [OBJ_RET_MIN] MIN = RETURN;

ENDSUBMODEL

SUBMODEL SUB_MIN_VAR:

 [OBJ_MIN_VAR] MIN =

 @SUM(COVMAT(I, J): V(I, J) * X(I) * X(J));

ENDSUBMODEL

636 CHAPTER 13

makes use of the SUBMODEL and ENDSUBMODEL statements to establish three different objectives.

The first two objectives respectively maximize and minimize portfolio return, which are used later on

in the model to determine that maximum and minimum possible returns that can be generated with out

basket of available stocks. The third objective, SUB_MIN_VAR, minimizes portfolio risk as measured

by its variance.

Following the three submodels containing our various objectives, we have another submodel that

contains our three constraints:

!and the constraints;

SUBMODEL SUB_CONSTRAINTS:

 ! Compute return;

 RETURN = @SUM(ASSET: RATE * X);

 ! Must be fully invested;

 @SUM(ASSET: X) = 1;

 ! Upper bounds on each;

 @FOR(ASSET: @BND(0, X, UB));

 ! Must achieve target return;

 RETURN >= RET_LIM;

ENDSUBMODEL

The first constraint of our constraint section computes portfolio return. The second constraint says that

we must invest 100 percent of our capital. The third constraint puts an upper bound on the percentage

of the portfolio invested in each asset. Finally, the fourth constraint forces total portfolio return to

achieve some desired level.

The next section, the calc section, is of primary interest. It contains the logic to solve the model

multiple times to generate and store the points on the efficient frontier. First, we make use of @SET to

set some parameter values:

! Set some parameters;

 ! Reset all params to their defaults; @SET('DEFAULT');

 ! Minimize output;

 @SET('TERSEO', 1);

 ! Suppress status window;

 @SET('STAWIN', 0);

The first call to @SET restores all parameters to their default values, the second call minimizes the

level of LINGO’s output to improve performance, while the third call suppresses the status window

that would normally pop up when solving a model. We suppress the status window so it does not

obscure the custom report we are creating at the end of the run.

Next, we use @DIVERT to route LINGO’s output to a log file:

! Capture spurious output;

 @DIVERT('LINGO.LOG');

We do this to capture the output LINGO would normally generate while it’s solving the various

portfolio models. We capture this output so it doesn’t distract from the custom report we will display

at the end of the run.

PROGRAMMING LINGO 637

Our next task is to find out the possible range of portfolio returns. We want this information so that

we don’t try to run our model for returns lying outside this range, which would result in an infeasible

model. This requires two runs: one where we maximize return and one where we minimize return.

Here is the code that performs the runs:

! Solve to get maximum return;

 RET_LIM = 0;

 @SOLVE(SUB_RET_MAX, SUB_CONSTRAINTS);

! Save maximum return;

 RET_MAX = OBJ_RET_MAX;

! Solve to get minimum return;

 @SOLVE(SUB_RET_MIN, SUB_CONSTRAINTS);

! Save minimum return;

 RET_MIN = OBJ_RET_MIN;

This is our first example of the the @SOLVE command. @SOLVE takes one or more submodel names

as arguments. It then combines the submodels into a single model and solves them. In this case, we

first solve submodel SUB_RET_MAX along with submodel SUB_CONSTRAINTS to get the maximum

return possible subject to our constraint set. We then do a similar solve to find the minimal return

subject to the constraints. Other items of interest are that we zero out RET_LIM, given that the

constraint on return is temporarily not required, and we store the two extreme objective values in

RET_MAX and RET_MIN for later use.

Our end goal is to solve the model for 10 values of portfolio return, with these values being equally

spaced from RET_MIN to RET_MAX. The next step in the model computes the distance, or interval,

between these points:

! Interval between return points;

INTERVAL =

 (RET_MAX - RET_MIN) / (NPOINTS-1);

Our next code segment is an @FOR loop that loops over each of the 10 return values and minimizes

portfolio variance subject to attaining the desired level of return:

! Loop over range of possible returns

 minimizing variance;

 RET_LIM = RET_MIN;

 @FOR(POINTS(I):

 @SOLVE(SUB_MIN_VAR, SUB_CONSTRAINTS);

 XRET(I) = RET_LIM;

 YVAR(I) = OBJ_MIN_VAR;

 RET_LIM = RET_LIM + INTERVAL;

);

We start by setting the desired level of return to RET_MIN and then increment this level of return each

pass through the loop by the interval amount. Note that the solve command now uses the submodel

containing the objective that minimizes return, SUB_MIN_VAR. Also, after each solve command, we

store the coordinates of the point on the efficient frontier in XRET and YRET.

638 CHAPTER 13

Our next section of code creates a custom report:

! Close log file;

 @DIVERT();

! Display the results;

 @WRITE(' Return Variance', @NEWLINE(1));

 @FOR(POINTS: @WRITE(@FORMAT(XRET, '#12.6G'),

 @FORMAT(YVAR, '#12.6G'), @NEWLINE(1))

);

Once again, we make use of @DIVERT, but this time we do not pass an argument. This results in

output once again going to the report window, which will allow us to view our report on screen. After

restoring terminal output with @DIVERT, we use the @WRITE command inside an @FOR loop to

write out the 10 points on the efficient frontier. If you run the model, you should see the following

report:

Return Variance

1.11000 0.417375

1.12833 0.417375

1.14667 0.418054

1.16500 0.462381

1.18333 0.575957

1.20167 0.758782

1.22000 1.01086

1.23833 1.33218

1.25667 1.72275

1.27500 2.18750

PROGRAMMING LINGO 639

In summary, returns range from 11% to a high of 27.5%, with portfolio variance ranging from .417 to

2.18. One final note, if you load this model from your Lingo samples folder you will find additional

Lingo code at the end devoted to graphing the frontier. We will not go into the details of that code at

this point; however, the generated graph is pictured below:

 Risk

 ^

 2.2 | *

 |

 |

 |

 |

 | *

 |

 |

 |

 | *

 |

 |

 |

 | *

 |

 |

 | *

 |

 | *

0.40 | * * * *

 --->

 1.1

1.3

Model: LOOPPORT – Graph of Efficient Frontier

Programming Example: Cutting Stock
An optimization problem in the paper, steel, and wood industries is the cutting-stock problem. The

main feature of this problem is that finished goods of varying lengths are cut from larger raw material

pieces of varying lengths. The goal is to cut the raw materials using an efficient set of patterns to

minimize the total amount of raw materials required, while meeting demand for all finished products.

Examples would include sheet metal and paper manufacturers that take larger rolls of product and cut

them into smaller rolls for sale to customers.

As an example, suppose you are a steel fabricator that takes 45 foot steel beams and cuts them into 14,

12 and 7 foot beams for sale to construction firms. Cutting one 45 foot beam into one 14 foot piece,

two 12 foot pieces and one 7 foot piece would be very efficient in that it would exactly use up the 45

foot raw material piece with no trim waste. On the other hand, a pattern of one 14 foot piece, one 12

foot piece and two seven foot pieces would not be as efficient due to a 5 foot piece of trim waste.

640 CHAPTER 13

A brute force method for attacking the cutting-stock problem would be to generate all possible

efficient patterns and run an optimization model to determine how may copies of each pattern to run to

satisfy demand at minimal cost. The drawback here is that the number of patterns grows exponentially

as the number of different finished good lengths increase. For all but the smallest problems, brute

force pattern generation will yield large, intractable models.

Gilmore and Gomory published a paper in 1961 titled A Linear Programming Approach to the

Cutting-Stock Problem. In this paper they outline a two-stage, iterative approach for solving cutting-

stock problems that dramatically reduced the number of patterns one must generate to get good

solutions. The basic idea involves solving a master problem containing a limited number of patterns.

The dual prices on the finished goods are then passed to a small knapsack subproblem that selects a

new cutting pattern that maximizes the sum of the dual values of all the finished goods contained in the

pattern subject to not exceeding the length of the raw material. This pattern is then appended to the

previous master problem, which is then re-solved. This iterative process continues until no further

beneficial patterns can be generated by the knapsack subproblem. In which case, we have the optimal

solution to the original, linear cutting-stock problem. The remarkable feature of this algorithm is that

it typically takes relatively few passes to reach the optimal solution, thereby making it possible to

solve very large cutting-stock models in an extremely reasonable amount of time. This approach of

iteratively appending new columns to models is also referred to as column generation.

The Model
For our example, we will be cutting 45 foot wide rolls of paper into smaller rolls of widths: 34, 24, 15,

10 and 18. We use Lingo’s programming capability to iteratively solve the master and subproblem

until no further beneficial cutting patterns remain to be appended to the master problem.

MODEL:

! Uses Lingo’s programming capability to do

 on-the-fly column generation for a

 cutting-stock problem;

SETS:

 PATTERN: COST, X;

 FG: WIDTH, DEM, PRICE, Y, YIELD;

 FXP(FG, PATTERN): NBR;

ENDSETS

DATA:

 PATTERN = 1..20; ! Allow up to 20 patterns;

 RMWIDTH = 45; ! Raw material width;

 FG = F34 F24 F15 F10 F18;!Finished goods...;

 WIDTH= 34 24 15 10 18;!their widths...;

 DEM = 350 100 800 1001 377;!and demands;

 BIGM = 999;

ENDDATA

SUBMODEL MASTER_PROB:

 [MSTROBJ] MIN= @SUM(PATTERN(J)| J #LE# NPATS:

 COST(J)*X(J));

 @FOR(FG(I):

PROGRAMMING LINGO 641

 [R_DEM]

 @SUM(PATTERN(J)| J #LE# NPATS:

 NBR(I, J) * X(J)) >= DEM(I);

);

ENDSUBMODEL

SUBMODEL INTEGER_REQ:

 @FOR(PATTERN: @GIN(X));

ENDSUBMODEL

SUBMODEL PATTERN_GEN:

 [SUBOBJ] MAX = @SUM(FG(I): PRICE(I)* Y(I));

 @SUM(FG(I): WIDTH(I)*Y(I)) <= RMWIDTH;

 @FOR(FG(I): @GIN(Y(I)));

ENDSUBMODEL

CALC:

 ! Send unwanted output to log file;

 @DIVERT('LINGO.LOG');

 ! Set parameters;

@SET('DEFAULT');

 @SET('TERSEO', 1);

 @SET('STAWIN', 0);

 ! Max number of patterns we'll allow;

 MXPATS = @SIZE(PATTERN);

 ! Make first pattern an expensive super pattern;

 COST(1) = BIGM;

 @FOR(FG(I): NBR(I, 1) = 1);

 ! Loop as long as the reduced cost is

 attractive and there is space;

 NPATS = 1;

 RC = -BIGM; ! Clearly attractive initially;

 @WHILE(RC #LT# 0 #AND# NPATS #LT# MXPATS:

 ! Solve for current best pattern runs;

 @SOLVE(MASTER_PROB);

 ! Copy dual prices to PATTERN_GEN submodel;

 @FOR(FG(I): PRICE(I) = -@DUAL(R_DEM(I)));

 ! Generate the current most attractive pattern;

 @SOLVE(PATTERN_GEN);

 ! Marginal value of current best pattern;

 RC = 1 - SUBOBJ;

 ! Add the pattern to the Master;

 NPATS = NPATS + 1;

 @FOR(FG(I): NBR(I, NPATS) = Y(I));

 COST(NPATS) = 1;

);

642 CHAPTER 13

 ! Finally solve Master as an IP;

 @SOLVE(MASTER_PROB, INTEGER_REQ);

 ! Redirect output back to terminal;

 @DIVERT();

ENDCALC

END

Model: LOOPCUT

The Details
First, we have the sets section:

SETS:

 PATTERN: COST, X;

 FG: WIDTH, DEM, PRICE, Y, YIELD;

 FXP(FG, PATTERN): NBR;

ENDSETS

The PATTERN set is used to represent the cutting patterns we will be generating. Each pattern has a

cost, which, with one exception (discussed below), will be 1, i.e., each pattern uses 1 raw material

piece. We also assigned an attribute called X to the patterns set. X(p) will be used to store the

number of times each pattern p is to be cut and is one of the decision variables.

The FG set is used to represent the set of finished goods. As input, each finished good has a width and

customer demand. The PRICE attribute will be used to store the dual prices on the finished goods.

These prices will be updated each time we solve the master problem. Y will be an integer, decision

variable that we will use in the knapsack subproblem to represent the number of pieces of each

finished good to use in the next generated pattern. YIELD will be used to store the number of pieces of

each finished good that gets produced.

The derived set, FXP, is derived on the finished goods and patterns sets. The attribute NBR(i, j) will

store the number of finished goods I contained in pattern j.

Next, we have the data section

DATA:

 PATTERN = 1..20; ! Allow up to 20 patterns;

 RMWIDTH = 45; ! Raw material width;

 FG = F34 F24 F15 F10 F18;!Finished goods...;

 WIDTH= 34 24 15 10 18;!their widths...;

 DEM = 350 100 800 1001 377;!and demands;

 BIGM = 999;

ENDDATA

We initialize the pattern set to have 20 members. This will only allow for generation of up to 20

patterns; however, this should be more that adequate for this small example.

After inputting the raw material width of 45, we input the set of five finished goods and their widths.

After that, we input the demands for the finished goods. Finally, we input a parameter called BIGM,

the purpose of which is discussed below.

PROGRAMMING LINGO 643

Next, we have our first submodel:

SUBMODEL MASTER_PROB:

 [MSTROBJ] MIN= @SUM(PATTERN(J)| J #LE# NPATS:

 COST(J)*X(J));

 @FOR(FG(I):

 [R_DEM]

 @SUM(PATTERN(J)| J #LE# NPATS:

 NBR(I, J) * X(J)) >= DEM(I);

);

ENDSUBMODEL

This is the master problem we’ve been mentioning. The objective states that we wish to minimize the

total cost of all the patterns used. The constraint says that we must meet, or exceed, demand for all the

finished goods.

The next submodel:

SUBMODEL INTEGER_REQ:

 @FOR(PATTERN: @GIN(X));

ENDSUBMODEL

will be used in conjunction with the master problem to force the variables to take on integer values.

Given that it’s not possible to cut a fractional number of a particular pattern, for our final solution we

need the X variables to be integer valued.

Our final submodel:

SUBMODEL PATTERN_GEN:

 [SUBOBJ] MAX = @SUM(FG(I): PRICE(I)* Y(I));

 @SUM(FG(I): WIDTH(I)*Y(I)) <= RMWIDTH;

 @FOR(FG(I): @GIN(Y(I)));

ENDSUBMODEL

is the pattern-generation subproblem we’ve mentioned. This is a knapsack problem that finds the best

pattern that can be cut given the dual prices on the finished goods. Recall that we get the dual prices

on the finished goods from the demand constraints in the master problem.

We then enter the calc section, which contains the programming logic to coordinate the iterative

algorithm we’ve chosen. As with the previous Markowitz model, the start of the calc section is

devoted to diverting output to a file and setting of parameters. You may refer to the previous

Markowitz model for a discussion of why these steps are being performed.

One of the features of this model most likely to change in the future would be the maximum number of

patterns to generate. It’s probably not wise to assume that this number will always be fixed at 20

patterns. For this reason, we use the @SIZE function to get the current number of allowed patterns:

 ! Max number of patterns we'll allow;

 MXPATS = @SIZE(PATTERN);

Next, we construct what we refer to as a “super pattern”:

644 CHAPTER 13

 ! Make first pattern an expensive super pattern;

 COST(1) = BIGM;

 @FOR(FG(I): NBR(I, 1) = 1);

The supper pattern is a device to jumpstart our algorithm by guaranteeing that the model will be

feasible from the start. We need the model to always be feasible in order to obtain a valid set of dual

prices to feed into the pattern generation submodel. The super pattern is an artificial pattern that can

create one piece of each finished good. In real life, such a pattern would not be possible because we

can’t physically fit one of each finished good on a single raw material piece. Given that the super

pattern is not physically possible, we assign it a high cost, BIGM, so it will not be used in the final

solution

Recall that NBR(i, j) represents the number of finished good i in pattern j. So, for our super pattern,

we use a for loop over all the finished goods i, setting NBR(i, 1) to 1 for each of the finished goods.

The second index of NBR is set at 1 given that the super pattern is the first pattern generated.

Next, the main loop that will alternate between solving the master and subproblem until an optimal

solution is found:

 ! Loop as long as the reduced cost is

 attractive and there is space;

 NPATS = 1;

 RC = -BIGM; ! Clearly attractive initially;

 @WHILE(RC #LT# 0 #AND# NPATS #LT# MXPATS:

 ! Solve for current best pattern runs;

 @SOLVE(MASTER_PROB);

 ! Copy dual prices to PATTERN_GEN submodel;

 @FOR(FG(I): PRICE(I) = -@DUAL(R_DEM(I)));

 ! Generate the current most attractive pattern;

 @SOLVE(PATTERN_GEN);

 ! Marginal value of current best pattern;

 RC = 1 - SUBOBJ;

 ! Add the pattern to the Master;

 NPATS = NPATS + 1;

 @FOR(FG(I): NBR(I, NPATS) = Y(I));

 COST(NPATS) = 1;

);

First, we set the pattern count, NPATS, to 1 for the one pattern already generated, i.e., the super

pattern. We will increment NPATS each time we generate a new pattern in our main loop.

Next, is the main @WHILE loop, which will execute until its condition evaluates false. We test two

things in the condition.

First, we see if the marginal impact of the current pattern, RC, is negative and will, therefore, reduce

the current cost. If the current pattern will reduce our cost, then this implies that we should continue

looping and generating patterns, because subsequent patterns may also be helpful. Once the marginal

benefit of the current best pattern goes to zero, generating subsequent patterns will be of no benefit; if

the current best pattern can’t help, subsequent patterns of less value will also be of no help. In which

case, we should exit our loop.

PROGRAMMING LINGO 645

The second condition on the loop tests to see if we’ve generated the maximum allowed number of

patterns that we’ve allocated space for. If so, we must exit the loop.

Once in the loop, our first step is to invoke the @SOLVE command to solve the master problem. We

then use an @FOR loop to pass the dual values on the finished goods to the pattern generation

subproblem. We then solve the pattern generation subproblem and compute RC, the marginal rate of

decrease in the main objective using the new pattern. Finally, at the end of the loop we append the

new generated pattern to the master program for the next pass through the loop.

Once we can no longer find a cutting pattern that will further reduce our costs, we exit the loop and

solve the master problem one last time:

 ! Finally solve Master as an IP;

 @SOLVE(MASTER_PROB, INTEGER_REQ);

The one difference is that we now include the integer restrictions on the pattern usage array, X. As

mentioned, cutting fractional quantities of a pattern is not physically possible, so we want our final

solution to be integral.

The version of this model in the samples folder has an additional calc section to prepare a tabular

report on the cutting patterns and their usage. We will not go into the details of this table-generating

code in this discussion. However, if you run the model, you should receive the following report:

Total raws used: 985

Total feet yield: 43121

Total feet used: 44325

Percent waste: 2.7%

 Pattern:

 FG Demand Yield 1 2 3 4 5 6 7 8 9

===

F34 350 350 1 . . . 1

F24 100 100 1 1 . . 1

F15 800 801 1 . 3 . . . 1 1 .

F10 1001 1002 1 4 . . 1 2 1 3 .

F18 377 377 1 . . 2 . . 1 . 1

===

 Usage: 0 0 133 0 350 0 277 125 100

A total of 985 raw materials were used, with only 2.7% of the raw material input lost to trim waste.

Note that only 9 patterns were needed to solve the model. Also note that Pattern 1, the super pattern, is

not used in the final solution as per our design.

646 CHAPTER 13

Programming Example: Accessing Excel
In this example, we will solve the familiar staff scheduling model once again. However, to make

things interesting, we will solve several, independent models in a loop. Furthermore, the data for our

models will be contained in a single Excel workbook, with each tab in the workbook storing data for

an individual instance of the model. Solutions for each site will also be returned to their respective

tabs in the Excel workbook.

Suppose we have three hot dog stands: Pluto Dogs, Saturn Dogs and Mars Dogs. Each site has daily

staffing needs that vary throughout the week. We hire employees to work 5 continuous days in a row,

followed by two days off. As an example, an employee starting on Tuesday would be on duty Tuesday

through Saturday and off Sunday and Monday, while someone starting on Friday would work Friday

through Tuesday and be off Wednesday and Thursday. We need to know how many employees to

start on each day of the week at each site so as to minimize to total number of staff hired.

PROGRAMMING LINGO 647

The data for this model may be found in the DOGS.XLS workbook contained in the Samples folder off

the main LINGO folder. If you open this workbook, you'll see there are three tabsPluto, Saturn and

Mars. Each tab contains the data for its particular site. The tab for the Pluto site appears below:

DOGS.XLS

648 CHAPTER 13

Here we see that the Pluto site requires 10 people on Mondays, 12 on Tuesdays, and so on. The

staffing needs are also represented in the bar graph on the tab. Similar tabs for the remaining two sites

are also included in the workbook.

The Model
Here's our model loops over the three sites/tabs, solving each individual staffing model:

MODEL:

! Uses a loop to solve three staff scheduling

 models, retrieving the data from and writing

 the solution to an Excel workbook;

SETS:

 SITES / PLUTO, MARS, SATURN/;

 DAYS / MON TUE WED THU FRI SAT SUN/:

 NEEDS, START, ONDUTY;

ENDSETS

SUBMODEL STAFF:

 [OBJROW] MIN = @SUM(DAYS: START);

 @FOR(DAYS(D):

 ONDUTY(D) = @SUM(DAYS(D2) | D2 #LE# 5:

 START(@WRAP(D - D2 + 1, @SIZE(DAYS))));

 ONDUTY(D) >= NEEDS(D);

);

 @FOR(DAYS: @GIN(START));

ENDSUBMODEL

CALC:

 @SET('TERSEO', 2);

 @FOR(SITES(S):

 NEEDS = @OLE('\LINGO12\SAMPLES\DOGS.XLS',

 SITES(S)+'NEEDS');

 @SOLVE(STAFF);

 @SOLU(0, ONDUTY, ' On Duty Report: ' + SITES(S));

 @OLE(, SITES(S)+'START', SITES(S)+'ONDUTY',

 SITES(S)+'TOTAL') = START, ONDUTY, OBJROW;

);

ENDCALC

END

Model: LOOPOLE

This model may also be found in the Samples folder of the main LINGO folder.

PROGRAMMING LINGO 649

Note: Versions of this example staffing model that interface with an Access database or that

interface with text files are also available. Please see models LOOPODBC and LOOPTEXT.

The Details
In the model's sets section:

SETS:

 SITES / PLUTO, MARS, SATURN/;

 DAYS / MON TUE WED THU FRI SAT SUN/:

 NEEDS, START, ONDUTY;

ENDSETS

we declare two sets. The first set is our set of three sites followed by a set containing the days of the

week. The days of the week set has three associated attributes: NEEDS, START, and ONDUTY,

representing the staffing needs, the number of workers to start on each day of the week, and the total

number of workers on duty each day.

Next, we declare a submodel that contains the staffing model that will be applied to each of the three

sites:

SUBMODEL STAFF:

 [OBJROW] MIN = @SUM(DAYS: START);

 @FOR(DAYS(D):

 ONDUTY(D) = @SUM(DAYS(D2) | D2 #LE# 5:

 START(@WRAP(D - D2 + 1, @SIZE(DAYS))));

 ONDUTY(D) >= NEEDS(D);

);

 @FOR(DAYS: @GIN(START));

ENDSUBMODEL

The objective function minimizes the total number of employees hired at the site. This is then

followed by an @FOR loop over the days of the week that a) computes the number of employees on

duty each day, and b) requires the number on duty to equal, or exceed, the number required on each

day. We also require the number starting on each day to be an integer value using the @GIN

statement.

650 CHAPTER 13

The following calc section:

CALC:

 @SET('TERSEO', 2);

 @FOR(SITES(S):

 NEEDS = @OLE('\LINGO12\SAMPLES\DOGS.XLS',

 SITES(S)+'NEEDS');

 @SOLVE(STAFF);

 @SOLU(0, ONDUTY, ' On Duty Report: ' + SITES(S));

 @OLE(, SITES(S)+'START', SITES(S)+'ONDUTY',

 SITES(S)+'TOTAL') = START, ONDUTY, OBJROW;

);

ENDCALC

starts off by restricting the amount of LINGO's output by setting the TERSEO parameter to 2, which

essentially eliminates all of LINGO"s output.

Next, we construct an @FOR loop that loops over the three sites, allowing us to solve the submodel

STAFF for each site. The first statement in the loop is an @OLE statement that reads the staffing

requirements from the appropriate tab of the workbook and places the requirements into the NEEDS

attribute. If you look at the workbook closely, you'll see that there are three ranges named

"SaturnNeeds", "PlutoNeeds" and "MarsNeeds" that contain the staffing requirements for each of the

respective sites. We are building each of these range names via the SITES(S)+'NEEDS' argument in

the @OLE function call.

Once the staffing requirements are loaded, we invoke the @SOLVE command to solve the staffing

model for the current site. The @SOLU command prints out a small solution report to the screen

showing the number of workers on duty each day for each of the sites.

At the bottom of the calc section, the last @OLE call sends the solution back to the workbook. Note

that for each site there are three ranges titled "<site_name>START", "<Isite_name>ONDUTY" and

"<site_name>TOTAL", where we return the daily number of workers to start, the number on duty

each day, and the total number of employees required for the entire week. Note also that the workbook

name was omitted in the call. When the workbook name is omitted, LINGO simply uses the current

workbook in Excel. Given that we specified the workbook name in the original call to @OLE, it

should now be the current workbook, thereby allowing us to omit its name in the final call.

PROGRAMMING LINGO 651

If you solve the model, you'll see that the tab for each of the three sites contains the number of workers

to start each day, the total number on duty each day, and the total number of employees required. For

the Saturn site, the tab will resemble the following:

652 CHAPTER 13

Summary
There are many instances where you will need to solve a model multiple times and/or use the results of

one model as input into another. The programming capabilities in LINGO allow you to automate these

classes of problems. The three examples presented in this chapter introduce the programming

constructs available in LINGO.

In addition to the three examples presented in this chapter, several more examples of solving models in

a loop may be found in the samples folder of your LINGO installation. These additional examples

include:

Loopdea.lg4 – A Data Envelopment Analysis model with a loop over each of the decision-

making units to compute their individual efficiency scores.

Loopts.lg4 – A traveling salesman model that loops to append subtour breaking constraints to

the formulation, continuing until a complete tour of the cities is generated.

Loopttt.lg4 – A looping model that implements a game of ticktacktoe.

Finally, in addition to all the control structures and functions discussed in this chapter, all of the

functions and operators listed in Chapter 7, LINGO's Operators and Functions, are also available for

use in your calc section scripts, with the only exception being the variable domain functions. Variable

domain functions are restricted for use in model section only.

653

14 Stochastic
Programming

So far, we worked with deterministic mathematical programs where all model parameters (e.g.

coefficients, bounds, etc.) are known constants. A stochastic program (SP) is a mathematical program

(linear, nonlinear or mixed-integer) in which some of the model parameters are not known with

certainty, and the uncertainty can be expressed with known probability distributions. Applications

arise in a variety of industries:

 Financial portfolio planning over multiple periods for insurance and other financial

companies, in face of uncertain prices, interest rates, and exchange rates

 Exploration planning for petroleum companies,

 Fuel purchasing when facing uncertain future fuel demand,

 Fleet assignment: vehicle type to route assignment in face of uncertain route demand,

 Electricity generator unit commitment in face of uncertain demand,

 Hydro management and flood control in face of uncertain rainfall,

 Optimal time to exercise for options in face of uncertain prices,

 Capacity and Production planning in face of uncertain future demands and prices,

 Foundry metal blending in face of uncertain input scrap qualities,

 Product planning in face of future technology uncertainty,

 Revenue management in the hospitality and transport industries.

Stochastic programs fall into two major categories: a) multistage stochastic programs with recourse,

and b) chance-constrained programs. With release 14, LINGO's capabilities are extended to solve

models in both categories.

Multistage Decision Making Under Uncertainty
Stochastic programs fall into two major categories: a) multistage stochastic programs with recourse,

and b) chance-constrained programs. With version 12.0, LINGO's capabilities are extended to solve

models in the first category, namely multistage stochastic recourse models. Chance-constrained

models will be supported in future versions.

In this chapter, the term stochastic program (SP) refers to a multistage stochastic model with recourse.

The term stage is an important concept in this chapter. Usually it means the same as ‘time period’,

however there are situations where a stage may consist of several time periods. The terms random,

uncertain and stochastic are used interchangeably.

654 CHAPTER 14

Multistage decision making under uncertainty involves making optimal decisions for a T-stage horizon

before uncertain events (random parameters) are revealed while trying to protect against unfavorable

outcomes that could be observed in the future.

Note: A stage boundary is either a) the beginning of the problem, b) the end of the problem, or c) a

point just after a decision event but just before a random event. A stage is the sequence of

random events followed by decision events between two successive stage boundaries. Thus,

decisions made in stage k are based on all information revealed up to stage k, but no more.

In its most general form, a multistage decision process with T+1 stages follows an alternating sequence

of random events and decisions. Slightly more explicitly:

0.1) in stage 0, we make a decision x0, taking into account

that…

1.0) at the beginning of stage 1, “Nature” takes a set of

random decisions ω1, leading to realizations of all random

events in stage 1, and…

1.1) at the end of stage 1, having seen nature’s decision, as

well as our previous decision, we make a recourse decision

x1(ω1), taking into account that …

2.0) at the beginning of stage 2, “Nature” takes a set of

random decisions ω2, leading to realizations of all random

events in stage-2, and…

2.1) at the end of stage 2, having seen nature’s decision, as

well as our previous decisions, we make a recourse decision

x2(ω1, ω2), taking into account that …

 .

 .

 .

T.0) At the beginning of stage T, “Nature” takes a random

decision, ωT, leading to realizations of all random events in

stage T, and…

T.1) at the end of stage T, having seen all of nature’s T

previous decisions, as well as all our previous decisions, we

make the final recourse decision xT(ω1,…,ωT).

STOCHASTIC PROGRAMMING 655

This relationship between the decision variables and realizations of random data can be illustrated as

follows.

Each decision, represented with a rectangle, corresponds to an uninterrupted sequence of decisions

until the next random event. And each random observation corresponds to an uninterrupted sequence

of random events until the next decision point.

Recourse Models
The decision taken in stage 0 is called the initial decision, whereas decisions taken in succeeding

stages are called recourse decisions. Recourse decisions are interpreted as corrective actions that are

based on the actual values the random parameters realized so far, as well as the past decisions taken

thus far. Recourse decisions provide latitude for obtaining improved overall solutions by realigning

the initial decision with possible realizations of uncertainties in the best possible way.

656 CHAPTER 14

Restricting ourselves to linear multistage stochastic programs for illustration, we have the following

form for a multistage stochastic program with (T+1) stages.

 Minimize (or maximize): c0x0 + E1[c1x1 + E2[c2x2 … + ET[cTxT] …]]

such that:

A00x0 ~ b0

A(1)10x0 + A(1)11x1 ~ b(1)1

A(1,2)20x0 + A(1,2)21x1 + A(1,2)22x2 ~ b(1,2)2

… … … …

A(1,...,T)T0x0 + A(1,...,T)T1x1 + … + A(1,...,T)TTxT ~ b(1,...,T)T

L0 x0 U0

L(1)1 x1 U(1)1

… … …

L(1,...,T)T xT U(1,...,T)T

where,

(1,...,t) represents random outcomes from event space (1,...,t) up to stage-t,

A(1,...,t)tp is the coefficient matrix generated by outcomes up to stage-t for all p=1…t,

t=1…T,

c(1,...,t)t is the objective coefficients generated by outcomes up to stage-t for all t=1…T,

b(1,...,t)t is the right-hand-side values generated by outcomes up to stage-t for all t=1…T,

L(1,...,t)t and U(1,...,t)t are the lower and upper bounds generated by outcomes up to

stage-t for all t=1…T,

 ’~’ is one of the relational operators '', ‘’, or ‘’ ; and

x0 and xt x(1,...,t)t are the decision variables (unknowns) for which optimal values are

sought. The expression being optimized is called the cost due to initial-stage plus the

expected cost of recourse.

Note: LINGO can solve linear, nonlinear and integer multistage stochastic programming problems.

STOCHASTIC PROGRAMMING 657

Scenario Tree
When the probability distributions for the random parameters (events) are discrete, there are only a

finite number of outcomes in each stage. With each random parameter fixed to one of its possible

outcomes, one can create a scenario representing one possible realization of the future. Enumeration of

all possible combinations of outcomes allows us to represent all scenarios in a tree, with each scenario

being a path from the root of the tree to one of its leaves. The nodes visited by each path correspond to

values assumed by random parameters in the model.

We illustrate the construction of a scenario tree with a stochastic version of the well-known

Newsvendor inventory problem. In this problem, we must decide how much to order initially and then

later, how much of any unsold product to return before the end of the planning horizon. There is a

shortage penalty when there are lost sales and a carrying cost for left over units. The decision process

takes place under uncertain demand and uncertain price per returned item:

1. In stage 0, the order quantity has to be decided (under uncertain demand).

2. In stage 1, at the beginning, the demand is revealed. A recourse decision, at the end of stage

1, is the number of units to be returned to the publisher (for an uncertain refund price)

3. In stage 2 at the beginning, the refund price is announced by the publisher. The price per

returned item can be either:

 Positive (i.e. publisher accepts them at a high price which covers the cost of shipping and

handling) or

 Negative (i.e. publisher accepts them at a low price which doesn’t cover the cost of

shipping and handling).

4. The objective is to maximize the total expected profit at the end of planning horizon (stage 2).

658 CHAPTER 14

In the scenario tree above, x0 represents the initial decision, or order size to be determined before

seeing any of the random outcomes. x1 represents the quantity to return to the publisher of any portion

of the unsold units. Profit2 represents the total profit collected at the end of planning horizon. The

notation 1 represents the event space for the unknown demand, for which there are three different

possible outcomes 1 = {Low, Medium, and High} with probabilities {0.4, 0.3, 0.3}, respectively.

Once we observe the demand 1 1, we make a recourse decision x1 based upon which 1 nature

chose and our previous decision x0. The notation 2 represents the event space for refund price per

unsold newspapers if returned to the publisher in stage 2. This event has two different outcomes 2 =

{Positive, Negative} with probabilities {0.7, 0.3}. Once the refund price 2 2 in stage 2 is

observed, the total profit would be computed by the model as the final decision Profit2.

It should be clear from the scenario tree that,

 There are as many distinct scenarios in the SP as there are leaf-nodes.

 Each root-leaf path defines a scenario, induced by a full observation of all random

events.

 There is a one-to-one correspondence between the scenarios and the leaf-nodes in the

tree.

STOCHASTIC PROGRAMMING 659

 The unconditional probability of a node is computed by multiplying the conditional

probabilities of the nodes positioned on the path, which starts from the root and

terminates at that node.

 The unconditional probability of each leaf-node corresponds to the probability of the

associated scenario.

 Each node in the tree corresponds to a vector of random parameter with a particular

history up to that node in some scenario.

The branches out of each node enumerate all possible outcomes associated with random parameters

associated with it in order to construct the history of random parameters that belong to the next stage.

Monte Carlo Sampling
In stochastic programming (SP), when one or more random variables have a continuous (or discrete

but infinite) event space, it is obviously computationally impossible to explicitly account for the

infinite number of possible outcomes. For such cases, Monte Carlo sampling (also called pre-

sampling) can be used to approximate the problem using a finite scenario tree. As illustrated in the

figure below, if the model has a single stochastic parameter with a continuous distribution such as the

normal distribution, one can discretize the event space simply by generating N sample points and

thereby construct a finite and tractable scenario tree. This is also the case for discrete distributions

with infinite event spaces, such as the Poisson distribution.

Note: Since the point probability of each scenario in the original model is zero, it is customary to set

the probabilities of sampled scenarios to 1/N.

660 CHAPTER 14

Given the parametric distribution of each stochastic parameter, LINGO's sampling routines can be

used to efficiently generate univariate samples from these distributions. When sampling, LINGO uses

Latin-hyper-square techniques to reduce the sample variance. One may also specify a correlation

matrix for the continuous random variable, which the sampling routines will use to induce correlation

in the sample points. These sample points are then used to define discrete distributions, which

approximate the original distributions. Repeating this for all continuous stochastic parameters, LINGO

recasts the infinite event space model into an approximate model with a finite event space.

Setting up SP Models
There are four steps to setting up an SP model. Below is a list of these steps and the primary LINGO

functions that you will call to perform each step. Each of these steps will be illustrated in detail in the

example SP model later in this chapter.

Step Task Description How

1 Defining

core model

The core model is built just like any other deterministic

LINGO model. The random variables are used directly

in the core model's expressions as if they were

determinate.

Entered like any other

deterministic LINGO

model.

2 Identifying

the random

variables

Each random variable must be identified along with the

stage of the model where it becomes known.

@SPSTGRNDV

3 Identifying

the initial

decision and

recourse

variables

Each initial decision variable and each recourse

variable must be identified along with the stage where

it must be decided. The initial decision variables are

assigned stage 0, while the subsequent recourse

variables are assigned to stages 1,2,... .

@SPSTGVAR

4 Declaring

distributions

The probability distributions of the random variables

must be declared. The techniques for doing so will

depend on whether the variable of interest has a

distribution defined by either a) a discrete outcome

table, or b) a parametric distribution.

An outcome table is a finite set of all possible

outcomes, their probabilities and values for the random

variable(s). Outcome tables may be constructed using

either scalar values or attribute vectors.

A parametric distribution, on the other hand, is defined

by a particular type of probability density function,

e.g., the normal distribution. Parametric distributions

may have a finite or infinite number of possible

outcomes, depending on the distribution type.

Outcome Tables:

Scalar-based:

@SPTABLESHAPE

@SPTABLEOUTC

@SPTABLEINST

@SPTABLERNDV

Vector-based:

@SPDISTTABLE

Parametic Distributions:

@SPDIST<TYPE>

@SPSAMPSIZE

@SPCORR<METHOD>

STOCHASTIC PROGRAMMING 661

Language Features for SP Models
The primary features in the LINGO language used for building a stochastic programming model can

be partitioned into the following three categories, corresponding to steps 2-4 of the Setting up SP

Models section above:

1. Identifying random variables

2. Identifying initial decision and recourse variables

3. Declaring distributions

Each of the categories are discussed in the following five sections, which are primarily intended for

reference use. The reader may wish to jump directly to the first SP modeling example, Gas Buying

Example, in order to see LINGO's SP modeling features used in the context of an actual model.

There are additional SP language constructs available for use in calc sections for model's that exploit

LINGO's programming capability. These features are discussed in Chapter 13, Programming LINGO.

Identifying Random Variables
The fundamental component of any SP model is its set of random variables. The random variables are

the stochastic component of the model. Their values are not known with certainty beforehand,

however, their uncertainty can be expressed with known probability distributions. LINGO requires

each random variable to be explicitly identified. When we identify each random variable, we must also

provide the stage in the scenario tree where each variable's value is revealed. The @SPSTGRNDV

function is used for this purpose:

@SPSTGRNDV(STAGE, VARIABLE_NAME)

This function takes two arguments: the random variable's name and the integer valued stage at which

the random variable's value is revealed. Note that this function merely flags a variable as being

random, and does not communicate any information regarding the actual distribution of the variable.

A distribution is associated with the random variable in the Binding random variables to distribution

instances, discussed below. Some examples follow:

Example 1: @SPSTGRNDV(1, DEMAND);

 Flags variable DEMAND as being a random variable in stage 1.

Example 2: @FOR(TIME_ASSET(T, A) | T #GT# 1:

 @SPSTGRNDV(T - 1, RETURN(T, A)));

Flags RETURN(T, A) as being a random variable in stage T-1. Note that by using

@SPSTGRNDV in an @FOR loop, we are able to identify multiple variables as being random.

662 CHAPTER 14

Identifying Initial Decision and Recourse Variables
After identifying the random variables, all the remaining variables in the model are either initial

decision variables or recourse variables. These are the variables that are in our control, as opposed to

being stochastic and in the control of Mother Nature. The initial decision variables are those variables

whose values must be determined at time 0, before nature has revealed values for any of the random

variables. The recourse variables are the variables whose values are decided at a later period in

response to outcomes for the random variables. Both initial decision and recourse variables are

identified with the @SPSTGVAR function, with initial decision variables being distinguished by a

stage of 0 and recourse variables by a stage >0. Row stages can be established using @SPSTGROW.

@SPSTGVAR(STAGE, VARIABLE_NAME)

This function takes two arguments: an integer value equal to the stage at which the variable's value

must be decided and the variable's name. Some examples follow:

Example 1: @SPSTGVAR(0, PURCHASE);

 Flags variable PURCHASE as being an initial decision variable.

Example 2: @FOR(TIME_ASSET(T, A): @SPSTGVAR(T - 1, INVEST(T, A)));

Flags INVEST(T, A) as being recourse variable in stage T-1 (or an initial decision variable when

T-1=0). Note that by using @SPSTGVAR in an @FOR loop, we are able to identify multiple

recourse variables.

Before an SP model can be passed to the SP solver engine, all initial and recourse variables must be

assigned stage values. Having to explicitly assign stage values to all these variables can be a tedious

and error-prone process. Fortunately, LINGO can deduce the stages for many of the variables based

on the user inputting a minimal set of stages for the variables. We refer to this process a stage

deduction and it is discussed more in section The Solution below of the Gas Buying Example.

Guidelines for determining the variables that require explicit stage identification are listed below.

@SPSTGROW(VARIABLE_NAME, STAGE)

This function takes two arguments: an integer-valued stage at which the row's value becomes known

and the row's name. This function should generally not be required, in that LINGO can automatically

deduce all row stages. If you do use this function, you must name the rows whose stages you wish to

set. The syntax of assigning names to rows may be found in the Constraint Names section of Chapter

1.

Example: @SPSTGROW(4, CAPACITY);

 Assigns row CAPACITY to stage 4.

STOCHASTIC PROGRAMMING 663

Note: Guidelines for determining the variables and rows that must be explicitly staged are:

 All random variables must be assigned to a stage using @SPSTGRNDV.

 Any initial decision or recourse variable that belongs to stage N that does not depend either

 directly, or indirectly, on another variable (random or otherwise) declared to be in stage N

 must be explicitly assigned to stage N using @SPSTGVAR.

 If you are uncertain whether a particular variable must be explicitly assigned to a stage, or

 not, then it doesn't hurt to assign it anyway using @SPSTGVAR.

 In general, stage assignment for rows should be left to LINGO. Each row will be assigned

 to the stage equal to the maximum stage of the variables appearing in that row. However,

 if you wish to explicitly specify a row’s stage, you may always do so using

 @SPSTGROW.

Declaring Distributions
After identifying the random variables, you will need to assign them to appropriate probability

distributions. There are two classes of distributions: parametric distributions and outcome table

distributions, with each requiring different declarations. Declaring parametric distributions involves

declaring a particular type of probability density function (e.g., normal) and its parameters (e.g., mean

and standard deviation). Outcome table distributions may be declared using scalar values or, assuming

your model makes use of sets and attributes, they may also be declared very conveniently using

attribute vectors and matrices. In either case, you will need to identify all possible outcomes and their

respective probabilities.

Declaring Parametric Distributions
LINGO allows both independent and joint parametric probability distributions, as well as continuous

and discrete distributions. The functions used to declare these distributions are of the form

@SPDIST<TYPE>, where <TYPE> represents the type of distribution being declared. In addition,

there are the @SPSAMPSIZE and @SPCORR<METHOD> functions for, respectively, setting sample

sizes and inducing correlations, where <METHOD> refers to the particular method used to induce

correlation.

664 CHAPTER 14

@SPDIST<TYPE>(PARAM_1[, ... , PARAM_N], RANDOM_VAR)

This function is used to apply both continuous and discrete parametric probability distributions to

random variables. At least one distribution parameter argument will always be required. Additional

parameters may be required depending on the particular distribution. Parameter values are always

numeric. The random variable must be declared beforehand via @SPSTGRNDV.

Below is a list of supported continuous distributions.

Distribution Syntax Parameters

Beta @SPDISTBETA(A, B, RNDVAR) A = alpha > 0

B = beta > 0

Cauchy @SPDISTCACY(LOC, SCALE,

RNDVAR)

LOC = location

SCALE = scale > 0

Chi-Square @SPDISTCHIS(DF, RNDVAR) DF = degrees of freedom = a positive

integer

Exponential @SPDISTEXPO(LAMDA, RNDVAR) LAMDA = rate parameter > 0

F @SPDISTFDST(DF1, DF2, RNDVAR) DF1 = degrees of freedom 1 = a positive

integer

DF2 = degrees of freedom 2 = a positive

integer

Gamma @SPDISTGAMM(SCALE, SHAPE,

RNDVAR)

SCALE = scale parameter > 0

SHAPE = shape parameter > 0

Gumbel @SPDISTGMBL(LOC, SCALE,

RNDVAR)

LOC = location

SCALE = scale > 0

Laplace @SPDISTLAPL(LOC, SCALE,

RNDVAR)

LOC = location

SCALE = scale > 0

Logistic @SPDISTLGST(LOC, SCALE,

RNDVAR)

LOC = location

SCALE = scale > 0

Lognormal @SPDISTLOGN(MU, SIGMA,

RNDVAR)

MU = mu parameter

SIGMA = sigma parameter > 0

Normal @SPDISTNORM(MU, SIGMA,

RNDVAR)

MU = mean

SIGMA = standard deviation > 0

Pareto @SPDISTPRTO(SCALE, SHAPE,

RNDVAR)

SCALE = scale parameter > 0

SHAPE = shape parameter > 0

Student's t @SPDISTSTUT(DF, RNDVAR) DF = degrees of freedom = a positive

integer

Symetric Stable @SPDISTSMST(A, RNDVAR) A = alpha [.02,2.0]

Triangular @SPDISTTRIA(L, U, M, RNDVAR) L = lowest point

H = high point

M = middle point

Uniform @SPDISTUNIF(L, U, RNDVAR) L = lower point

U = upper point

Weibull @SPDISTWEIB(SCALE, SHAPE,

RNDVAR)

SCALE = scale parameter > 0

SHAPE = shape parameter > 0

STOCHASTIC PROGRAMMING 665

Example: @SPDISTNORM(82.3, 18.1, RND_TEMP);

In this example, we apply a normal distribution to the random variable RND_TEMP, with a mean

of 82.3 inches and a standard deviation of 18.1.

Here's the list of discrete distributions currently supported:

Distribution Syntax Parameters

Beta Binomial @SPDISTBTBN(N, A, B, RNDVAR) N = trials = a positive integer 0

A = alpha > 0

B = beta > 0

Binomial @SPDISTBINO(N, P, RNDVAR) N = trials = a positive integer 1

P = probability of success, 0 P 1

Geometric @SPDISTGEOM(P, RNDVAR) P = probability of success, 0 < P 1

Hypergeometric @SPDISTHYPG(N, D, K, RNDVAR) N = population = a positive integer 1

D = number defective {0,1,...,N}

K = sample size {1,2,...,N}

Logarithmic @SPDISTLOGR(P, RNDVAR) P = P-factor, 0 < P < 1

Negative

Binomial

@SPDISTNEGB(R, P, RNDVAR) R = R-factor > 0

P = probability of success, 0 < P < 1

Poisson @SPDISTPOIS(LAMDA, RNDVAR) LAMDA = arrival rate > 0

Example: @SPDISTPOIS(33, CUSTOMERS);

In this example, we apply a Poisson distribution with an arrival rate of 33 to the random variable

CUSTOMERS.

666 CHAPTER 14

@SPSAMPSIZE(STAGE, SAMPLE_SIZE)

This function is used to set the sample size for probability distributions by stage. Most instances of

the parametric distributions listed in this section have a large, if not an infinite, number of outcomes.

Trying to incorporate all possible outcomes into the model would be impossible, therefore, LINGO

must sample from the parametric distributions. If a specific sample size is not set using

@SPSAMPSIZE, then LINGO defaults to a sample size equal to the Default Sample Size/Stage

parameter, which is typically set to 2. However, in some models you may wish to have different

sample sizes across stages, typically having larger samples in the more critical early stages, and less

sampling in the latter stages. @SPSAMPSIZE can enforce this type of sampling strategy.

Example 1: @SPSAMPSIZE(1, 8);

 Here we set the sample size to 8 outcomes in stage 1.

Example 2: @FOR(PERIODS(P) | P #GT# @INDEX(P0):
 @SPSAMPSIZE(P - 1, SAMP_SZ(P))

);

In this example, we set the sample size equal to SAMP_SZ(P) in periods 1 through N-1. Note that

by adding the conditional expression P #GT# @INDEX(P0) to the @FOR loop, the loop starts

with P0=2, and we avoid setting the sample size in stage 0. We do this because stage 0 never

contains random variables. Random variables first occur in stage 1, with stage 0 being reserved

for the initial decision variables. In this example, we have also not assigned a sample size to the

final stage, because we either want the final stage to use the default sample size, or the final stage

does not have random variables.

@SPCORR<METHOD>(RANDOM_VAR_1, RANDOM_VAR_2, RHO)

This function causes the sampling code to induce correlations between two random variables. The

ordering of the two variables is not significant. The correlation coefficient, RHO, must lie in the

interval [-1,1]. You must also choose between three methods available for inducing correlations:

Pearson, Kendall or Spearman. Only one correlation method is allowed per model. Some examples

follow:

Example 1: @SPCORPEARSON(X, Y, .9);

 Here we set the correlation between random variables X and Y to be .9 using the Pearson method.

Example 2: @FOR(CORR_RNDM_PLANTS(P1, P2):
 @SPCORRKENDALL(CAPACITY(P1), CAPACITY(P2), RHO(P1, P2));

);

In this example, we have a derived, two-dimensional set. CORR_RNDM_PLANTS, that contains

the pairs of electrical plants whose output capacities are correlated. We loop over these pairs,

setting each pair's correlation to RHO(P1, P2) using the Kendall method.

STOCHASTIC PROGRAMMING 667

Matrix Declarations of Outcome Table Distributions
LINGO allows probability density functions to be input as discrete outcome tables. You will need to

input the values for the random variables under each outcome, as well as the probability of each

outcome. Matrix-based declarations are considerably more concise than scalar-based declarations, in

that one simple function call can declare the outcome table, it's probabilities, as well as assign multiple

random variables to the distribution. The function used for vector-based outcome table declaration is

@SPDISTTABLE:

@SPDISTTABLE(OUTCOME_TABLE, RANDOM_VARIABLE_ATTR[,

PROBABILITY_ATTR])

This function identifies an outcome table, the random variables to be assigned to the outcome table,

and, optionally, probabilities for each of the outcomes. The first argument, or outcome table, must be

either a one or two-dimensional attribute containing the outcome values for the random variables. If it

is one-dimensional, then the random variable argument must be a scalar. If the outcome table is two-

dimensional, say M x N, then it must contain M outcomes, with each row being a single outcome for N

random variables. Also, in the two-dimensional case the random variable argument must be a one-

dimensional attribute of length N. If the probability argument is included, it must be a one-

dimensional attribute of length equal to the number of outcomes. If the probability argument is

omitted, then each outcome is assumed to be equally probable. Some examples follow:

Example 1: @SPDISTTABLE(DIST_RETURNS, RETURNS);

Declares an outcome table with the two-dimensional attribute DIST_RETURNS containing one

outcome per row for the random variables in the one-dimensional RETURNS attribute. The

number of columns in DIST_RETURNS must equal the number of elements in RETURNS. The

optional probability argument was omitted in this example, meaning that all outcomes are equally

likely.

Example 2: @SPDISTTABLE(DIST_SALES, SALES, PROB);

Declares an outcome table with the one-dimensional attribute DIST_SALES containing the

possible outcomes for the scalar random variable SALES. The PROB attribute is a one-

dimensional attribute of the same length as DIST_SALES that contains the probabilities of all the

outcomes.

Sample SP models installed with LINGO that utilize @SPDISTTABLE include: SPPUTOPT1,

SPNEWSDISC and SPHYDRO.

Scalar Declarations of Outcome Table Distributions
In the previous section, we discussed how to declare outcome tables using matrix-based declarations.

In general, the matrix form of declaration is the simplest and easiest to use. However, there may be

models that are not set-based that would be unable to use matrix declarations. Also, there may be

instances when you only wish to declare portions of an attribute to be random. In these cases, you

will need to use scalar-based outcome table declarations. The scalar-based functions used to declare

outcome tables are: @SPTABLESHAPE, @SPTABLEOUTC., @SPTABLEINST and

@SPTABLERNDV.

668 CHAPTER 14

@SPTABLESHAPE('TABLE_NAME', NUMBER_OF_OUTCOMES,

NUMBER_OF_RANDOM_VARS)

This function initializes an outcome table and requires three arguments: a unique name for the

distribution table (entered as text), the number of possible outcomes, and the number of random

variables in the distribution. Some examples follow:

Example 1: @SPTABLESHAPE('WEATHER', 3, 1);

 Declares an outcome table called WEATHER with 3 outcomes and 1 independent variable.

Example 2: @SPTABLESHAPE('RETURN', @SIZE(OUTCOMES), @SIZE(ASSETS));

Declares an outcome table called RETURN with the number of outcomes equal to the size of set

OUTCOMES and the number of jointly distributed variables equal to the size of set ASSETS.

@SPTABLEOUTC('TABLE_NAME', OUTC_PROB, OUTC_VAL1[,..., OUTC_VALN])

Once an outcome table has been declared with @SPTABLESHAPE, the next step is to load the table

with its set of outcome values and their probabilities. This is accomplished through calls to

@SPTABLEOUTC . @SPTABLEOUTC accepts a multiple number of arguments; however, there must

always be at least two arguments, with argument 1 always being the distribution name and the

remaining arguments being numeric values. The first numeric value passed will be taken as the

probability of outcome 1. Assuming the distribution has N variables, the next N arguments will be

taken as the values for variables 1 through N for outcome 1. This process repeats for each outcome

until a total of M * (N + 1) numeric values have been passed, where M is the number of outcomes.

These numeric values may be passed in as many calls as is convenient, but, again, the first argument of

each call must be the name of the relevant distribution. The following examples should help to

illustrate:

Example 1: @SPTABLEOUTC('WEATHER', .3, 56, .6, 77, .1, 92);

In this example, we have a 3-outcome, single-variable, outcome table named 'WEATHER'. We

make a single call to @SPTABLEOUTC to load all three outcomes. Outcome 1 has a probability

of .3 and a value of 56, outcome 2 has a .6 probability and a value of 77, while outcome 3 has a .1

probability and a value of 92.

Example 2: @FOR(OUTCOMES(O):
 @SPTABLEOUTC('D1', 1 / @SIZE(OUTCOMES));

 @FOR(ASSETS(A): @SPTABLEOUTC('D1', O_RETURN(O, A)));

);

Here we are making two calls to @SPTABLEOUTC for each member of the OUTCOMES set.

The first call passes the probability of the outcome, while the second call passes the outcomes for

each member of the ASSETS set. This example was taken from the SPCOLLEGEDISC.LG4

example, which you may wish to review for additional clarification.

STOCHASTIC PROGRAMMING 669

@SPTABLEINST('PARENT_TABLE_NAME', 'TABLE_INSTANCE_NAME')

In order to actually use an outcome table distribution in a model we must also declare an instance of

the relevant distribution. This allows us to use a particular distribution a multiple number of times in a

model, saving us from having to reenter the distribution's parameters each time. @SPTABLEINST is

the function for declaring distribution instances. This function takes two arguments: the parent

outcome table's name as established in the call to @SPTABLESHAPE, and a unique name to apply to

the new instance of the distribution. A particular outcome table may be used many times in a single

model, however, each particular instance requires a unique name. Some examples follow:

Example 1: @SPTABLEINST('WEATHER', 'WEATHER_1');

 Declares an instance of the parent distribution 'WEATHER', giving it a name 'WEATHER_1'.

Example 2: @FOR(TIME(T):

 @SPTABLEINST('D1', 'D1_' + TIME(T)));

Declares multiple instances of the parent distribution 'D1', assigning each one the name

'D1_'+TIME(T). In this case, TIME(T) is a primitive set member whose name gets appended to

the 'D1_' string to form the instance name. As an example, if set TIME has values T1..T12, then

the instance name for the first distribution would be 'D1_T1'.

@SPTABLERNDV('DIST_INSTANCE_NAME', RANDOM_VAR_1[, ... ,

RANDOM_VAR_N])

The final step in setting up an outcome table distribution is binding the random variables to the

distribution. This step associates specific random variables with the outcome table instance that was

defined as described above. The @SPTABLERNDV function is used for this purpose. This function

takes two, or more, arguments. The first argument is the distribution instance name, entered as text.

The second argument is the name of the random variable to bind to the distribution instance. If the

distribution has multiple variables, then you may include the additional variable names as arguments,

or you may call @SPTABLERNDV multiple times, until all relevant random variable names have been

assigned to the distribution instance. Some examples follow:

Example 1: @SPTABLERNDV('WEATHER_1', RV_WEATHER_1);

 Binds random variable RV_WEATHER_1 to the 'WEATHER_1' distribution instance.

Example 2: @FOR(TIME(T): @FOR(ASSETS(A):

 @SPTABLERNDV('D1_' + TIME(T), RETURN(T, A))));

Assuming the TIME set consists of members T1..T12, this example assigns one random for each

member of the ASSETS set to distribution instance 'D1_Ti', for i =1,...,12. Assuming the ASSETS

set has two members, then two random variables are assigned to each the 12 distribution instances.

Sample SP models installed with LINGO that utilize the above techniques include: SPGAS1 and

SPCOLLEGEDISC.

670 CHAPTER 14

Gas Buying Example
Our first example of how to formulate and solve an SP is a gas buying example. This example was

taken from the Committee on Stochastic Programming's (COSP) website:

http://stoprog.org/index.html?spintroduction.html. The complete LINGO model can be found in the

LINGO samples folder under the name SPGAS1.LG4.

A gas company must come up with a plan for its gas purchases under uncertain weather conditions.

The demand for the current period (period 1) is known and is 100 units. The demand for the upcoming

period is not known with certainty and will depend on how cold the weather is. There are three

possible outcomes for the weather: normal, cold and very cold. Each of these outcomes are equally

likely. The following table lists the costs and demands under the three outcomes:

Outcome Probability Gas Cost/Unit ($) Units Demand

Normal 1/3 5.0 100

Cold 1/3 6.0 150

Very Cold 1/3 7.5 180

Gas for the current period is bought now and delivered directly to the customers at a cost of $5 per

unit. Gas in the upcoming period can either be bought now and held in storage for period 2 use, or it

can be purchased in period 2 at a price that will depend on the weather as per the table above. Storing

gas bought in period 1 for use in period 2 costs the company $1 per unit. The question the company is

faced with is: How much gas should be bought in periods 1 and 2 to meet total customer demand at

minimal expected cost?

The Core Model
Step 1 - Defining the Core Model:
The core model is the same optimization model we would construct if all the random variables were

known with certainty. There is nothing in the core model that addresses the stochastic nature of the

model. The stochastic properties of the model will be introduced in a subsequent model section. For

our current example, the core model is formulated as follows:

STOCHASTIC PROGRAMMING 671

! Minimize Total Cost = Purchases + Holding;

[R_OBJ] MIN= PURCHASE_COST + HOLD_COST;

! Compute purchase cost;

[R_PC] PURCHASE_COST = 5 * PURCHASE_1 + COST_2 *

PURCHASE_2;

! Compute holding cost;

[R_HC] HOLD_COST = INVENTORY_1 + INVENTORY_2;

! Compute inventory levels;

[R_I1] INVENTORY_1 = PURCHASE_1 - 100;

[R_I2] INVENTORY_2 = INVENTORY_1 + PURCHASE_2 - DEMAND_2;

Core Model for Gas Buying Example

In the first expression:

 ! Minimize Total Cost = Purchases + Holding;

 [R_OBJ] MIN= PURCHASE_COST + HOLD_COST;

we are saying that we want to minimize total cost, which consists of two components: the purchase

cost of buying gas in periods 1 and 2, as well as holding costs of buying gas in a current period for use

in a future period.

The following expression:

 ! Compute purchase cost;

 [R_PC] PURCHASE_COST = 5 * PURCHASE_1 + COST_2 * PURCHASE_2;

calculates the total purchase cost, which is $5 per unit of gas purchased in period 1 plus the cost of gas

in period 2 (COST_2) multiplied by the number of units of gas purchased in period 2. Note that

COST_2 is stochastic and will depend on how the weather plays out. We will convey the probabilistic

nature of period 2 cost in the next section.

We next compute total holding costs, which, given the $1/unit holding cost, is simply the sum of units

held over in periods 1 and 2:

 ! Compute holding cost;

 [R_HC] HOLD_COST = INVENTORY_1 + INVENTORY_2;

Finally, we compute the inventory levels for the two periods:

 ! Compute inventory levels;

 [R_I1] INVENTORY_1 = PURCHASE_1 - 100 ;

 [R_I2] INVENTORY_2 = INVENTORY_1 + PURCHASE_2 - DEMAND_2;

Period 1's inventory is the amount purchased in period 1 (PURCHASE_1) less the known demand in

period 1. While inventory in period 2 (INVENTORY_2) if equal to any inventory carried over from

period 2 plus the purchase in period 2 (PURCHASE_2) minus the demand in period 2 (DEMAND_2).

Once again, DEMAND_2 is not known with certainty. The uncertain nature of DEMAND_2 will be

established in the next section of the model - the stochastic declarations section.

672 CHAPTER 14

Stochastic Declarations
After the core model, the remainder of the model is the stochastic declarations section:

! *** STEP 2 *** - Define Random Variables;

!The random variables are period 2's demand and cost.;

@SPSTGRNDV(1, COST_2);

@SPSTGRNDV(1, DEMAND_2);

! *** STEP 3 *** - Define initial decision and recourse

variables;

!The initial decision is how much to purchase in period 1;

@SPSTGVAR(0, PURCHASE_1);

!Period 2 purchases are a recourse variable after

the weather reveals itself;

@SPSTGVAR(1, PURCHASE_2);

! *** STEP 4 *** - Assign distributions to the random

variables;

!Declare a discrete distribution called 'DST_DMD' with

three outcomes and two jointly distributed variables

(i.e., Demand and Cost);

@SPTABLESHAPE('DST_DMD', 3, 2);

!Load the three equally likely outcomes into 'DST_DMD';

!Dist Name Probability Cost Demand;

@SPTABLEOUTC('DST_DMD', 1/3, 5.0, 100);

@SPTABLEOUTC('DST_DMD', 1/3, 6.0, 150);

@SPTABLEOUTC('DST_DMD', 1/3, 7.5, 180);

!Declare a specific instance of the 'DST_DMD' distribution,

naming the instance 'DST_DMD_1';

@SPTABLEINST('DST_DMD', 'DST_DMD_1');

!Bind Period 2 Cost and Demand to the distribution instance;

@SPTABLERNDV('DST_DMD_1', COST_2, DEMAND_2);

 Stochastic Declarations for Gas Buying Example

We use this section to identify all the random variables and their distributions. A detailed breakdown

of the stochastic declarations follows.

Step 2 - Identifying the Random Variables:
The next step in building our sample SP model is to identify the random variables. The random

variables are the variables that are stochastic by nature and whose values are not known before we

must make our initial decisions. The @SPSTGRNDV function is used to identify random variables.

@SPSTGRNDV accepts two arguments: the random variable's name and its stage.

In this example, there are two random variables, the second period cost and demand, and we identify

them via @SPSTGRNDV in the following to statements:

STOCHASTIC PROGRAMMING 673

!The random variables are period 2's demand and cost.;

@SPSTGRNDV(1, COST_2);

@SPSTGRNDV(1, DEMAND_2);

Note that we have indicated that the two variables are in stage 1. This may seem somewhat odd, in

that they are relevant to period 2. However, you will recall that the first set of random variables to

become known after our initial decision belong to stage 1. If this was a multiperiod model, period 3's

random variables would belong to stage 2, and so on.

Step 3 - Identifying the Initial Decision and Recourse Variables:
The next step is to identify the the initial decision variables and the recourse variables. Unlike the

random variables, which are under Mother Nature's control, the initial decision and recourse variables

are under our control. The initial decision variables occur at the very outset, before any of the random

variables become known, and are always assigned to stage 0. The recourse variables are the

subsequent decisions we make after learning of the outcomes of the random variables. Recourse

variables that are decided after the stage N random variables become known are assigned to stage N as

well.

The @SPSTGVAR function is used to identify initial decision and recourse variables. @SPSTGVAR

accepts two arguments: the variable's stage and its name.

In our example, there is one initial decision, which is PURCHASE_1, the amount of gas to purchase in

period 1. The weather then reveals itself and our recourse variable is PURCHASE_2, the amount to

purchase in period 2. We identify this information with the two statements:

!The initial decision is how much to purchase in period 1;

@SPSTGVAR(0, PURCHASE_1);

!Period 2 purchases are a recourse variable after

the weather reveals itself;

@SPSTGVAR(1, PURCHASE_2);

It turns out that before an SP model can be passed to the SP solver engine, all variables and rows must

be assigned stage values. You will note that we have not done this. Specifically, we have not assigned

stages to any of the rows nor to the variables: PURCHASE_COST, HOLD_COST, PURCHASE_2,

INVENTORY_1 and INVENTORY_2. The reason we have not made these stage assignments is that

LINGO can deduce the stages of the remaining rows and variables from the minimal stage information

we've already supplied. We will examine this stage deduction feature in more detail in the next

section. In the meantime, the following guidelines should suffice:

674 CHAPTER 14

Note: Guidelines for determining the variables and rows that must be explicitly staged are:

 All random variables must be assigned to a stage using @SPSTGRNDV.

 Any initial decision or recourse variable that belongs to stage N that does not depend either

 directly, or indirectly, on another variable (random or otherwise) declared to be in stage N

 must be explicitly assigned to stage N using @SPSTGVAR.

 If you are uncertain whether a particular variable must be explicitly assigned to a stage, or

 not, then it doesn't hurt to assign it anyway using @SPSTGVAR.

 In general, stage assignment for rows should be left to LINGO. Each row will be assigned

 to the stage equal to the maximum stage of the variables appearing in that row. However,

 if you wish to explicitly specify a row’s stage, you may always do so using

 @SPSTGROW.

Step 4 - Declare Distributions
Next, we need to declare the joint probability distribution for the random variables COST_2 and

DEMAMD_2. In this case, we will be using an outcome table distribution, and in order to declare our

distribution we will make use of the scalar-based functions: @SPTABLESHAPE and

@SPTABLEOUTC, @SPTABLEINST and @SPTABLERNDV.

@SPTABLESHAPE initializes the distribution with a name, number of outcomes and number of jointly

distributed variables, while @SPTABLEOUTC is called once for each outcome to load information

relevant to each outcome:

!Declare a discrete distribution called 'DST_DMD' with

three outcomes and two jointly distributed variables

(i.e., Demand and Cost);

@SPTABLESHAPE('DST_DMD', 3, 2);

!Load the three equally likely outcomes into 'DST_DMD';

! Dist Name Probability Cost Demand;

@SPTABLEOUTC('DST_DMD', 1/3, 5.0, 100);

@SPTABLEOUTC('DST_DMD', 1/3, 6.0, 150);

@SPTABLEOUTC('DST_DMD', 1/3, 7.5, 180);

@SPTABLESHAPE accepts three arguments: a name for the distribution, the number of outcomes and

the number of jointly distributed variables in the distribution. In this case, we've titled the distribution

'DST_DMD', and it has three outcomes along with two jointly distributed variables.

Now, to be able to actually apply the distribution to random variables we need to declare an instance of

the distribution. By doing things this way, it's possible to reuse the same outcome table on more than

one set of random variables. We declare an instance of a particular distribution using the

@SPTABLEINST function, which accepts two arguments - the name of the parent distribution and a

new name for the instance of the distribution. In the case of our example, we do the following:

STOCHASTIC PROGRAMMING 675

!Declare a specific instance of the 'DST_DMD' distribution,

naming the instance 'DST_DMD_1';

@SPTABLEINST('DST_DMD', 'DST_DMD_1');

Or, in words, we create an instance of the DST_DMD distribution,

which we name DST_DMD_1.

Our last step is to associate, or bind, the random variables to the instance of the distribution.

Specifically, we wish to bind the cost and demand random variables from period 2 to the DST_DMD_1

distribution instance. We do this with the following expression:

!Bind Period 2 Cost and Demand to the distribution instance;

@SPTABLERNDV('DST_DMD_1', COST_2, DEMAND_2);

Our SP model has now been fully set up and we are now ready to have LINGO solve the model.

The Solution
SP models are solved just like all other models by using the LINGO|Solve command. After solving

our sample gas buying model, SPGAS_SCALAR.LG4, you will see a solution report that begins with

the following section:

Global optimal solution found.

Objective value: 1400.000

Infeasibilities: 0.000000

Total solver iterations: 2

The first line tells us that the solver found a globally optimal solution. This solution status information

is critical. If the status is anything other than globally optimal, locally optimal, or feasible then the

solution will not be valid.

The objective value is the expected objective value of the objective over all the scenarios. Thus, in this

example, the gas companies expected cost over the three weather scenarios is $1400.

The infeasibilities figure measure the amount by which all constraints were violated in the

deterministic equivalent (DE) model. The amount of infeasibilities should always be a very small

number and should generally not exceed 1.e-7.

Total solver iterations lists the number of iterations, or passes, the solver required to solve the DE

model.

The next section of the solution report lists a number of expected values:

Expected value of:

 Objective (EV): 1400.000

 Wait-and-see model's objective (WS): 1326.667

 Perfect information (EVPI = |EV - WS|): 73.33333

 Policy based on mean outcome (EM): 1479.444

 Modeling uncertainty (EVMU = |EM - EV|): 79.44444

These values are a guide as to how the stochastic nature of the model is impacting the objective

value. The following is a brief description of these expected values:

676 CHAPTER 14

Expected Value of Objective (EV) - is the expected value for the model's

objective over all the scenarios, and is the same as the reported objective

value for the model.

Expected Value of Wait-and-See Model's Objective (WS) - reports the

expected value of the objective if we could wait and see the outcomes of

all the random variables before making our decisions. Such a policy

would allow us to always make the best decision regardless of the

outcomes for the random variables, and, of course, is not possible in

practice. For a minimization, it's true that WS <= EV, with the converse

holding for a maximization. Technically speaking, WS is a relaxation of

the true SP model, obtained by dropping the nonanticipativity

constraints.

Expected Value of Perfect Information (EVPI) - is the absolute value of

the difference between EV and WS. This corresponds to the expected

improvement to the objective were we to obtain perfect information

about the random outcomes. As such, this is a expected measure of how

much we should be willing to pay to obtain perfect information

regarding the outcomes of the random variables.

Expected Value of Policy Based On Mean Outcome (EM) - is the

expected true objective value if we (mistakenly) assume that all random

variables will always take on exactly their mean values. EM is

computed using a two-step process. First, the values of all random

variables are fixed at their means, and the resulting deterministic model

is solved to yield the optimal values for the stage 0 decision variables.

Next, a) the stage 0 variables are fixed at their optimal values from the

previous step, b) the random variables are freed up, c) the

nonanticipativity constraints are dropped, and d) this wait-and-see model

is solved. EM is the objective value from this WS model.

Expected Value of Modeling Uncertainty (EVMU) - is the absolute value

of the difference EV - EM. It is a measure of what we can expect to

gain by taking into account uncertainty in our modeling analysis, as

opposed to mistakenly assuming that random variables always take on

their mean outcomes.

Note: The above approach for computing EM and EVMU makes unambiguous sense only for

models with a stage 0 and a stage 1. If there are later random variables in stages 2, 3, etc.,

then there are complications. For example, for decisions in later stages, we have seen the

outcomes from the random variables in earlier stages, so considering these random variables

to take on their mean value does not make sense. For models with additional stages beyond 0

and 1, EVMU will merely be an approximation of the true expected value of modeling

uncertainty.

STOCHASTIC PROGRAMMING 677

Note: Computing these expected value statistics can be very time consuming for large models. If

speed is an issue, you may wish to disable this feature on the LINGO|Options|SP Solver tab.

The next component of the solution lists various statistics regarding the class and size of the model:

Model Class: LP

Total scenarios/leaf nodes: 3

Total random variables: 2

Total stages: 1

 Core Deteq

Total variables: 6 18

Nonlinear variables: 0 0

Integer variables: 0 0

Total constraints: 5 17

Nonlinear constraints: 0 0

Total nonzeros: 12 30

Nonlinear nonzeros: 0 0

Model class lists the DE's model class. In the case of our gas buying sample we have an LP, or linear

program. Possible model classes are detailed in the Solver Status Window section of Chapter 1.

Total scenarios/leaf nodes lists the total number of scenarios in the model. In this example, there are

three scenarios: Normal, Cold and Very Cold.

Note: The total number of scenarios will grow exponentially in the number of stages. For example,

suppose we have just one random variable with two possible outcomes in each of N stages,

then the number of scenarios will equal 2N. Thus, it doesn't take many stages before an SP

can become quite large.

Total random variables lists the number of random variables in the SP. In this example, we have just

two: COST_2 and PURCHASE_2.

The Total stages quantity is the model's stage count. In this case there is only one round of random

variable realizations and recourse decisions, giving a stage count of 1.

Next, LINGO displays statistics regarding the model's size. Statistics for both the core model and DE

are given. The more relevant statistics are the ones for the DE, which is the actual model that must be

solved. Definitions for these statistics may be found in the Solver Status Window section of Chapter 1.

The next section of the solution reports lists the stage-0 solution:

678 CHAPTER 14

Stage 0 Solution

 Variable Value

 PURCHASE_1 200.0000

 INVENTORY_1 100.0000

 Row Slack or Surplus

 R_I1 0.000000

The stage-0 solution lists the values for all variables and rows that are part of the initial decision.

These values are of pressing importance, in that they must be implemented currently. For this reason,

they are displayed in their own separate section near the top of the report.

In the case of our gas company, the optimal initial decision to minimize expected cost is to purchase

200 units of gas in period 1, storing 100 units in inventory. If period 2 is normal the company can

fulfill demand entirely from inventory, otherwise it must make up the difference through additional

purchases in period 2.

STOCHASTIC PROGRAMMING 679

Next, we have the Staging Report:

Staging Report

 Random Variable Stage Distribution

 COST_2 1 DST_DMD(DST_DMD_1,1)

 DEMAND_2 1 DST_DMD(DST_DMD_1,2)

 Variable Stage

 PURCHASE_COST 1*

 HOLD_COST 1*

 PURCHASE_1 0

 PURCHASE_2 1

 INVENTORY_1 0*

 INVENTORY_2 1*

 Row Stage

 R_OBJ 1*

 R_PC 1*

 R_HC 1*

 R_I1 0*

 R_I2 1*

 (*) Stage was inferred

The staging report lists all variables and rows along with their stages. When an SP model is solved, all

variables and rows need to be assigned stage values before the model is passed to the SP solver

engine. We could have done this explicitly through the use of the @SPSTGVAR, @SPSTGROW and

@SPSTGRNDV functions; however, this can be a tedious process prone to errors - particularly for

large models. On the one hand, all random variables must be flagged using @SPSTGRNDV, but only

a minimal set of the recourse variables and the initial decision variables need to have their stages

explicitly assigned. The reason we only need to specify a minimal set is that LINGO can deduce the

stages of the remaining variables by tracing their dependency chains. We refer to this process as stage

deduction, and any variable or row whose stage has been deduced will be flagged with an asterisk in

the staging report. As an example, from the staging report we see that variable INVENTORY_1 was

deduced to be in stage 0. LINGO determined this from the following row:

[R_I1] INVENTORY_1 = PURCHASE_1 - 100;

Given that we declared PURCHASE_1 to be in stage 0, we can also compute INVENTORY_1's value

in stage 0. In which case, INVENTORY_1 can be deduced to be in stage 0. In turn, we can then use

this staging information for INVENTORY_1 in the following expression:

[R_I2] INVENTORY_2 = INVENTORY_1 + PURCHASE_2 - DEMAND_2;

and deduce that INVENTORY_2 is in stage 1, by the fact that the maximum of the stages of all the

right-hand side variables is 1. LINGO continues in this fashion, iteratively tracing the dependencies in

the model and assigning stages to each remaining row and variable. Explicit stage assignments made

by the user are never overridden.

680 CHAPTER 14

Guidelines for determining the variables and rows that require explicit staging were presented in

section, Identifying Initial Decision and Recourse Variables.

The next report is the Random Variable Distribution Report, which lists information on the

distribution assigned to each of the random variables, as well as their observed sample means and

standard deviations:

Random Variable Distribution Report

 Sample Sample

 Random Variable Mean StdDev

Distribution

 COST_2 6.166667 1.027402

DST_DMD,DST_DMD_1,1

 DEMAND_2 143.3333 32.99832

DST_DMD,DST_DMD_1,2

From this, we can see that the random variable COST_2 is assigned to the first column of the

DST_DMD_1 instance of the tabular distribution DST_DMD. Furthermore, COST_2 had a sample

mean of 6.166667 and a sample standard deviation of 32.99832.

The remainder of the solution report contains sub-reports for each of the scenarios. Information

regarding the each scenario's probability, objective value and variable values are displayed. The

values for the random variables for the scenario are contained in a separate section of the report. Here

we reproduce the report for scenario 1:

Scenario: 1 Probability: 0.3333333 Objective: 1100.000

--

 Random Variable Value

 COST_2 5.000000

 DEMAND_2 100.0000

 Variable Value

 PURCHASE_COST 1000.000

 HOLD_COST 100.0000

 PURCHASE_1 200.0000

 PURCHASE_2 0.000000

 INVENTORY_1 100.0000

 INVENTORY_2 0.000000

 Row Value

 R_PC 0.000000

 R_HC 0.000000

 R_I1 0.000000

 R_I2 0.000000

STOCHASTIC PROGRAMMING 681

Note: Moderate to large SP models can have a huge number of scenarios. In which case, the

standard solution report, with its detailed reporting of each scenario, can become unwieldy.

In which case, you may wish to reduce the amount of output by placing LINGO into Terse

output mode. You may then request more specific solution information using the

LINGO|Solution command or add output statements to your model (see SPCOLLEGE2.LG4

for an example of adding output statements to an SP model).

If you examine the reports for each of the three scenarios in this example, you will find that the costs

are as follows: $1,100 for Normal, $1,400 for Cold and $1,700 for Very Cold. This results in an

expected cost of $1,400 = (1/3) * $1100 + (1/3) * $1400 + (1/3) * $1700. The company buys 200 units

of gas in period 1, applying 100 units immediately to period 1 demand, while storing 100 units for

period 2. If period 2''s weather is normal, then period 2 demand is satisfied entirely from inventory. If

the period 2 turns out to be cold, an additional 50 units must be purchased in period 2. If the very cold

scenario occurs, then an additional 80 units must be purchased.

Stock Option Example
Here we will walk through a stochastic programming example of a six-period American put-option

model. The holder of an American put option has the right to sell a specified (underlying) stock at any

time (the feature of American options) between now and a specified expiration date at a specified

strike price. The holder makes a profit in the period of exercise if the strike price exceeds the market

price of the stock at the time of sale, otherwise the profit is 0. The objective will be to maximize the

expected present value of the option in period 0, which also corresponds to the maximum amount we

should be willing to pay for the option.

In this example, the underlying stock's initial price is $100, with the option's strike price equal to $99.

This initially places the option "out of the money" and make its value $0. However, should the stock's

price decline over subsequent periods to the point where it becomes less than the strike price, then the

option will have a positive value.

We will also use a risk free interest rate of 3% for discounting revenue back to the initial period.

The price behavior of the underlying stock is the stochastic element in this example. In any given

period, we have determined that there are four equally likely outcomes for the stock's price:

Return (%) Probability

+9.0 1/4

+3.0 1/4

-1.0 1/4

-8.0 1/4

Using the following reasoning, a casual observer might analyze the above data and declare the option

as being worthless:

The stock is presently out of the money by $1. Before it will move into the money, the stock must

decline by at least $1. However, this seems highly unlikely given that the expected return in any

period is positive +0.75% = .25 * (9.0+3.0-1.0-8.0)%. On average, the stock will just go up in value,

682 CHAPTER 14

and the option will never go into the money. Given this, we should not be willing to pay anything for

this option.

We will see below if our casual observer in on the right track or not.

The complete LINGO model can be found in the LINGO samples folder under the name

SPPUTOPT1.LG4.

The Core Model
Step 1 - Defining the Core Model:
First off, we have the model's sets section. Unlike the previous gas-buying model, which was entirely

scalar, we will make use of LINGO's set-based modeling capabilities in this example. Any set-based

model will have at least one sets section, and for the core model for this example we have the

following:

SETS:

 PERIODS: !six periods (1 initial and 5 recourse);

 RETURN, !return of underlying stock, a r.v.;

 PRICE, !current price of underlying stock;

 SELL, ! = 1 if option exercised in period;

 WLTH, !wealth in period from exercise of

option;

 SAMP_SZ; !sample size;

ENDSETS

Sets Section

As mentioned, this is a six-period (one initial and five recourse) model. Across the six periods, we

have the following attributes:

 RETURN - the stock's return (fractional price change), a random

variable,

 PRICE - the current price of the stock (a function of the RETURN),

 SELL - a recourse variable indicating the fraction of the option

position sold,

 WLTH - wealth in the current period consisting of the wealth from

the previous period multiplied by the risk free rate plus any

proceeds from exercising all, or part, of the option, and

 SAMP_SZ - the sample sizes used for sampling the distribution for

RETURN.

Next we have the data section containing the parameters we mentioned above, consisting of the stock's

initial price, the option's strike price and the risk free rate for discounting:

DATA:

 PERIODS = P0..P5; !names for the periods;

 INIT_PRICE = 100; !initial underlying stock price;

 STRIKE_PRICE = 99; !option strike price;

 RISK_FREE_RATE = .03; !risk free rate for discounting;

ENDDATA

Data Section

STOCHASTIC PROGRAMMING 683

Next, we have the core model. You will recall that the core model is the model we would construct if

the random variables were know with certainty.

! Core Model ---+;

NP = @SIZE(PERIODS); ! Number of periods;

! Maximize the present value of the option in period 0;

[R_OBJ] MAX = WLTH(NP)/(1 + RISK_FREE_RATE) ^ (NP - 1);

! Compute stock's price in each period;

[R_PRICE_INIT] PRICE(1) = INIT_PRICE;

@FOR(PERIODS(P) | P #GT# 1:

 [R_PRICE] PRICE(P) = PRICE(P - 1) * (1 + RETURN(P));

);

! Calculate our compounded wealth in each period;

[R_PV_1] WLTH(1) =

 SELL(1) *

 (STRIKE_PRICE - PRICE(1));

@FOR(PERIODS(P) | P #GT# 1:

 [R_PV] WLTH(P) = SELL(P) * (STRIKE_PRICE - PRICE(P)) +

 WLTH(P - 1) * (1 + RISK_FREE_RATE);

);

! Can't sell more than we have;

[R_SELL_EQ_1] @SUM(PERIODS(P): SELL(P)) <= 1;

! Random variables not allowed in initial period;

[R_RETURN_P0] RETURN(1) = 0;

Core Model for Stock Option Example

As mentioned, our objective is to maximize the present value of the option in the initial period, which

will tell us the maximum we should be willing to pay for the option. To compute the present value in

period 0, we discount wealth in the final period back to the initial period using the risk-free rate:

! Maximize the present value of the option in period 0;

[R_OBJ] MAX = WLTH(NP)/(1 + RISK_FREE_RATE) ^ (NP - 1);

where NP is the number of periods, calculated using the @SIZE function:

NP = @SIZE(PERIODS); ! Number of periods;

Technically, NP is actually equal to the number of periods plus 1, due to P0 being part of the

PERIODS set. So, when we discount wealth, we discount by NP - 1 periods as opposed to NP periods.

In the next section of the core model we compute wealth in each period:

684 CHAPTER 14

! Calculate our compounded wealth in each period;

[R_PV_1] WLTH(1) =

 SELL(1) *

 (STRIKE_PRICE - PRICE(1));

@FOR(PERIODS(P) | P #GT# 1:

 [R_PV] WLTH(P) = SELL(P) * (STRIKE_PRICE - PRICE(P)) +

 WLTH(P - 1) * (1 + RISK_FREE_RATE);

);

Wealth can potentially come from two sources: sale of the option and/or carryover wealth from the

previous period. In the first period, carryover wealth is not possible, so period 1 is handled as a special

case with sale of the option being the only source of wealth. Subsequent periods' wealth are then

computed in an @FOR loop and include both sales and carryover sources of wealth. Revenue from

sales is computed as: SELLp * (STRIKE_PRICE - PRICEp). Note, that the SELL variable may be

fractional if we choose to sell less than the full position on a period. Carryover wealth is computed as:

WLTHp-1 * (1 + RISK_FREE_RATE), where we multiply by the risk free rate to account for interest

payments on wealth.

Clearly, we can't sell more of full option position, so the sum of the SELL attribute across all periods

cannot exceed 1:

! Can't sell more than we have;

[R_SELL_EQ_1] @SUM(PERIODS(P): SELL(P)) <= 1;

Finally, there can be no return in period 0, so we set RETURN to 0 in the initial period:

! Random variables not allowed in initial period;

[R_RETURN_P0] RETURN(@INDEX(P0)) = 0;

In the next section, we will cover the final part of the model listing the stochastic properties.

STOCHASTIC PROGRAMMING 685

Stochastic Declarations
The remainder of the model after the core model is the stochastic declarations section:

! SP Related Declarations -----------------------------+;

! Returns are the random variables;

@FOR(PERIODS(P) | P #GT# @INDEX(P0):

 @SPSTGRNDV(P - 1, RETURN(P));

);

! Sell(P0) is the init decision,

 Sell(P1..P5) are the recourse variables;

@FOR(PERIODS(P):

 @SPSTGVAR(P - 1, SELL(P));

);

SETS:

! Declare the outcome table distribution for returns;

 OUTCOMES: O_RETURN; !An outcome set with a single;

 ! attribute of stock's return;

ENDSETS

DATA:

! Probability distribution and sampling data;

 SAMP_SZ = 0 4 4 4 4 4; !sample size/period;

 O_RETURN = .09 .03 -.01 -.08; !4 outcomes for return;

ENDDATA

! Declare outcome table distribution for return;

@FOR(PERIODS(P) | P #GT# 1:

 @SPDISTTABLE(O_RETURN, RETURN(P));

);

! Set the sample sizes for the stages;

@FOR(PERIODS(P) | P #GT# 1:

 @SPSAMPSIZE(P - 1, SAMP_SZ(P));

);

END

Stochastic Declarations for Stock Option Example

686 CHAPTER 14

Step 2 - Identifying the Random Variables:
As mentioned, the random variables in this example are the stock price returns, RETURN, for periods 1

through 5. We indicate this with the expression:

! Returns are the random variables;

@FOR(PERIODS(P) | P #GT# @INDEX(P0):

 @SPSTGRNDV(P - 1, RETURN(P));

);

Note that return in the initial period, P0, is not valid in this model and we zeroed it out above.

Step 3 - Identifying the Initial Decision and Recourse Variables:
The initial decision is deciding whether or not to sell some, or all, of the option position in the initial

period. The recourse decisions are whether or not to sell some of our position in periods 1 through 5.

We set this up with the following:

! Sell(P0) is the initial decision,

 Sell(P1..P5) are the recourse variables;

@FOR(PERIODS(P):

 @SPSTGVAR(P - 1, SELL(P));

);

Step 4 - Declare Distributions
We have a single discrete distribution for the returns on the underlying stock. As with the previous

gas-buying example, this distribution is represented by an outcome table. However, unlike the

previous example, we will make use of the matrix-based @SPDISTTABLE function for declaring our

outcome table and its random variables. The code in the model devoted to declaring this distribution

is:

STOCHASTIC PROGRAMMING 687

SETS:

! Declare the outcome table distribution for returns;

 OUTCOMES: O_RETURN; !An outcome set with a single;

 ! attribute of stock's return;

ENDSETS

DATA:

! Probability distribution and sampling data;

 SAMP_SZ = 0 4 4 4 4 4; !sample size/period;

 O_RETURN = .09 .03 -.01 -.08; !4 outcomes for return;

ENDDATA

! Declare outcome table distribution for return;

@FOR(PERIODS(P) | P #GT# 1:

 @SPDISTTABLE(O_RETURN, RETURN(P));

);

! Set the sample sizes for the stages;

@FOR(PERIODS(P) | P #GT# 1:

 @SPSAMPSIZE(P - 1, SAMP_SZ(P));

);

END

First, we define a set OUTCOMES with an attribute O_RETURN. O_RETURN will be used to hold the

four possible outcomes from the stock's return in a period. Next, we call @SPDISTTABLE to declare

the outcome table for each RETURN random variable in periods 1 through 5.

We then set the samples size for each of the periods to 4 in the data section:

SAMP_SZ = 0 4 4 4 4 4; !sample size/period;

and then pass them to LINGO's SP solver in the @FOR loop:

! Set the sample sizes for the stages;

@FOR(PERIODS(P) | P #GT# @INDEX(P0):

 @SPSAMPSIZE(P - 1, SAMP_SZ(P));

);

Note that a sample size is not relevant for the initial period, P0, given that no random variables are

permitted in the initial period. So, we have explicitly avoided passing a sample size for period P0.

In the previous gas-buying example, we had only one stage and three outcomes, resulting in only three

possible scenarios. This current model has a much larger set of scenarios. In this example, there are 5

stages with 4 possible outcomes for return in each stage. This results in 45=1024 scenarios. In order

to keep the number of scenarios down to a more manageable size in larger models, you may need to

reduce the sample sizes in each stage. As an example you might want to try running this same model

with the following sample sizes:

688 CHAPTER 14

SAMP_SZ = 0 4 4 2 2 2; !sample size/period;

This cuts the number of scenarios in the underlying SP model to 4*4*2*2*2=128 scenarios. This

should help to dramatically cut the runtime, but at the expense of potentially less accurate results due

to sampling error.

The Solution
After solving the model, you'll find that the expected value of the option is $3.37:

Local optimal solution found.

Objective value: 3.451804

Infeasibilities: 0.000000

Total solver iterations: 19608

Thus, it turns out that our casual observation of the option being worthless was incorrect. Even though

the option is initially out of the money, and, on average, is expected to go even further out of the

money as time passes, the option still has a positive expected value of $3.45. This is due to the

volatility in the stock price, which can temporarily send the stock price down, even though the long

run expectation is for the price to climb.

Based on our sample size of 4 in each of teh 5 stages, there was a total of 1024 scenarios. In fully 598

of these scenarios, the option's value did prove to be worthless. However, in the remaining 426

scenarios the option had a positive value of as high as $13.54. Here's a histogram of the full range of

outcomes:

STOCHASTIC PROGRAMMING 689

The key initial decision was whether or not to sell the option. From the stage 0 (initial decision)

solution we see that the optimal decision is to not sell:

Stage 0 Solution

 Variable Value

 SELL(P0) 0.000000

Of course, we didn't really need LINGO to tell us not to sell in the first period we could have

deduced this ourselves. The worst outcome we could experience is to gain $0. By selling in the initial

period, we lock in the $0 return, never allowing for the possibility of the stock to go down in price and

the option to come into the money. We will rely on LINGO's solution, however, to tell us the best

time to sell in subsequent periods. Here is a fragment of the solution report for scenario 65, which is

one of the scenarios with the maximum option value of $13.54:

690 CHAPTER 14

 Scenario: 65 Probability: 0.9765625E-03 Objective:

13.53568

 Random Variable Value

 RETURN(P1) -0.8000000E-01

 RETURN(P2) -0.8000000E-01

 RETURN(P3) -0.1000000E-01

 RETURN(P4) -0.1000000E-01

 RETURN(P5) 0.3000000E-01

 Variable Value

 NP 6.000000

 RETURN(P0) 0.000000

 PRICE(P0) 100.0000

 SELL(P0) 0.000000

 WLTH(P0) 0.000000

 PRICE(P1) 92.00000

 SELL(P1) 0.000000

 WLTH(P1) 0.000000

 PRICE(P2) 84.64000

 SELL(P2) 1.000000

 WLTH(P2) 14.36000

 PRICE(P3) 83.79360

 SELL(P3) 0.000000

 WLTH(P3) 14.79080

 PRICE(P4) 82.95566

 SELL(P4) 0.000000

 WLTH(P4) 15.23452

 PRICE(P5) 85.44433

 SELL(P5) 0.000000

 WLTH(P5) 15.69156

Note that the stock goes down in the first four periods, but that we sold in period 2 for a gain of

$14.36, which discounted back to the initial period is equal to a gain of $13.54. Had we been

omniscient, we could have held on to the option for two more periods for additional gains. But, of

course, we can't see the future, and we must base our decisions on maximizing the option's expected

value over all scenarios.

STOCHASTIC PROGRAMMING 691

Investing Under Uncertainty Example
In the previous two examples, the random variable distributions were expressed as discrete outcome

tables. In this example, we will look at a model with distributions that are not discreet. In particular,

we will be using a normal distribution for our random variables. Given the infinite number of

outcomes in a normal distribution, we will also need to use @SPSAMPSIZE to declare the samples

sizes to be used by the SP solver. In addition, we will use @SPCORRPEARSON to input a correlation

coefficient for some of the random variables.

In this example, we are investing to fund a college education (Birge and Louveaux, 1997). We may

invest in either stocks or bonds, both of which are assumed to have returns that are normally

distributed as per the following table:

Asset Mean Return Standard Deviation

Bonds 12% 1%

Stocks 16% 10%

It also turns out that the returns on stocks and bonds are correlated, with a correlation coefficient of .5.

Our initial wealth is $55,000, while our target at the end of four periods is $80,000. Our goal is to

maximize wealth at the end of the three periods, however, we will be very disappointed if we don't

meet our goal. For this reason, we penalize ourselves by a factor of four for each dollar that we are

short of our goal. We also have the option of readjusting our portfolio at the start of each period.

The complete LINGO model can be found in the LINGO samples folder under the name

SPCOLLEGENORM.LG4.

692 CHAPTER 14

The Core Model
The core model for our investing example follows:

! Core Model ---+;

SETS:

 TIME;

 ASSETS: MU, SIGMA;

 AXT(ASSETS, TIME): INVEST, RETURN;

 AXA(ASSETS, ASSETS) | &2 #GT# &1: RHO;

ENDSETS

DATA:

 INITIAL = 55;

 GOAL = 80;

 PENALTY = 4;

 TIME = T0..T3;

 ASSETS, MU, SIGMA =

 BONDS 1.12 .01

 STOCKS 1.16 .10;

 RHO = .5;

ENDDATA

MIN = PENALTY * UNDER - OVER;

@FOR(TIME(T) | T #GT# 1:

 @SUM(ASSETS(A): RETURN(A, T) * INVEST(A, T - 1)) =

 @SUM(ASSETS(A): INVEST(A, T))

);

FINAL = @SUM(ASSETS(A): INVEST(A, @SIZE(TIME)));

FINAL = GOAL + OVER - UNDER;

@SUM(ASSETS(A): INVEST(A, @INDEX(TIME, T0))) = INITIAL;

@FOR(ASSETS(A):

 RETURN(A, @INDEX(TIME, T0)) = 0;

);

Core Model for College Investing Example

In the sets section, we have two primitive sets: TIME and ASSETS. The TIME set will be used to

represent our time periods and will have four members: T0 will represent the initial decision period,

while T1, T2 and T3 will represent the three time periods. The set ASSETS will contain two members:

BONDS and STOCKS.

We also define two derived sets in the sets section: AXT and AXA. The AXT set is a dense, 2-

dimensional set consisting of all (ASSETS,TIME) pairs. We define the two attributes INVEST and

RETURN on AXT. The INVESTa,t attribute is our decision variable of how much to invest in asset a in

period t, while RETURNa,t is a random variable representing the return of asset a in period t.

STOCHASTIC PROGRAMMING 693

Next, in the data section we input the following pieces of data:

 INITIAL - the initial wealth,

 GOAL - the final goal for wealth

 PENALTY - the penalty factor to apply to goal shortfalls

 TIME - the four members of the TIME set

 ASSETS,MU,SIGMA - the normal distribution data for returns on bonds and stocks, and

 RHO - the correlation coefficient between bond and stock returns

Getting into the model section, the first expression:

MIN = PENALTY * UNDER - OVER;

is the objective function, which can be viewed as a penalty function that we will be minimizing. For

each dollar under our goal (UNDER) we get penalized 4 units, while for each dollar over our goal

(OVER) we reduce the penalty by 1 unit. This will force the solver to more heavily weight solutions

that meet our goal, perhaps at the expense of maximizing total wealth.

In the next expression:

@FOR(TIME(T) | T #GT# 1:

@SUM(ASSETS(A): RETURN(A, T) * INVEST(A, T - 1)) =

 @SUM(ASSETS(A): INVEST(A, T))

);

we are setting total investments in period t equal to total investments plus returns in period t-1. Note

that by formulating the investment flows in this manner, we are free to reallocate investments each

period.

The following two expressions are used to calculate the amount that we are either over (OVER) or

under (UNDER) goal:

FINAL = @SUM(ASSETS(A): INVEST(A, @SIZE(TIME)));

FINAL = GOAL + OVER - UNDER;

Next, we add a constraint to limit the initial investments to our initial wealth level:

@SUM(ASSETS(A): INVEST(A, @INDEX(TIME, T0))) = INITIAL;

Without this expression, the model would allow infinite investment, leading to an unbounded solution.

Finally, there are no investment returns in the initial decision period, so we zero out them out:

@FOR(ASSETS(A):

 RETURN(A, @INDEX(TIME, T0)) = 0;

);

694 CHAPTER 14

Stochastic Declarations
After the core model, we enter the stochastic declarations identifying the stochastic features of the

model:

! SP Related Declarations -----------------------------+;

! The initial decision and recourse variables;

@FOR(AXT(A, T):

 @SPSTGVAR(T - 1, INVEST(A, T));

);

@FOR(AXT(A, T) | T #GT# 1:

! Return is a random variable...;

 @SPSTGRNDV(T - 1, RETURN(A, T));

! ...and it's normally distributed;

 @SPDISTNORM(MU(A), SIGMA(A), RETURN(A, T))

);

@FOR(TIME(T)| T #GT# @INDEX(TIME, T0):

 !Set a sample size for each period;

 @SPSAMPSIZE(T-1, 8);

 !Load the stock and bond correlation for the period;

 @FOR(AXA(I, J):

 @SPCORRPEARSON(RETURN(I, T), RETURN(J, T), RHO(I,

J))

);

);

Stochastic Declarations for College Investing Example

The initial decision variables in the model are how much to allocate to bonds and how much to allocate

to stocks in the initial time period, or variables INVEST(BONDS, T0) and INVEST(STOCKS, T0).

The recourse variables are how much to allocate to both assets in subsequent periods as the returns for

each period are observed, or INVEST(BONDS, T1), INVEST(STOCKS, T1), ..., INVEST(STOCKS,

T3). We identify these variables and assign them to their respective stages as follows:

! The initial decision recourse variables;

@FOR(AXT(A, T):

 @SPSTGVAR(T - 1, INVEST(A, T));

);

In the following loop:

STOCHASTIC PROGRAMMING 695

@FOR(AXT(A, T) | T #GT# 1:

! Return is a random variable...;

 @SPSTGRNDV(T - 1, RETURN(A, T));

! ...and it's normally distributed;

 @SPDISTNORM(MU(A), SIGMA(A), RETURN(A, T))

);

we declare the asset return variables as random variables and declare that they have a normal

distribution using the @SPDISTNORM function. Note that @SPDISTNORM requires the parameters

of the distribution, which, in the case of a normal distribution, are the mean and standard deviation.

Finally, we set the sample size to 8 samples in each stage/period and load the correlation coefficient

between the two assets in each period in the loop:

@FOR(TIME(T)| T #GT# @INDEX(TIME, T0):

 !Set a sample size for each period;

 @SPSAMPSIZE(T-1, 8);

 !Load the stock and bond correlation for the period;

 @FOR(AXA(I, J):

 @SPCORRPEARSON(RETURN(I, T), RETURN(J, T), RHO(I, J))

);

);

In this particular instance, we are using the Pearson method for inducing correlations in the sample

values. Other alternatives are the Kendall and Spearman methods.

The Solution
After solving the model, you'll find that the expected value of the penalty function is approximately

2.78:

Global optimal solution found.

Objective value: 2.775631

Infeasibilities: 0.000000

Total solver iterations: 1092

You will recall that the penalty function used in the model's objective is a weighted combination of 4

times the dollars under target minus the number of dollars over target. So, does the positive expected

objective value mean that we miss our target on average? Perhaps not, given that we weight the under

target dollars 4 times more than the over target dollars. To get a more meaningful result, a calc section

was added to the model:

696 CHAPTER 14

CALC:

@SET('TERSEO', 1);

@SOLVE();

I = 1;

NOVER = 0;

NUNDER = 0;

@WRITE(' Surplus ');

@FOR(TIME(T) | T #GT# @INDEX(T0): @WRITE(' ', TIME(T)));

 @WRITE(@NEWLINE(1));

 @WRITE(' Scenario Return Prob');

 @FOR(TIME(T) | T #GT# @INDEX(T0): @WRITE(' Bond Stock'));

 @WRITE(@NEWLINE(1));

 X_SURPLUS = 0;

 @WHILE(I #LE# @SPNUMSCENE():

 @SPLOADSCENE(I);

@WRITE(@FORMAT(I, '10.0f'),

 @FORMAT(OVER - UNDER, '15.3f'),

 @FORMAT(@SPPRBSCENE(I), '10.3f'));

 @FOR(TIME(T) | T #GT# @INDEX(T0): @FOR(ASSETS(A):

 @WRITE(' ',

 @FORMAT(100*(RETURN(A, T) - 1), '4.1f'), '%')));

 @WRITE(@NEWLINE(1));

 X_SURPLUS = X_SURPLUS + @SPPRBSCENE(I) * (OVER - UNDER);

 I = I + 1;

 @IFC(UNDER #LE# 1.E-8:

 NOVER = NOVER + 1;

 @ELSE

 NUNDER = NUNDER + 1;

);

);

 @WRITE(@NEWLINE(1));

 @WRITE(' Expected surplus: ', @FORMAT(X_SURPLUS, '15.3f'));

 @WRITE(@NEWLINE(1));

 @WRITE(' Scenarios over goal: ', @FORMAT(NOVER, '12g'));

 @WRITE(@NEWLINE(1));

 @WRITE(' Scenarios under goal: ', @FORMAT(NUNDER, '11g'));

 @WRITE(@NEWLINE(1));

 @WRITE(' Success ratio: ',

 @FORMAT(NOVER/(NOVER+NUNDER), '18.3f'));

ENDCALC

STOCHASTIC PROGRAMMING 697

This calc section uses the scripting capabilities in LINGO to generate a custom report that displays

each of the 512 scenarios in the model, their return values and their expected surpluses of funds over

the goal. (More details on LINGO scripting capabilities may be found in Chapter 13, Programming

LINGO.) The report also lists summary information on the expected surplus dollars, along with the

number of scenarios over target and the number below target. Portions of this report follow:

 Surplus T1 T2 T3

Scenario Return Prob Bond Stock Bond Stock Bond Stock

 1 0.528 0.002 11.0% 35.4% 13.3% 7.7% 9.5% 0.3%

 2 14.604 0.002 11.0% 35.4% 13.3% 7.7% 11.9% 17.9%

 3 12.203 0.002 11.0% 35.4% 13.3% 7.7% 11.0% 14.9%

 4 27.423 0.002 11.0% 35.4% 13.3% 7.7% 11.6% 33.9%

 5 18.706 0.002 11.0% 35.4% 13.3% 7.7% 12.9% 23.0%

 <...>

 500 9.946 0.002 12.7% 23.3% 11.4% 0.5% 11.6% 33.9%

 501 3.249 0.002 12.7% 23.3% 11.4% 0.5% 12.9% 23.0%

 502 -7.809 0.002 12.7% 23.3% 11.4% 0.5% 12.3% 5.3%

 503 -4.413 0.002 12.7% 23.3% 11.4% 0.5% 12.3% 10.8%

 504 1.961 0.002 12.7% 23.3% 11.4% 0.5% 13.2% 20.9%

 505 6.928 0.002 12.7% 23.3% 12.8% 27.7% 9.5% 0.3%

 506 22.123 0.002 12.7% 23.3% 12.8% 27.7% 11.9% 17.9%

 507 19.531 0.002 12.7% 23.3% 12.8% 27.7% 11.0% 14.9%

 508 35.960 0.002 12.7% 23.3% 12.8% 27.7% 11.6% 33.9%

 509 26.551 0.002 12.7% 23.3% 12.8% 27.7% 12.9% 23.0%

 510 11.241 0.002 12.7% 23.3% 12.8% 27.7% 12.3% 5.3%

 511 15.953 0.002 12.7% 23.3% 12.8% 27.7% 12.3% 10.8%

 512 24.741 0.002 12.7% 23.3% 12.8% 27.7% 13.2% 20.9%

Expected surplus: 4.413

Scenarios over goal: 344

Scenarios under goal: 168

Success ratio: 0.672

Based on this report, we see that the expected surplus is $4,413, meaning that on average we can

expect to meet our goal by that amount. Furthermore, 344 of the 512 scenarios ended over target for a

success ratio of 67.2%.

698 CHAPTER 14

Chance-Constrained Programs (CCPs)
The second major class of models in stochastic programming is chance-constrained programs (CCP).

A CCP model is a) similar to general stochastic programs in that the model contains random quantities

with known distributions, but b) simpler in that the model has just a single decision stage and a single

random outcome stage.

The goal in CCP is to make an optimal decision prior to realization of random data, while controlling

the chance that constraints are violated. Consider an LP with random matrix Ξ and random right-hand-

side ω:

Min c x

Ξxi ≥ ωi i=1...m

If we required all m realizations of Ξ x ≥ ω to be satisfied, then we would get a very

conservative/expensive solution x, or no feasible solution at all. The distinctive feature of CCP is that

we require that Ξ x ≥ ω be satisfied with some prespecified probability, 0 < p < 1, as opposed to it

being satisfied for all possible realizations of (Ξ,ω).

An example of a CCP model would be a blending model where the quality level of the raw materials is

not known with certainty, but have known probability distributions. Given this variability in raw

material quality, it may not always be practical to satisfy quality requirements in the final blend 100

percent of the time. Instead, we seek to find a blend of the raw materials that will satisfy quality

constraints to a specified precentage, say 90 percent, of the time. We present this example later in the

chapter in section A CCP Fuel Blending Model.

STOCHASTIC PROGRAMMING 699

Setting up CCP Models
Setting up a CCP model requires four steps. Three of the steps are identical to those used in setting up

an SP. The one step found in SPs that's not found in CCPs is identifying initial decision and recourse

variables, and this is because in a CCP all decision variables are considered to be in stage 0, i.e., they

are all initial decision variables. This contrasts with an SP, which may have any number of recourse

stages in addition to the initial decision stage. The fourth (and new) step in setting up CCPs is

identifying the chance-constraint sets. These four steps are summarized in the table below and are

illustrated in detail in the example CCP model that follows.

Step Task Description How

1 Defining core model The core model is built just like any other

deterministic LINGO model. The

random variables are used directly in the

core model's expressions as if they were

determinate.

Entered like any other

deterministic LINGO

model.

2 Identifying the

random variables

Each random variable must be identified

along with the stage of the model where it

becomes known. In a CCP, random

variables must always belong to stage 1.

@SPSTGRNDV

3 Declaring

distributions

The probability distributions of the

random variables must be declared. The

techniques for doing so will depend on

whether the variable of interest has a

distribution defined by either a) a discrete

outcome table, or b) a parametric

distribution.

An outcome table is a finite set of all

possible outcomes, their probabilities and

values for the random variable(s).

Outcome tables may be constructed using

either scalar values or attribute vectors.

A parametric distribution, on the other

hand, is defined by a particular type of

probability density function, e.g., the

normal distribution. Parametric

distributions may have a finite or infinite

number of possible outcomes, depending

on the distribution type.

Outcome Tables:

 Scalar-based:

 @SPTABLESHAPE

 @SPTABLEOUTC

 @SPTABLEINST

 @SPTABLERNDV

 Vector-based:

 @SPDISTTABLE

4 Identify chance-

constraint sets.

One or more sets of constraints are

classified as being chance-constrained.

An individual constraint may appear in no

more than one chance-constraint set.

@SPCHANCE

700 CHAPTER 14

Language Features for CCP Models
The primary features in the LINGO language used for building a stochastic programming model can

be partitioned into the following three categories, corresponding to steps 2-4 of the Setting Up CCP

Models section above:

1. Identifying random variables

2. Declaring distributions

3. Identifying chance-constraint sets

Each of the categories are discussed in the following three sections, which are primarily intended for

reference use. The reader may wish to jump directly to the CCP modeling example, A CCP Fuel

Blending Example, in order to see LINGO's CCP modeling features used in the context of an actual

model.

There are additional CCP language constructs available for use in calc sections for model's that exploit

LINGO's programming capability. These features are discussed in Chapter 13, Programming LINGO.

Identifying Random Variables
A fundamental component of any CCP model is its set of random variables. The random variables are

the stochastic component of the model. Their values are not known with certainty beforehand,

however, their uncertainty can be expressed with known probability distributions. LINGO requires

each random variable to be explicitly identified. When we identify each random variable, we must

also provide the stage in the scenario tree where each variable's value is revealed. Currently, unlike

SPs, CCPs are limited to single stages, given this, the stage value must always be 1. The

@SPSTGRNDV function is used for this for identifying the random variables in a CCP model:

@SPSTGRNDV(STAGE, VARIABLE_NAME)
This function takes two arguments: the random variable's name and the integer valued stage at which

the random variable's value is revealed. Note that this function merely flags a variable as being

random, and does not communicate any information regarding the actual distribution of the variable.

A distribution is associated with the random variable in the Binding random variables to distribution

instances, discussed below. Some examples follow:

Example 1: @SPSTGRNDV(1, DEMAND);

Flags variable DEMAND as being a random variable in stage 1.

Example 2: @FOR(CUSTOMERS(I): @SPSTGRNDV(1, DEMAND(

I))));

Flags DEMAND(I) as being a random variable in stage 1. Note that by using @SPSTGRNDV in an

@FOR loop, we are able to identify multiple variables as being random.

Declaring Distributions
In a CCP, the distributions for the random variables are declared exactly as they are in SPs. You can

refer to the section Declaring Distributions for SPs above to see how this is done.

STOCHASTIC PROGRAMMING 701

Identifying Chance-Constraint Sets
A CCP model will have one or more sets of chance constraints. Each set is assigned a) a name, b) a

direction and c) a probability. You make these declarations using the @SPCHANCE function using

the syntax:

@SPCHANCE('Set_Name', '>='|'<=', Probability)

The set name must be unique, enclosed in quotes, and must follow normal LINGO naming

conventions. The direction must be either '>=' or '<=', while the probability is a real number in the

range of [0,1]. The direction argument indicates whether the probability that the set is satisfied is

either greater-than-or-equal-to or less-than-or-equal-to the specified probability. An example follows:

Example 1: @SPCHANCE('CCP_DEMAND', '>=', .95);

Here we declare a CCP constraint set with name CCP_DEMAND, a direction of greater-than-or-equal-

to, and a set probability of .95. This says that the constraints assigned to this set must all be satisfied in

at least 95% of the scenarios. If just one constraint is unsatisfied in a particular scenario, then the

whole set is considered unsatisfied for that scenario.

Once you've declared a CCP set, there is still an additional step of assigning actual constraints to the

set. This is again done with the @SPCHANCE function, however, the syntax is slightly different:

@SPCHANCE('Set_Name', Constraint_Ref)

The same set name is used as was used in the set declaration, however, you now must enter a

constraint reference, consisting of the name of a constraint in the core model. Here's an example:

Example 2: @FOR(CUST(I): @SPCHANCE('CCP_DEMAND',

R_DEMAND(I)));

Here we use an @FOR loop to assign multiple constraints with name R_DEMAND to the CCP

constraint set CCP_DEMAND.

When assigning constraints to a CCP constraint set there are a few rules to remember:

 A constraint may be assigned to no more than one CCP set.

 Each constraint belonging to a CCP set must reference at least one random variable.

 The objective function may not be assigned to a CCP set.

 In the next section, we will walk through building a complete CCP model for fuel blending.

A CCP Fuel Blending Example The Model
As production manager at a fuel processing plant, you would like to maximize profit from blending the

raw materials butane, catalytic reformate, and naphtha into the two finished products Regular and

Premium. These final products must satisfy certain ranges of quality requirements on octane, vapor

pressure, and volatility. You also know the minimum required for each finished good, the maximum

you will be able to sell, and the profit contribution per unit.

702 CHAPTER 14

Each raw material has a limited availability and cost per unit which are known, however, the quality

level of the three raw materials is not known with certainty. We do know that the quality levels are

normally distributed with known means and standard deviations. We'd like to chose blending ratios so

that the finished products don't fall below their lower limits on requirements at least 90 percent of the

time and don't exceed their upper limits at least 70 percent of the time.

We will use a CCP to solve this problem, with the quality constraints forming the chance-constrained

sets. The model we will use is available in the LINGO Samples folder under the name

BLENDCCP.LG4.

Our model's sets section is:

SETS:

 !Each raw material has an availability

 and cost/unit;

 RAWMAT: AVAIL, COST;

 !Each finished good has a min required,

 max sellable, selling price,

 and batch size to be determined;

 FINGOOD: MINREQ, MAXSELL, PRICE, BATCH;

 !The quality measures set;

 QUALMES;

 !For each combo of raw material and

 quality measure there is an average

 quality level, its standard

 deviation, and the actual quality

 level received;

 RXQ(RAWMAT, QUALMES): QLEVMU, QLEVSD, QLEV;

 !For each combination of quality

 measure and finished good there are

 upper and lower limits on quality;

 QXF(QUALMES, FINGOOD): QUP, QLOW;

 !For each combination of raw material

 and finished good there is an amount

 of raw material used to be solved for;

 RXF(RAWMAT, FINGOOD): USED;

 ENDSETS

A feature to note in the sets section is the attribute QLEV, which will store the actual quality levels of

the raw materials. The actual quality levels are not known with certainty, but they are normally

distributed with means QLEVMU and standard deviations QLEVSD. Also, at the bottom of the sets

section, we've also declared the attribute USED, which constitutes our decision variables and will tell

us the amount of each raw material to use in each finished product

STOCHASTIC PROGRAMMING 703

Next is the model's data section:

 DATA:

 !Raw materials;

 RAWMAT = BUTANE, CATREF, NAPTHA;

 !Raw material availability;

 AVAIL = 1000, 4000, 5000;

 !Raw material costs;

 COST = 7.3, 18.2, 12.5;

 !Finished goods;

 FINGOOD = REGU, PREM;

 !Limits on finished goods;

 MINREQ = 4000, 2000;

 MAXSELL = 8000, 6000;

 !Finished goods prices;

 PRICE = 18.4, 22;

 !Quality measures (octane, vapor, volatility);

 QUALMES = OCT, VAP, VOL;

 !Average quality parameters of

 raw materials;

 QLEVMU = 120, 60, 105,

 100, 2.6, 3,

 74, 4.1, 12;

 QLEVSD = 5, 3, 6,

 2, .11, .13,

 3, .2, .4;

 !Upper and lower limits on

 quality for each finished good;

 QUP = 100, 120,

 11, 11,

 25, 25;

 QLOW = 90, 95,

 8, 8,

 17, 17;

 ENDDATA

At the bottom of the data section, we initialize the averages and standard deviations (QLEVMU and

QLEVSD) for the raw material quality levels. As an example, the average vapor level for catalytic

reformate is 60 with a standard deviation of 3. We also input the upper and lower quality limits for

each quality and each finished product (QUP and QLOW). As an example here, the lower and upper

limits on octane for Premium are 95 and 120. As mentioned, the quality constraints on the finished

products will be chance constrained, so we will be able to violate these limits at times.

704 CHAPTER 14

Next comes the core model:

 !Core model ++++++++++++++++++++++++++++++++++++;

 !We want to maximize the profit contribution;

 [R_OBJ] MAX =

 @SUM(FINGOOD(F): PRICE(F) * BATCH(F)) -

 @SUM(RAWMAT(R): COST(R) *

 @SUM(FINGOOD(F): USED(R, F)));

 !Subject to raw material availability;

 @FOR(RAWMAT(R):

 [R_RMLIM] @SUM(FINGOOD(F): USED(R, F))

 <= AVAIL(R);

);

 @FOR(FINGOOD(F):

 !Batch size limits;

 @BND(MINREQ(F), BATCH(F), MAXSELL(F));

 !Batch size computation;

 [R_BATCOMP] BATCH(F) =

 @SUM(RAWMAT(R): USED(R, F));

);

 @FOR(QXF(Q, F):

 !Quality restrictions for each

 quality measure;

 [R_QUP] @SUM(RAWMAT(R):

 QLEV(R, Q) * USED(R, F)) <=

 QUP(Q, F) * BATCH(F);

 [R_QDN] @SUM(RAWMAT(R):

 QLEV(R, Q) * USED(R, F)) >=

 QLOW(Q, F) * BATCH(F);

);

Once again, the core model contains the deterministic version of the model without the introduction of

any stochastic elements. Basically, we want to maximize profit, while not using more raw materials

than are available, not exceeding batch size limits and strictly meeting the quality restrictions on the

finished goods. As we transition the model to a CCP, we will relax this final condition on the finished

goods' quality levels.

STOCHASTIC PROGRAMMING 705

Finally, at the end of our model are the declarations that convert the core model into a CCP:

 !CCP declarations ++++++++++++++++++++++++++++++;

 DATA:

 PROB_UP = .7;

 PROB_DN = .9;

 NSAMP = 20;

 ENDDATA

 !Declare QLEV(Q,F) as normally distributed;

 @FOR(RXQ(R, Q):

 @SPSTGRNDV(1, QLEV(R, Q));

 @SPDISTNORM(QLEVMU(R, Q), QLEVSD(R, Q),

 QLEV(R, Q));

);

 !Establish two empty CCP row sets with

 a minimal satisfaction probability level;

 @SPCHANCE('CCP_QUAL_UP', '>=', PROB_UP);

 @SPCHANCE('CCP_QUAL_DN', '>=', PROB_DN);

 !Add all the quality constraints to the CCP set;

 @FOR(RXF(R, F):

 @SPCHANCE('CCP_QUAL_UP', R_QUP(R, F));

 @SPCHANCE('CCP_QUAL_DN', R_QDN(R, F));

);

 !Set sample size;

 @SPSAMPSIZE(1, NSAMP);

In the following section:

 !Declare QLEV(Q,F) as normally distributed;

 @FOR(RXQ(R, Q):

 @SPSTGRNDV(1, QLEV(R, Q));

 @SPDISTNORM(QLEVMU(R, Q), QLEVSD(R, Q),

 QLEV(R, Q));

);

we declare the raw material quality levels as random variables in stage 1 via the @SPSTGRNDV

function. We then declare them as being normally distributed using @SPDISTNORM, along with

passing their means and standard deviations.

Next, we need to declare two CCP sets: one for the upper limits on quality, and one for the lower limits

on quality. As mentioned above, we use the @SPCHANCE function to do this as follows:

 !Establish two empty CCP row sets with

 a minimal satisfaction probability level;

 @SPCHANCE('CCP_QUAL_UP', '>=', PROB_UP);

 @SPCHANCE('CCP_QUAL_DN', '>=', PROB_DN);

706 CHAPTER 14

Here, we assign the names CCP_QUAL_UP and CCP_QUAL_DN for, respectively, the upper and

lower limit constraint sets. The direction for both sets is greater-than-or-equal-to ('>='), given that we

want the probability that the sets are satisfied to equal, or exceed, a specified probability. The desired

probability hurdles, PROB_UP and PROB_DN, were initialized in an earlier data section to be .7 and

.9.

Once we've declared our CCP sets we need to assign constraints to them. We do this again with

@SPCHANCE:

 !Add all the quality constraints to the CCP set;

 @FOR(RXF(R, F):

 @SPCHANCE('CCP_QUAL_UP', R_QUP(R, F));

 @SPCHANCE('CCP_QUAL_DN', R_QDN(R, F));

);

Here, we loop over every (raw material, finished good) pair, loading constraint references (i.e.,

constraint names) into their respective sets. You will note that the constraint names were assigned to

the quality constraints earlier in the core model:

 @FOR(QXF(Q, F):

 !Quality restrictions for each

 quality measure;

 [R_QUP] @SUM(RAWMAT(R):

 QLEV(R, Q) * USED(R, F)) <=

 QUP(Q, F) * BATCH(F);

 [R_QDN] @SUM(RAWMAT(R):

 QLEV(R, Q) * USED(R, F)) >=

 QLOW(Q, F) * BATCH(F);

);

You may refer to section Constraint Names for more information on how to establish constraint

names.

Lastly, we set the sample size for the model to be 20 with the statement:

 !Set sample size;

 @SPSAMPSIZE(1, NSAMP);

This is the number of times each random variable will be sampled, and, in the case of CCPs will also

be the total number of scenarios. Note that currently for CCPs there is only one stage, so the sample

size is always set for stage 1. Note that NSAMP was initialized earlier in the model to be 20.

In the next section, we will discuss the solution to our fuel blending example.

STOCHASTIC PROGRAMMING 707

A CCP Fuel Blending Example The Solution
Solving the CCP model from the previous section, we find the following summary at the top of the

solution report:

 Global optimal solution found.

 Objective value: 33396.85

 Infeasibilities: 0.000000

 Extended solver steps: 621

 Total solver iterations: 28081

 Stochastic Model Class: CHANCE-CONSTRAINED

 Deteq Model Class: MILP

 Total scenarios/leaf nodes: 20

 Total random variables: 9

 Core Deteq

 Total variables: 8 48

 Nonlinear variables: 0 0

 Integer variables: 0 40

 Total constraints: 18 248

 Nonlinear constraints: 0 0

 Total nonzeros: 34 1262

 Nonlinear nonzeros: 0 0

The solver found a globally optimal solution of approximately $33,397 in 621 branches and 28,801

iterations. LINGO correctly identifies the model as CHANCE-CONSTRAINED. One interesting result

is that the deterministic equivalent (deteq) generated by LINGO for solving the stochastic model was a

mixed integer linear program (MILP). This is of note because the core model is a pure linear program

with no integer variables. You can verify this further down on the line listing the integer variable

counts of 0 in the core model and 40 in the deterministic equivalent. Binary variables were added to

the deteq to work as indicator variables indicating whether or not a particular CCP set is satisfied in a

particular scenario. Here, we have 2 sets and 20 scenarios resulting in 2 x 20 = 40 binary variables.

The remaining section of the summary report lists the sizes of the various components of the model.

The main thing to note here is the size of the deteq relative to the core model, which turns out to be

considerably larger. It is the dimensions of the deteq that are most relevant with respect to runtimes

and any size limitations (e.g., variable limits) of your installation. Note that a deteq will grow as you

increase the sample size; on the one hand, a large samples size is nice for reducing sampling error, but,

on the other hand, you will experience longer runtimes when increasing sample size. Those interested

in viewing the actual deteq can run the LINGO|Generate|Explicit Deteq command.

708 CHAPTER 14

Next up we have the CCP Sets Report:

 CCP Sets Report

 Unsatisfied Actual Target

Set Name/Members Scenarios Probability Dir Probability

 CCP_QUAL_UP 6 0.7000000 >= 0.7000000

 R_QUP(OCT, REGU)

 R_QUP(OCT, PREM)

 R_QUP(VAP, REGU)

 R_QUP(VAP, PREM)

 R_QUP(VOL, REGU)

 R_QUP(VOL, PREM)

 CCP_QUAL_DN 2 0.9000000 >= 0.9000000

 R_QDN(OCT, REGU)

 R_QDN(OCT, PREM)

 R_QDN(VAP, REGU)

 R_QDN(VAP, PREM)

 R_QDN(VOL, REGU)

 R_QDN(VOL, PREM)

The CCP Sets Report list the following information:

1. Set Name/Members - Each CCP set is listed by name immediately

followed by the names of its member constraints.

2. Unsatisfied Scenarios - This reports on the number of scenarios

where the CCP set was violated.

3. Actual Probability - This is the observed probability that a constraint

set was satisfied in a particular scenario, and is computed for CCP set i

as (TotalScenarios - UnsatisfiedScenariosForSeti) / TotalScenarios.

4. Dir - This is the direction of the CCP set, indicating whether the

observed probability should be greater-than-or-equal-to or less-than-or-

equal to the target probability.

5. Target - This column lists the target probability for the CCP set.

For this particular example, we see that the upper limits on quality were unsatisfied in a total of 6 out

of 20 scenarios for an actual probability of .7, exactly matching the target probability. The lower

limits set was violated only twice for an actual probability of .9, again exactly matching the target.

STOCHASTIC PROGRAMMING 709

After the CCP Sets Report LINGO generates the Stage 0 Solution:

 Stage 0 Solution

 Variable Value

 USED(BUTANE, REGU) 536.1166

 USED(BUTANE, PREM) 401.7255

 USED(CATREF, REGU) 2053.043

 USED(CATREF, PREM) 1946.957

 USED(NAPTHA, REGU) 1410.840

 USED(NAPTHA, PREM) 569.2198

 Row Slack or Surplus

 R_RMLIM(BUTANE) 62.15789

 R_RMLIM(CATREF) 0.000000

 R_RMLIM(NAPTHA) 3019.940

The Stage 0 Solution lists the values for all the non-random variables and constraints. These are all

part of stage 0 and will not vary from one scenario the next, hence, their values are reported only once

in the Stage 0 Solution. Here we've reproduced a a fragment of the report showing the items of most

interest: the amount of each raw material used in each finished product (USED) and the slack values

on the raw material supply constraints (R_RMLIM).

After the Stage 0 Solution LINGO generates the Random Variable Distribution Report:

 Random Variable Distribution Report

 Sample Sample

 Random Variable Mean StdDev Distribution

 QLEV(BUTANE, OCT) 119.7697 4.981368 NORMAL,120,5

 QLEV(BUTANE, VAP) 59.94561 2.969037 NORMAL,60,3

 QLEV(BUTANE, VOL) 104.9087 6.133397 NORMAL,105,6

 QLEV(CATREF, OCT) 99.94025 2.124726 NORMAL,100,2

 QLEV(CATREF, VAP) 2.600531 0.1093538 NORMAL,2.6,0.11

 QLEV(CATREF, VOL) 2.999666 0.1257882 NORMAL,3,0.13

 QLEV(NAPTHA, OCT) 73.99625 3.077703 NORMAL,74,3

 QLEV(NAPTHA, VAP) 4.102662 0.1975493 NORMAL,4.1,0.2

 QLEV(NAPTHA, VOL) 12.00060 0.3970604 NORMAL,12,0.4

This report lists each of the random variables in the model, their sample mean and standard deviation,

and their distribution type.

710 CHAPTER 14

Finally, at the end of the report LINGO generates a individual reports for each of the scenarios. For

brevity, we reproduce the report just for the 12th scenario:

 Scenario: 12 Probability: 0.5000000E-01

 Random Variable Value

 QLEV(BUTANE, OCT) 126.4475

 QLEV(BUTANE, VAP) 65.45897

 QLEV(BUTANE, VOL) 109.6616

 QLEV(CATREF, OCT) 100.5477

 QLEV(CATREF, VAP) 2.504830

 QLEV(CATREF, VOL) 3.098372

 QLEV(NAPTHA, OCT) 73.84414

 QLEV(NAPTHA, VAP) 4.081760

 QLEV(NAPTHA, VOL) 11.41373

 CCP Set Status

 CCP_QUAL_UP UNSATISFIED

 CCP_QUAL_DN SATISFIED

 Row Value

 R_QUP(OCT, REGU) 21598.34

 R_QDN(OCT, REGU) 18401.66

 R_QUP(OCT, PREM) 61555.49

 R_QDN(OCT, PREM) 11392.05

 R_QUP(VAP, REGU) -1994.877

 R_QDN(VAP, REGU) 13994.88

 R_QUP(VAP, PREM) -1399.827

 R_QDN(VAP, PREM) 10153.53

 R_QUP(VOL, REGU) 18744.58

 R_QDN(VOL, REGU) 13255.42

 R_QUP(VOL, PREM) 16364.39

 R_QDN(VOL, PREM) 6978.823

The scenario reports list the values for the random variables for the scenarios as well as the slack

values of the CCP constraints. An interesting feature of the scenario reports for a CCP is the middle

section, where each CCP set is listed along with whether or not the set was satisfied in the scenario. In

this case, the upper limit quality constraints are listed as being unsatisfied, which is verified by the

negative slacks on the row R_QUP(VAP, REGU) and R_QUP(VAP_PREM). This then makes

scenario 12 one of the 6 scenarios where the upper limit quality constraints were allowed to be

violated.

711

15 On Mathematical
Modeling

When developing a model in LINGO, it helps to understand how the model is processed internally by

the LINGO solver. The relationships in your model influence the computation time, the solution

methods used by LINGO, and the type of answer returned. Here we’ll explain some of the different

types of relationships in a LINGO model and how each type affects the solution search. An

understanding of these topics is not required to use LINGO, but it can help you use the software more

effectively.

Solvers Used Internally by LINGO
LINGO has four solvers it uses to solve different types of models. These solvers are:

 a direct solver,

 a linear solver,

 a nonlinear solver, and

 a branch-and-bound manager.

The LINGO solvers, unlike solvers sold with other modeling languages, are all part of the same

program. In other words, they are linked directly to the modeling language. This allows LINGO to

pass data to its solvers directly through memory, rather than through intermediate files. Direct links to

LINGO’s solvers also minimize compatibility problems between the modeling language component

and the solver components.

When you solve a model, the direct solver first computes the values for as many variables as possible.

If the direct solver finds an equality constraint with only one unknown variable, it determines a value

for the variable that satisfies the constraint. The direct solver stops when it runs out of unknown

variables or there are no longer any equality constraints with a single remaining unknown variable.

Once the direct solver is finished, if all variables have been computed, LINGO displays the solution

report. If unknown variables remain, LINGO determines what solvers to use on a model by examining

its structure and mathematical content. For a continuous linear model, LINGO calls the linear solver. If

the model contains one or more nonlinear constraints, LINGO calls the nonlinear solver. When the

model contains any integer restrictions, the branch-and-bound manager is invoked to enforce them.

The branch-and-bound manager will, in turn, call either the linear or nonlinear solver depending upon

the nature of the model.

712 CHAPTER 15

The linear solver in LINGO uses the revised simplex method with product form inverse. A barrier

solver may also be obtained, as an option, for solving linear models. LINGO’s nonlinear solver

employs both successive linear programming (SLP) and generalized reduced gradient (GRG)

algorithms. Integer models are solved using the branch-and-bound method. On linear integer models,

LINGO does considerable preprocessing, adding constraint “cuts” to restrict the noninteger feasible

region. These cuts will greatly improve solution times for most integer programming models.

Type of Constraints
Through the use of the direct solver, LINGO substitutes out all the fixed variables and constraints from

the model. The remaining reduced set of constraints and variables are then classified as being either

linear or nonlinear. LINGO’s solver status window, which by default opens every time you solve a

model, gives a count of the linear and nonlinear variables and constraints in a model. If any nonlinear

variables or constraints are found in the model, the entire model is considered nonlinear and the

relatively slower nonlinear solver must be invoked in place of the linear solver.

Linear Constraints
If all the terms of a constraint are of the first order, the constraint is said to be linear. This means the

constraint doesn’t contain a variable squared, cubed, or raised to any power other than one, a term

divided by a variable, or variables multiplied by each other. Also, proportionality must exist. In other

words, for every unit increase or decrease in a variable, the value of the constraint increases or

decreases by a fixed amount.

Linear formulas are “straight line” relationships. The basic form of a linear formula is:

Y = m X + b

where m and b are constants.

For example, suppose you’re buying tomatoes for $1.50 per pound. The expression or function used to

calculate the cost (C) in terms of the amount of tomatoes purchased (T) is:

C = 1.5 * T.

ON MATHEMATICAL MODELING 713

As you might expect, a graph of this function for cost is a straight line:

Tomatoes Purchased (lbs.)

Cost

$60

$50

$40

$30

$20

$10

$0

0 10 20 30 40

Linear expressions can have multiple variables. For example, if you added potatoes (P) at $0.75 per

pound and apples (A) at $1.25 per pound, your cost function would become:

C = 1.5 * T + 0.75 * P + 1.25 * A

This new cost expression is also linear. You could think of it as the sum of three simpler linear

expressions.

Because linear models can be solved much faster and with more accuracy than nonlinear models, it’s

preferable to formulate your models using linear expressions whenever possible. When the

LINGO|Solve command is issued, LINGO analyzes the relationships in the model. If all the

expressions are linear, LINGO will recognize and take advantage of this fact.

Relative to other types of models, problems expressed using exclusively linear relationships can be

solved quickly. If allowed to run to completion, LINGO will return the answer that yields the highest

value for a maximization objective, or the lowest value for a minimization objective.

One way to learn whether or not all expressions in your model are linear is to note the classification

statistics displayed during the solution process in the solver status window. The Nonlinear categories

of the Variables and Constraints boxes display the number of nonlinear relationships in the model. If

zeros appear in both these categories, the model is linear.

If LINGO displays a number greater than zero for the nonlinear relationships, you may want to

investigate whether the constraints and variables in your model could be reformulated in a linear

manner. For example, consider the following constraint:

X / Y = 10;

As written, this constraint is nonlinear because we are dividing by Y. By simply multiplying both sides

of the equation through by Y, we can convert it to the equivalent linear constraint:

X = 10 * Y;

714 CHAPTER 15

Nonlinear Constraints
By definition, all constraints that are not linear are nonlinear. Nonlinear expressions include

relationships with variables that are squared, cubed, taken to powers other than one, or multiplied or

divided by each other.

Models with nonlinear expressions are much more difficult to solve than linear models. Unlike linear

models, nonlinear models may prevent LINGO from finding a solution, though one exists. Or LINGO

may find a solution to a nonlinear model that appears to be the “best”, even though a better one may

exist. These results are obviously undesirable. For more on what you can do to help minimize the

occurrence of these undesirable results, see the Guidelines for Nonlinear Modeling section below.

Local Optima vs. Global Optima
When LINGO finds a solution to a linear optimization model, it is the definitive best solution—we say

it is the global optimum. Multiple optima may exist. However, a globally optimal solution is a feasible

solution with an objective value that is as good as or better than all other feasible solutions to the

model. The ability to obtain a globally optimal solution is attributable to certain properties of linear

models.

This is not the case for nonlinear optimization. Nonlinear optimization models may have several

solutions that are locally optimal. All gradient based nonlinear solvers converge to a locally optimal

point (i.e., a solution for which no better feasible solutions can be found in the immediate

neighborhood of the given solution). Additional local optimal points may exist some distance away

from the current solution. These additional locally optimal points may have objective values

substantially better than the solver's current local optimum. Thus, when a nonlinear model is solved,

we say the solution is merely a local optimum. The user should be aware that other local optimums

may, or may not, exist with better objective values. Conditions may exist where you may be assured

that a local optimum is in fact a global optimum. See the Convexity section below for more

information.

Consider the following small nonlinear model involving the highly nonlinear cosine function:

MIN = X * @COS(3.1416 * X);

X < 6;

The following graph shows a plot of the objective function for values of X between 0 and 6. If you're

searching for a minimum, there are local optimal points at X values of 0, 1.09, 3.03, and 5.02 in the

"valleys." The global optimum for this problem is at X = 5.02, because it is the lowest feasible valley.

ON MATHEMATICAL MODELING 715

Graph of X * @COS(3.1416 * X)

Imagine the graph as a series of hills. You're searching in the dark for the minimum or lowest

elevation. If you are at X = 2.5, every step towards 2 takes you uphill and every step towards 3 takes

you downhill. Therefore, you move towards 3 in your search for the lowest point. You'll continue to

move in that direction as long as it leads to lower ground.

When you reach X=3.03, you'll notice a small flat area (slope is equal to zero). Continuing begins to

lead uphill and retreating leads up the hill you just came down. You're in a valley, the lowest point in

the immediate neighborhooda local optimum. However, is it the lowest possible point? In the dark,

you are unable to answer this question with certainty.

LINGO lets you enter initial values for variables (i.e., the point from which LINGO begins its search)

using an INIT section. A different local optimum may be reached when a model is solved with

different initial values for X. In this example, one might imagine that starting at a value of X=6 would

lead to the global optimum at X=5.02. Unfortunately, this is not guaranteed, because LINGO

approximates the true underlying nonlinear functions using linear and/or quadratic functions. In the

early stages of solving the model, these approximations can be somewhat rough in nature. Therefore,

the solver can be sent off to distant points, effectively passing over nearby local optimums to the true,

underlying model.

When "good" initial values for the variables are known, you should input these values in an INIT

section. Additionally, you may want to use the @BND function to bound the variables within a

reasonable neighborhood of the starting point. When you have no idea what the optimal solution to

your model is, you may find that observing the results of solving the model several times with different

initial values can help you find the best solution.

LINGO has several optional strategies to help overcome the problem of stalling at local optimal points.

The global solver employs branch-and-bound methods to break a model down into many convex sub-

regions. LINGO also has a multistart feature that restarts the nonlinear solver from a number of

intelligently generated points. This allows the solver to find a number of locally optimal points and

716 CHAPTER 15

report the best one found. Finally, LINGO can automatically linearize a number of nonlinear

relationships through the addition of constraints and integer variables so that the transformed linear

model is mathematically equivalent to the original nonlinear model. Keep in mind, however, that each

of these strategies will require additional computation time. Thus, whenever possible, you are always

better off formulating models to be convex so that they contain a single extreme point.

Convexity
The characteristic of an expression called convexity along with a closely related feature called

concavity are the most useful features of a model for guaranteeing that a local optimum is actually a

global optimum. Let’s consider the convexity property of a minimization problem. The mathematical

definition of a convex model is as follows:

f(y) a f(x) + (1-a) f(z), where y=a*x + (1-a)*z

In words, a function is convex if, for any two points on the function, a straight line connecting the two

points lies entirely on or above the function.

Determining the convexity of a multiple variable problem is no easy task. Mathematicians call a

function convex if the matrix of the second derivatives is positive definite or has positive Eigen values.

However, if you can identify your LINGO model as being convex for a minimization problem, you can

ensure that any solution you reach is a global optimum (including nonlinear models).

Strictly Convex
A strictly convex function with no constraints has a single global minimum. Therefore, minimizing a

strictly convex function will yield the unique global optimal solution regardless of the initial value of

the variables. The graph below shows a convex function of a single variable:

A Strictly Convex Function: .4*(x-3)2+.5

ON MATHEMATICAL MODELING 717

In this strictly convex function, the unique global minimum can be defined at the point on the function

where the variable x is equal to 3. Changing the value of x to be more or less than 3 will increase the

result of the function.

Loosely Convex
A loosely convex function with no constraints has multiple local minima, which are also global

minima. Therefore, minimizing a loosely convex function may yield different solutions for different

initial values of the variables. However, if you know the function is loosely convex, you will know the

solution is a global minimum. For example, note the flat section (i.e., slope is zero) from

approximately –200 to 150 in the following function that makes it loosely convex:

A Loosely Convex Function

In this loosely convex function, the global minimum of 3 can be found between about –200 through

just over 150 on the x-axis. Although variable values may vary, the result of the function will be the

same for all local minima.

Concavity
While convexity applies to minimization problems, concavity ensures the corresponding attribute of

global optimality in maximization problems. Concavity can be defined as the negative of convexity

(see above). In other words, a function is concave if, for any two points on the function, a straight line

connecting the two points lies entirely on or below the function.

718 CHAPTER 15

The following function is strictly concave:

 -80000

 0

 -10000

 -20000

 -30000

 -40000

 -50000

 -60000

-70000

0
 -

1
0

0

 -
5

0

 -
3

0
0

 -
2

5
0

 -
2

0
0

 -
1

5
0

5
0

 3
0

0

 2
5

0

 2
0

0

 1
5

0

 1
0

0

 -90000

A Strictly Concave Function: Graph of -(x2)

In this strictly concave function, the unique global maximum can be defined at the point on the

function where the variable x is equal to zero. Changing the value of the variable to be any more or

less than 0 will decrease the result of the function. A loosely concave function might look similar to

the negative of the loosely convex function shown in the previous section.

The only functions that are both convex and concave are straight lines (i.e., hyperplanes). Therefore

LINGO classifies the solutions to all linear optimization problems as globally optimal. Due to the

difficulty in determining convexity and concavity, LINGO classifies all nonlinear optimization models

as locally optimal. However, you can ensure you have a global optimum if you can determine that your

nonlinear optimization model is convex or concave, or you can reformulate it in such a way to make it

convex or concave.

On the other hand, if you can determine your nonlinear optimization model is definitely not convex or

concave, you know that it is a mixed function and multiple optima exist. It might be a good idea to try

solving with different starting values for the variables. See the section above Local Optima vs. Global

Optima for an example of a mixed function and more information on the strategies LINGO offers to

help overcome the problems with solving mixed functions.

ON MATHEMATICAL MODELING 719

Smooth vs. Nonsmooth Functions
Smooth functions have a unique defined first derivative (slope or gradient) at every point. Graphically,

a smooth function of a single variable can be plotted as a single continuous line with no abrupt bends

or breaks. All the examples you’ve seen so far in this chapter have been smooth.

Nonsmooth functions include nondifferentiable and discontinuous functions. Functions with first

derivatives with undefined regions are called nondifferentiable. Graphs of nondifferentiable functions

may have abrupt bends. The absolute value of a variable, @ABS(X), is an example of a

nondifferentiable expression, as illustrated in the following graph:

 0-100 -50 100 50
 0

 100

 90

 80

 70

 60

 50

 40

 30

 20

Graph of ABS(X)

Here, there is an abrupt bend in the graph at zero. This can dramatically increase solution times as well

as affect the accuracy of the solution. Additional nonsmooth functions are @MAX, @MIN, @SMAX,

@SMIN, and any of the probability functions that use linear interpolation to return results for

nonintegral arguments.

Perhaps even more confounding than functions with sharp bends are discontinuous functions that have

actual breaks in their graphs. Discontinuous functions in LINGO include @SIGN and @FLOOR.

In simplified terms, LINGO searches along the path of a function to find a maximum or minimum

point representing an optimal solution. As LINGO is searching along a function, it uses the function’s

derivatives to help guide the search. When derivatives vanish, as they do at sharp corners, LINGO is

“blinded” and is unable to “see” around the sharp corner. Thus, dealing with functions containing

breaks and sharp bends is considerably more difficult than dealing with smooth, continuous functions.

Where possible, nonsmooth functions should be replaced with linear constraints or some combination

of linear constraints and integer variables. As an example, refer to the assembly line balancing

example (ASLBAL.LNG) on page 723 to see how we constructed a model to avoid the use of the

@MAX function in order to maintain linearity.

720 CHAPTER 15

Guidelines for Nonlinear Modeling
As shown in the previous sections, nonlinear models can be extremely complex to solve. Spending a

little extra time to make sure the model is formulated in a way that is most efficient to solve can pay

off in terms of solution speed and reliability. This section gives some general guidelines to consider

when building and solving nonlinear models.

Supplying Bounds for Variables
Intelligent use of upper and lower bounds on variables can help make LINGO’s solution search as

efficient as possible. Supplying good bounds can keep LINGO from wasting time searching regions

unlikely to yield good solutions. For example, suppose you know that, even though the feasible range

for a particular variable is between 0 and 100, it is highly improbable the optimal value is outside the

range of 50 to 75. In this case, using the @BND function to specify a lower bound of 50 and an upper

bound of 75 could significantly reduce solution times.

Bounding can also help keep the solution search clear of mathematically troublesome areas like

undefined regions. For example, if you have a constraint with the term 1/X, it may be helpful to add a

lower bound on X, so it does not get too close to zero.

Supplying Initial Values for Variables
The initial values you provide for the variables in a model can affect the “path” LINGO takes to the

solution. Starting with values close to the optimal solution can noticeably reduce the solution time. In

many situations, you may not know “good” initial values. However, when you do know reasonable

ones, it may be to your benefit to use them in the INIT section.

Consider changing your supplied initial values and re-solving the model if you suspect: 1) there is an

answer better than the answer returned by LINGO, or 2) a feasible solution exists even though LINGO

returns the message “No feasible solution found”.

Scale the Model to a Reasonable Range of Units
Try to model your problem such that the units involved are of similar orders of magnitude. If the

largest number in the model is greater than 1000 times the smallest number in the model, LINGO may

encounter problems when solving the model. This may also affect the accuracy of the solution by

introducing rounding problems.

For example, consider a financial problem with equations expressing an interest rate of 8.5% (.085)

and budget constraints of $12,850,000. The difference in magnitude between these numbers is on the

order of 10^9 (1/100th compared to 10,000,000). A difference of 10^4 or less between the largest and

smallest units would be preferable. In this case, the budget could be expressed in units of millions of

dollars. That is, $12.85 would be used to represent $12,850,000. This lowers the difference in

magnitude of the units of these numbers to 10^4.

ON MATHEMATICAL MODELING 721

Simplify Relationships
When practical, use linear rather than nonlinear relationships. Some nonlinear expressions can be

reformulated in a linear manner. A simple example is a constraint on the ratio of two variables. Using

the example from earlier in the chapter, consider the following constraint:

 X / Y < 10;

This constraint is nonlinear because we are dividing by Y. To linearize the constraint, you can multiply

both sides by Y. The equivalent, linear constraint becomes:

X < 10 * Y;

Avoid nonsmooth relationships when possible. Models with nonsmooth constraints are generally much

more difficult to solve. When possible, approximate the nonsmooth relationship with smooth

expressions and, perhaps, integer variables.

Reduce Integer Restrictions
Minimizing the use of integer restrictions can drastically reduce the solution time. In instances

involving larger variable values, you may find solving the model without integer restrictions and then

rounding yields acceptable answers in a fraction of the time required by the integer model. Be

forewarned, however, that rounding a solution will not necessarily yield a feasible or optimal solution.

723

Appendix A: Additional
Examples of LINGO

Modeling
In this Appendix, we list, in alphabetical order by model name, many of the models contained in the

SAMPLES directory off your main LINGO directory. Most of the models contain a brief background

discussion. Many have appeared in more detailed descriptions earlier in this manual and are

reproduced here for reference.

Assembly Line Balancing Model: ASLBAL
The following model illustrates how to balance an assembly line in order to minimize its total cycle

time. A detailed discussion of this model may be found in Chapter 12, Developing More Advanced

Models.

MODEL:

 ! Assembly line balancing model;

 ! This model involves assigning tasks to

 stations in an assembly line so bottlenecks

 are avoided. Ideally, each station would be

 assigned an equal amount of work.;

 SETS:

 ! The set of tasks to be assigned are A through

 K, and each task has a time to complete, T;

 TASK/ A B C D E F G H I J K/: T;

 ! Some predecessor,successor pairings must be

 observed(e.g. A must be done before B, B

 before C, etc.);

 PRED(TASK, TASK)/ A,B B,C C,F C,G F,J G,J

 J,K D,E E,H E,I H,J I,J /;

 ! There are 4 workstations;

 STATION/1..4/;

 TXS(TASK, STATION): X;

 ! X is the attribute from the derived set TXS

 that represents the assignment. X(I,K) = 1

 if task I is assigned to station K;

 ENDSETS

724 APPENDIX A

 DATA:

 ! Data taken from Chase and Aquilano, POM;

 ! Each task has an estimated time required:

 A B C D E F G H I J K;

 T = 45 11 9 50 15 12 12 12 12 8 9;

 ENDDATA

 ! The model;

 ! *Warning* may be slow for more than 15 tasks;

 ! For each task, there must be one assigned

 station;

 @FOR(TASK(I): @SUM(STATION(K): X(I, K)) = 1);

 ! Precedence constraints;

 ! For each precedence pair, the predecessor task

 I cannot be assigned to a later station than

 its successor task J;

 @FOR(PRED(I, J):

 @SUM(STATION(K):

 K * X(J, K) - K * X(I, K)) >= 0);

 ! For each station, the total time for the

 assigned tasks must be less than the maximum

 cycle time, CYCTIME;

 @FOR(STATION(K):

 @SUM(TXS(I, K): T(I) * X(I, K)) <= CYCTIME);

 ! Minimize the maximum cycle time;

 MIN = CYCTIME;

 ! The X(I,J) assignment variables are binary integers;

 @FOR(TXS: @BIN(X));

END

Model: ASLBAL

ADDITIONAL EXAMPLES 725

Bayes Rule; Conditional Probabilities Model: Bayes
MODEL:

SETS: ! Computing probabilities using Bayes rule;

ACTUAL/1..3/:MPA;!Marginal probability of actual;

FCAST/1..3/:MPF;!Marginal probability of forecast;

FXA(FCAST, ACTUAL): CAGF, !Conditional prob of actual given

forecast;

CFGA, !Conditional prob of forecast given actual;

JP; ! Joint probability of both;

ENDSETS

DATA:

!Conditional probability of forecast, given actual;

 CFGA = .80 .15 .20

 .10 .70 .20

 .10 .15 .60;

 ! Marginal probabilities of actual;

 MPA = .5 .3 .2;

ENDDATA

 ! The calculations;

 ! Marginal probabilities are the sum of

 joint probabilities;

 @FOR(ACTUAL(J):

 MPA(J) = @SUM(FCAST(I): JP(I, J))

);

 @FOR(FCAST(I):

 MPF(I) = @SUM(ACTUAL(J): JP(I, J))

);

! Bayes rule relating joint to conditional

 probabilities;

 @FOR(FXA(I, J):

 JP(I, J) = MPF(I) * CAGF(I, J);

 JP(I, J) = MPA(J) * CFGA(I, J)

);

END

Model: BAYES

726 APPENDIX A

Blending of Ingredients I Model: BLEND
In blending problems, two or more raw materials are to be blended into one or more finished goods,

satisfying one or more quality requirements on the finished goods. A detailed discussion of this model

may be found in Chapter 12, Developing More Advanced Models.

MODEL:

 TITLE BLEND;

 SETS:

 !Each raw material has an availability

 and cost/unit;

 RAWMAT/ BUTANE, CATREF, NAPHTHA/: AVAIL, COST;

 !Each finished good has a min required,

 max sellable, selling price,

 and batch size to be determined;

 FINGOOD/ REGULAR, PREMIUM/:

 MINREQ, MAXSELL, PRICE, BATCH;

 !Here is the set of quality measures;

 QUALMES/ OCTANE, VAPOR, VOLATILITY/;

 !For each combo of raw material and

 quality measure there is a quality

 level;

 RXQ(RAWMAT, QUALMES): QLEVEL;

 !For each combination of quality

 measure and finished good there are

 upper and lower limits on quality,

 and a slack on upper quality to be

 determined;

 QXF(QUALMES, FINGOOD):

 QUP, QLOW, QSLACK;

 !For each combination of raw material

 and finished good there is an amount

 of raw material used to be solved for;

 RXF(RAWMAT, FINGOOD): USED;

 ENDSETS

 DATA:

 !Raw material availability;

 AVAIL = 1000, 4000, 5000;

 !Raw material costs;

 COST = 7.3, 18.2, 12.5;

 !Quality parameters of raw

 materials;

 QLEVEL = 120, 60, 105,

 100, 2.6, 3,

 74, 4.1, 12;

ADDITIONAL EXAMPLES 727

 !Limits on finished goods;

 MINREQ = 4000, 2000;

 MAXSELL = 8000, 6000;

 !Finished goods prices;

 PRICE = 18.4, 22;

 !Upper and lower limits on

 quality for each finished good;

 QUP = 110, 110,

 11, 11,

 25, 25;

 QLOW = 90, 95,

 8, 8,

 17, 17;

 ENDDATA

 !Subject to raw material availability;

 @FOR(RAWMAT(R):

 [RMLIM] @SUM(FINGOOD(F): USED(R, F))

 <= AVAIL(R);

);

 @FOR(FINGOOD(F):

 !Batch size computation;

 [BATCOMP] BATCH(F) =

 @SUM(RAWMAT(R): USED(R, F));

 !Batch size limits;

 @BND(MINREQ, BATCH, MAXSELL);

 !Quality restrictions for each

 quality measure;

 @FOR(QUALMES(Q):

 [QRESUP] @SUM(RAWMAT(R):

 QLEVEL(R, Q) * USED(R, F))

 + QSLACK(Q, F) = QUP(Q, F) *

 BATCH(F);

 [QRESDN] QSLACK(Q, F) <=

 (QUP(Q, F) - QLOW(Q, F)) *

 BATCH(F);

);

);

! We want to maximize the profit contribution;

 [OBJECTIVE] MAX =

 @SUM(FINGOOD: PRICE * BATCH) -

 @SUM(RAWMAT(R): COST(R) *

728 APPENDIX A

 @SUM(FINGOOD(F): USED(R, F)));

END

Model: BLEND

ADDITIONAL EXAMPLES 729

Plant Location Model: CAPLOC
In this example, we build a model to help decide what plants to open and how much product to ship

from each plant to each customer. A detailed discussion of this model may be found in Chapter 12,

Developing More Advanced Models.

MODEL:

! Capacitated Plant Location Problem;

 SETS:

 PLANTS: FCOST, CAP, OPEN;

 CUSTOMERS: DEM;

 ARCS(PLANTS, CUSTOMERS) : COST, VOL;

 ENDSETS

 DATA:

 ! The plant, their fixed costs

 and capacity;

 PLANTS, FCOST, CAP =

 P1 91 39

 P2 70 35

 P3 24 31;

 ! Customers and their demands;

 CUSTOMERS, DEM =

 C1 15

 C2 17

 C3 22

 C4 12;

 ! The plant to cust cost/unit

 shipment matrix;

 COST = 6 2 6 7

 4 9 5 3

 8 8 1 5;

 ENDDATA

 ! The objective;

 [TTL_COST] MIN = @SUM(ARCS: COST * VOL) +

 @SUM(PLANTS: FCOST * OPEN);

 ! The demand constraints;

 @FOR(CUSTOMERS(J): [DEMAND]

 @SUM(PLANTS(I): VOL(I, J)) >= DEM(J)

);

 ! The supply constraints;

 @FOR(PLANTS(I): [SUPPLY]

 @SUM(CUSTOMERS(J): VOL(I, J)) <=

 CAP(I) * OPEN(I)

);

730 APPENDIX A

! Make OPEN binary(0/1);

 @FOR(PLANTS: @BIN(OPEN));

END

Model: CAPLOC

ADDITIONAL EXAMPLES 731

Blending of Ingredients II Model: CHESS
In blending problems, two or more raw materials are to be blended into one or more finished goods,

satisfying one or more quality requirements on the finished goods. In this example, we blend mixed

nuts into four different brands with a goal of maximizing revenue. A detailed discussion of this model

may be found in Chapter 2, Using Sets.

MODEL:

SETS:

 NUTS / PEANUTS, CASHEWS/: SUPPLY;

 BRANDS / PAWN, KNIGHT, BISHOP, KING/:

 PRICE, PRODUCE;

 NCROSSB(NUTS, BRANDS): FORMULA;

ENDSETS

DATA:

 SUPPLY = 750 250;

 PRICE = 2 3 4 5;

 FORMULA = 15 10 6 2

 1 6 10 14;

ENDDATA

MAX = @SUM(BRANDS(I):

 PRICE(I) * PRODUCE(I));

@FOR(NUTS(I):

 @SUM(BRANDS(J):

 FORMULA(I, J) * PRODUCE(J) / 16) <=

 SUPPLY(I)

);

END

Model: CHESS

732 APPENDIX A

Chemical Equilibrium Model: CHMBL1
In a chemical equilibrium problem of a closed system (such as a sealed container), there are two or

more opposing processes, such as evaporation and condensation. The question is: at a given

temperature and pressure, what portion of the material will be found in each possible state—water and

vapor, for instance—at equilibrium. The typical equilibrium conditions are that the ratios of fractions

must equal known temperature and/or pressure-dependent constants. Note that, in many cases, the

numbers you will be dealing with in chemical equilibrium models will be infinitesimal. Such tiny

numbers will make it next to impossible to solve your model. Transforming values by taking their

logarithms is a useful strategy that is used here. This tends to result in a transformed model with more

manageable data.

MODEL:

!Chemical equilibrium problem of Peters, Hayes &

!Hieftje. Calculate concentrations of various

!components of phosphoric acid(H3PO4) with pH of 8

!and total phosphate concentration of .10. The

!equilibrium equations in obvious form look like:

!

! H2P * H/ H3P = .0075;

!

!However, for scale reasons it is better to take !logs thus;

 LH2P + LH - LH3P = @LOG(.0075);

! Ditto for other equilibrium equations;

 LHP + LH - LH2P = @LOG(6.2 * 10^-8);

 LH + LP - LHP = @LOG(4.8 * 10^-13);

 LH = @LOG(10 ^-8);

! Convert back to original variables;

 H = @EXP(LH);

 P = @EXP(LP);

 HP = @EXP(LHP);

 H2P = @EXP(LH2P);

 H3P = @EXP(LH3P);

 H3P + H2P + HP + P = .1;

! Must unconstrain log variables;

 @FREE(LH2P); @FREE(LH); @FREE(LH3P);

 @FREE(LHP); @FREE(LP);

! Solution should be: LH2P= -4.2767, LH= -18.4207,

 LH3P= -17.8045, LHP= -2.4522, LP= -12.3965;

END

Model: CHMBL1

ADDITIONAL EXAMPLES 733

Conjoint Analysis Model: CONJNT
When designing a product, it’s useful to know how much customers value various attributes of that

product. This allows us to design the product most preferred by consumers within a limited budget. For

instance, if we determine consumers place a very high value on a long product warranty, then we

might be more successful in offering a long warranty with fewer color options.

The basic idea behind conjoint analysis is, while it may be difficult to get consumers to accurately

reveal their relative utilities for product attributes, it’s easy to get them to state whether they prefer one

product configuration to another. Given these rank preferences, we can use conjoint analysis to work

backwards and determine the implied utility functions for the product attributes. A detailed discussion

of this model may be found in Chapter 12, Developing More Advanced Models.

MODEL:

! Conjoint analysis model to decide how much

 weight to give to the two product attributes of

 warranty length and price;

SETS:

! The three possible warranty lengths;

 WARRANTY /LONG, MEDIUM, SHORT/ : WWT;

! where WWT(i) = utility assigned to warranty i;

!The three possible price levels(high,medium,low);

 PRICE /HIGH, MEDIUM, LOW/ : PWT;

! where PWT(j) = utility assigned to price j;

! We have a customer preference ranking for each

 combination;

 WP(WARRANTY, PRICE) : RANK;

ENDSETS

DATA:

! Here is the customer preference rankings running

 from a least preferred score of 1 to the most

 preferred of 9. Note that long warranty and low

 price are most preferred with a score of 9,

 while short warranty and high price are least

 preferred with a score of 1;

 RANK = 7 8 9

 3 4 6

 1 2 5;

ENDDATA

SETS:

! The next set generates all unique pairs of

 product configurations such that the second

 configuration is preferred to the first;

 WPWP(WP, WP) | RANK(&1, &2) #LT#

 RANK(&3, &4): ERROR;

734 APPENDIX A

! The attribute ERROR computes the error of our

 estimated preference from the preferences given

 us by the customer;

ENDSETS

! For every pair of rankings, compute the amount

 by which our computed ranking violates the true

 ranking. Our computed ranking for the (i,j)

 combination is given by the sum WWT(i) + PWT(j).

 (NOTE: This makes the bold assumption that

 utilities are additive!);

 @FOR(WPWP(i, j, k, l): ERROR(i, j, k, l) >=

 1 + (WWT(i) + PWT(j)) -

 (WWT(k) + PWT(l))

);

! The 1 is required on the right-hand-side of the

 above equation to force ERROR to be nonzero in

 the case where our weighting scheme incorrectly

 predicts that the combination (i,j) is equally

 preferred to the (k,l) combination.

 Since variables in LINGO have a default lower

 bound of 0, ERROR will be driven to zero when we

 correctly predict that (k,l) is preferred to

 (i,j).

 Next, we minimize the sum of all errors in order

 to make our computed utilities as accurate as

 possible;

 MIN = @SUM(WPWP: ERROR);

END

Model: CONJNT

ADDITIONAL EXAMPLES 735

Data Envelopment Analysis Model: DEAMOD
Data Envelopment Analysis (DEA) was developed to help compare the relative performance of

decision-making units. DEA generates an efficiency score between 0 and 1 for each unit, indicating

how effectively they are managing their resources. A compelling feature of DEA is it develops a

unique rating system for each unit designed to make them look their best. This should facilitate

acceptance of DEA within an organization. For more information on DEA, see Schrage (2006).

MODEL:

! Data Envelope Analysis of Decision Maker Efficiency;

 SETS:

 DMU/BL HW NT OP YK EL/: ! Six schools;

 SCORE; ! Each decision making unit has a;

 ! score to be computed;

 FACTOR/COST RICH WRIT SCIN/;

! There is a set of factors, input & output;

 DXF(DMU, FACTOR): F; ! F(I, J) = Jth factor

 of DMU I;

 ENDSETS

DATA:

! Inputs are spending/pupil, % not low income;

! Outputs are Writing score and Science score;

 NINPUTS = 2; ! The first NINPUTS factors are inputs;

! The inputs, the outputs;

 F = 8939 64.3 25.2 223

 8625 99 28.2 287

 10813 99.6 29.4 317

 10638 96 26.4 291

 6240 96.2 27.2 295

 4719 79.9 25.5 222;

 ENDDATA

 SETS:

 ! Weights used to compute DMU I's score;

 DXFXD(DMU,FACTOR) : W;

 ENDSETS

! Try to make everyone's score as high as possible;

 MAX = @SUM(DMU: SCORE);

! The LP for each DMU to get its score;

 @FOR(DMU(I):

 SCORE(I) = @SUM(FACTOR(J)|J #GT# NINPUTS:

 F(I, J)* W(I, J));

! Sum of inputs(denominator) = 1;

 @SUM(FACTOR(J)| J #LE# NINPUTS:

 F(I, J)* W(I, J)) = 1;

! Using DMU I's weights, no DMU can score better than 1;

 @FOR(DMU(K):

 @SUM(FACTOR(J)| J #GT# NINPUTS:

 F(K, J) * W(I, J))

 <= @SUM(FACTOR(J)| J #LE# NINPUTS:

 F(K, J) * W(I, J))

736 APPENDIX A

)

);

! The weights must be greater than zero;

 @FOR(DXFXD(I, J): @BND(.00001, X, 100000));

END

Model: DEAMOD

ADDITIONAL EXAMPLES 737

Generating Random Numbers Model: DEMRND
In cases where you are modeling under uncertainty, it is useful to have a random number generator to

help simulate a situation. LINGO supports the @RAND function, which can be used to generate

sequences of pseudo random numbers with uniform distribution between 0 and 1. By using the same

seed value, you can recreate a series of numbers. In this example, we generate 15 random numbers,

and then use them with the @PSN and @PTD functions to generate observations from both the unit

Normal and T distributions.

MODEL:

! Generate a series of Normal and T distributed

 random variables ;

 SETS:

 SERIES/1..15/: U, ZNORM, ZT;

 ENDSETS

! First uniform is arbitrary;

 U(1) = @RAND(.1234);

! Generate the rest recursively;

 @FOR(SERIES(I)| I #GT# 1:

 U(I) = @RAND(U(I - 1))

);

! Generate some...;

 @FOR(SERIES(I):

! Normal deviates...;

 @PSN(ZNORM(I)) = U(I);

! and t deviates(2 degrees of freedom);

 @PTD(2, ZT(I)) = U(I);

 ! ZNORM and ZT may take on negative values;

 @FREE(ZNORM(I)); @FREE(ZT(I));

);

END

Model: DEMRND

738 APPENDIX A

Scenario-based Portfolio Model Model: DNRISK
In this model, we are attempting to come up with an optimal portfolio that meets a certain level of

return while minimizing downside risk. Downside risk is a measure of the risk of falling below our

target return. An additional feature of this model is it is scenario-based. More specifically, we have

seven scenarios that will each occur with a given probability. The model incorporates this distribution

of predicted outcomes in deriving the optimal portfolio.

MODEL: ! (dnrisk.lng);

! Downside risk portfolio model;

 SETS:

 ASSET: INVEST; ! Amount to invest in each asset;

 SCENARIO:

 TRETRN, ! Return under this scenario;

 DRISK; ! Downside risk under this scenario;

 TABLE(SCENARIO, ASSET):

 ARETRN; ! Return in scenario I of asset J;

 ENDSETS

 DATA:

! Number of scenarios;

 SCENARIO = 1..7;

! The available assets in which to invest;

 ASSET = ATT GMC USX;

 ARETRN =

 -.071 .144 .169

 .056 .107 -.035

 .038 .321 .133

 .089 .305 .732

 .090 .195 .021

 .083 .390 .131

 .035 -.072 .006;

! Desired return;

 DRETURN = .13;

! Threshold, below which we are unhappy;

 THRESH = .11;

! Power to use for risk(1 or 2);

! When NPOW = 1, it is a linear program;

! When NPOW = 2 and threshold = desired return;

! it is the semi-variance;

 NPOW = 2;

 ENDDATA

 NSCEN = @SIZE(SCENARIO);

! Minimize average downside risk;

 MIN = @SUM(SCENARIO: DRISK ^ NPOW)/ NSCEN;

! Compute return for each scenario;

ADDITIONAL EXAMPLES 739

 @FOR(SCENARIO(I):

 TRETRN(I) = @SUM(ASSET(J):

 ARETRN(I, J) * INVEST(J));

! .. and how much we fall short of threshold ;

 DRISK(I) >= THRESH - TRETRN(I);

! Return in a period could be negative;

 @FREE(TRETRN(I));

);

! Our budget constraint(divided by a billion);

 [BUDGET] @SUM(ASSET: INVEST) = 1;

! Our desired return;

 [PRICER] @SUM(SCENARIO(I): TRETRN(I))/ NSCEN >= DRETURN;

END

Model: DNRISK

740 APPENDIX A

Staff Scheduling Model: STAFFDEM
This covering model assigns start days to employees to cover staffing needs, minimizing the total

number of staff, subject to the requirements that each staff member must have two consecutive days

off each week. A detailed discussion of this model may be found in Chapter 2, Using Sets.

MODEL:

SETS:

 DAYS / MON TUE WED THU FRI SAT SUN/:

 REQUIRED, START;

ENDSETS

DATA:

 REQUIRED = 20 16 13 16 19 14 12;

ENDDATA

MIN = @SUM(DAYS(I): START(I));

@FOR(DAYS(J):

 @SUM(DAYS(I) | I #LE# 5:

 START(@WRAP(J - I + 1, 7)))

 >= REQUIRED(J)

);

END

Model: STAFFDEM

ADDITIONAL EXAMPLES 741

Dynamic Programming Model: DYNAMB
Dynamic programming (DP) is a creative approach to problem solving that involves breaking a large,

difficult problem into a series of smaller, easy to solve problems. By solving this series of smaller

problems, we are able to assemble the optimal solution to the initial large problem. A detailed

discussion of this model may be found in Chapter 12, Developing More Advanced Models.

MODEL:

SETS:

 ! Dynamic programming illustration (see Anderson, Sweeney &

Williams, An Intro to Mgt Science, 6th Ed.). We have a network of

10 cities. We want to find the length of the shortest route from

city 1 to city 10.;

 ! Here is our primitive set of ten cities, where F(i) represents the

shortest path distance from city i to the last city;

 CITIES /1..10/: F;

 ! The derived set ROADS lists the roads that exist between the

cities (note: not all city pairs are directly linked by a road,

and roads are assumed to be one way.);

 ROADS(CITIES, CITIES)/

 1,2 1,3 1,4

 2,5 2,6 2,7

 3,5 3,6 3,7

 4,5 4,6

 5,8 5,9

 6,8 6,9

 7,8 7,9

 8,10

 9,10/: D;

 ! D(i, j) is the distance from city i to j;

ENDSETS

DATA:

 ! The distances corresponding to the links;

 D =

 1 5 2

 13 12 11

 6 10 4

 12 14

 3 9

 6 5

 8 10

 5

 2;

ENDDATA

! If you are already in City 10, then the cost to travel to City 10

is 0;

 F(@SIZE(CITIES)) = 0;

742 APPENDIX A

! The following is the classic dynamic programming recursion. In

words, the shortest distance from City i to City 10 is the minimum

over all cities j reachable from i of the sum of the distance from

i to j plus the minimal distance from j to City 10;

 @FOR(CITIES(i)| i #LT# @SIZE(CITIES):

 F(i) = @MIN(ROADS(i, j): D(i, j) + F(j))

);

END

ADDITIONAL EXAMPLES 743

Capacitated EOQ Model: EOQCAP
In this model, we have three products with known demand, production rates, setup costs, and holding

costs. The question is how much of each product should we produce to minimize total setup and

holding costs without exceeding the capacity of our production facility.

MODEL:

! Production capacity constrained EOQ;

! Demand rates for three products;

 d1 = 400; d2 = 300; d3 = 300;

! Production rates;

 p1 = 1300; p2 = 1100; p3 = 900;

! Setup costs for producing individual products;

 sc1 = 10000; sc2 = 12000; sc3 = 13000;

! Per unit holding costs;

 hc1 = 1; hc2 = 1.1; hc3 = 1.4;

! The model;

! Single machine capacity constraint; [CAP]

 d1 / p1 + d2 / p2 + d3 / p3

 + 1.5 * (d1 / q1 + d2 / q2 + d3 / q3) <= 1;

! Minimize setup + holding costs;

 min = setup + holding;

! Total setup costs;

 setup = (sc1 * d1 / q1) + (sc2 * d2 / q2)

 + (sc3 * d3 / q3);

! Total holding costs;

 holding = (hc1 * q1 * (1 - d1 / p1)

 + hc2 * q2 * (1 - d2 / p2)

 + hc3 * q3 * (1 - d3 / p3)) / 2;

!;

@BND(.01, Q1, 99999);

@BND(.01, Q2, 99999);

@BND(.01, Q3, 99999);

@FREE(SETUP);

@FREE(HOLDING);

END

Model: EOQCAP

744 APPENDIX A

Machine Repair Problem Model: EZMREPAR
This model analyzes a queuing system with a fixed population of members that periodically require

servicing. Although we model a computer timesharing system in this example, this model is typically

referred to as the machine repair problem, because one can think of it as applying to a group of

machines periodically requiring repair by a number of service personnel. A detailed discussion of this

model may be found in Chapter 12, Developing More Advanced Models.

MODEL:

 ! Model of a computer timesharing system;

 ! The mean think time for each user (more

 generally, Mean Time Between Failures in a

 repair system);

 MTBF = 40;

 ! The mean time to process each compute request

 (more generally, Mean Time To Repair in

 seconds);

 MTTR = 2;

 ! The number of users;

 NUSER = 32;

 ! The number of servers/repairmen;

 NREPR = 1;

 ! The mean number of users waiting or in service

 (more generally, the mean number of machines

 down);

 NDOWN =

 @PFS(MTTR * NUSER/ MTBF, NREPR, NUSER);

 ! The overall request for service rate (more

 generally, overall failure rate), FR, must

 satisfy;

 FR = (NUSER - NDOWN)/ MTBF;

 ! The mean time waiting for or in service (more

 generally, the mean time down), MTD, must

 satisfy;

 NDOWN = FR * MTD;

END

Model: EZMREPAR

ADDITIONAL EXAMPLES 745

Newsboy Problem Model: EZNEWS
A common inventory management problem occurs when the product in question has limited shelf life

(e.g., newspapers, produce, and computer hardware). There is a cost of over ordering, because the

product will shortly become obsolete and worthless. There is also an opportunity cost of under

ordering associated with forgone sales. Under such a situation, the question of how much of a product

to order to maximize expected profit is classically referred to as the newsboy problem. In this example,

we assume demand has a Poisson distribution. However, this is not mandatory. Refer to any operations

research textbook for a derivation of the formulas involved.

MODEL:

 DATA:

 ! The average demand;

 MU = 144;

 ! Opportunity cost of each unit of lost demand;

 P = 11;

 ! Cost/unit of excess inventory;

 H = 5;

 ENDDATA

 ! Calculate the order-up-to point, S, using the

 newsboy problem equation;

 @PPS(MU, S) = P / (P + H);

 ! PS is the expected profit of being at S;

 PS=P * MU - H * (S -MU) - (P + H) * @PPL(MU, S);

END

Model: EZNEWS

746 APPENDIX A

Simple Queuing Example Model: EZQUEUE
Given a queue with a certain arriving load and number of servers, the @PEL function determines the

fraction of customers lost due to all servers being busy. In this example, we use @PEL to solve for the

number of servers that limit customer loss to 5%.

MODEL:

! Arrival rate of customers/ hour;

 AR = 25;

! Service time per customer in minutes;

 STM = 6;

! Service time per customer in hours;

 STH = STM/ 60;

! Fraction customers finding all servers busy;

 FB = .05;

!The PEL function finds number of servers needed, NS;

 FB = @PEL(AR * STH, NS);

END

Model: EZQUEUE

ADDITIONAL EXAMPLES 747

General Equilibrium of an Economy Model: GENEQ1
MODEL:

! General Equilibrium Model of an economy;

! Data based on Kehoe, Math Prog, Study 23(1985);

! Find clearing prices for commodities/goods and

 equilibrium production levels for processes in

 an economy;

SETS:

 GOOD/1..4/: PRICE, H;

 SECTOR/1..4/;

 GXS(GOOD, SECTOR): ALPHA, W;

 PROCESS/1..2/: LEVEL;

 GXP(GOOD, PROCESS): MAKE;

ENDSETS

DATA:

! Demand curve parameter for each good and SECTOR;

 ALPHA =

 .5200 .8600 .5000 .0600

 .4000 .1 .2 .25

 .04 .02 .2975 .0025

 .04 .02 .0025 .6875;

! Initial wealth of Good I by Market J;

 W =

 50 0 0 0

 0 50 0 0

 0 0 400 0

 0 0 0 400;

! Amount produced of good I by process J;

 MAKE =

 6 -1

 -1 3

 -4 -1

 -1 -1;

! Weights for price normalization constraint;

 H = .25 .25 .25 .25;

ENDDATA

!————————————————————————————;

! Model based on Stone, Tech. Rep. Stanford OR(1988);

! Minimize the artificial variable;

MIN = V;

! Supply is >= demand;

@FOR(GOOD(G):

 @SUM(SECTOR(M): W(G, M))

 + @SUM(PROCESS(P): MAKE(G, P) * LEVEL(P))

748 APPENDIX A

 - @SUM(SECTOR(S):

 ALPHA(G, S) * @SUM(GOOD(I): PRICE(I) *

 W(I, S))/ PRICE(G)) + H(G) * V >= 0;

);

! Each process at best breaks even;

@FOR(PROCESS(P):

 @SUM(GOOD(G): - MAKE(G, P) * PRICE(G)) >= 0;

);

! Prices scale to 1;

@SUM(GOOD(G): - H(G) * PRICE(G)) = -1;

END

Model: GENEQ1

ADDITIONAL EXAMPLES 749

Markowitz Portfolio Example Model: GENPRT
In the March, 1952 issue of Journal of Finance, Harry M. Markowitz published an article titled

Portfolio Selection. In the article, he demonstrates how to reduce the risk of asset portfolios by

selecting assets whose values aren’t highly correlated. The following model implements these ideas in

constructing a simple portfolio with three assets. A detailed discussion of this model may be found in

Chapter 12, Developing More Advanced Models.

MODEL:

! GENPRT: Generic Markowitz portfolio;

 SETS:

 ASSET/1..3/: RATE, UB, X;

 COVMAT(ASSET, ASSET): V;

 ENDSETS

 DATA:

! The data;

! Expected growth rate of each asset;

 RATE = 1.3 1.2 1.08;

! Upper bound on investment in each;

 UB = .75 .75 .75;

! Covariance matrix;

 V = 3 1 -.5

 1 2 -.4

 -.5 -.4 1;

! Desired growth rate of portfolio;

 GROWTH = 1.12;

ENDDATA

! The model;

! Min the variance;

 [VAR] MIN = @SUM(COVMAT(I, J):

 V(I, J) * X(I) * X(J));

! Must be fully invested;

 [FULL] @SUM(ASSET: X) = 1;

! Upper bounds on each;

 @FOR(ASSET: @BND(0, X, UB));

! Desired value or return after 1 period;

 [RET] @SUM(ASSET: RATE * X) >= GROWTH;

END

Model: GENPRT

750 APPENDIX A

Job Shop Scheduling Model: JOBSLT
In this model, there are six jobs that can be done on one machine. The machine can only work on one

job at a time. Each job has a due date. If we can’t complete a job by its due date, we do not take the

job. Our objective is to maximize the total value of the jobs selected.

Although we have based this model on a job shop scenario, the basic principles should be applicable in

any area where time is the limiting factor in deciding what projects to undertake.

MODEL:

 ! One machine job selection;

 SETS:

 !There are six jobs each of which has a Due Date,

 Processing Time, Value, and a flag variable Y

 indicating if the job has been selected.;

 JOB/1..6/: ! Each job has a...;

 DD, ! Due date;

 PT, ! Processing time;

 VAL, ! Value if job is selected;

 Y; ! = 1 if job is selected, else 0;

 ENDSETS

 DATA:

 VAL = 9 2 4 2 4 6;

 DD = 9 3 6 5 7 2;

 PT = 5 2 4 3 1 2;

 ENDDATA

 ! Maximize the total value of the jobs taken;

 MAX = TVAL;

 TVAL = @SUM(JOB: VAL * Y);

 ! For the jobs we do, we do in due date order;

 @FOR(JOB(J):

 ! Only jobs with earlier due dates can

 precede job J, and jobs must be completed

 by their due dates;

 @SUM(JOB(I)| DD(I) #LT# DD(J) #OR#

 (DD(I) #EQ# DD(J) #AND# I #LE# J):

 PT(I) * Y(I)) <= DD(J);

 ! Make the Y's binary;

 @BIN(Y);

);

END

Model: JOBSLT

ADDITIONAL EXAMPLES 751

Knapsack Model Model: KNAPSACK
In the knapsack model, one wants to select items to place into a knapsack to maximize a measure of

utility without exceeding the capacity of the knapsack. This model can be generalized to many other

areas such as truck loading, bin packing, choosing science experiments for the Space Shuttle, and so

on. An in-depth description of this model can be found in Chapter 3, Using Variable Domain

Functions.

SETS:

 ITEMS / ANT_REPEL, BEER, BLANKET,

 BRATWURST, BROWNIES, FRISBEE, SALAD,

 WATERMELON/:

 INCLUDE, WEIGHT, RATING;

ENDSETS

DATA:

 WEIGHT RATING =

 1 2

 3 9

 4 3

 3 8

 3 10

 1 6

 5 4

 10 10;

 KNAPSACK_CAPACITY = 15;

ENDDATA

MAX = @SUM(ITEMS: RATING * INCLUDE);

@SUM(ITEMS: WEIGHT * INCLUDE) <=

 KNAPSACK_CAPACITY;

@FOR(ITEMS: @BIN(INCLUDE));

Model: KNAPSACK

752 APPENDIX A

Learning Curve Model: LEARNC
The cost, labor, and/or time it takes to perform a task will often decrease the more times it is

performed. A manufacturer may need to estimate the cost to produce 1,000 units of a product after

producing only 100. The average unit cost of the first 100 is likely to be considerably higher than the

average unit cost of the last 100. Learning curve theory assumes each time the quantity produced

doubles, the cost per unit decreases at a constant rate.

In our example, we wish to estimate the cost (in hours) to produce paper based on the cumulative

number of tons produced so far. The data is fitted to a curve of the form:

COST(i) = a * VOLUME(i) b

where COST is the dependent variable and VOLUME is the independent variable. By taking

logarithms, we can linearize the model:

ln[COST(i)] = ln(a) + b * ln[VOLUME(i)]

We can then use the theory of linear regression to find estimates of ln(a) and b that minimize the sum

of the squared prediction errors. Note that since the regression involves only a single independent

variable, the formulas for computing the parameters are straightforward. Refer to any theoretical

statistics text for a derivation of these formulas.

MODEL:

! Learning curve model;

 ! Assuming that each time the number produced

 doubles, the cost per unit decreases by a

 constant rate, predict COST per unit with

 the equation:

 COST(i) = A * VOLUME(i) ^ B;

 SETS:

 ! The OBS set contains the data for COST

 and VOLUME;

 OBS/1..4/:

 COST, ! The dependent variable;

 VOLUME; ! The independent variable;

 ! The OUT set contains the outputs of the model.

 Note: R will contain the output results.;

 OUT/ A, B, RATE, RSQRU, RSQRA/: R;

 ENDSETS

 ! Data on hours per ton, cumulative tons for a

 papermill based on Balof, J. Ind. Eng.,

 Jan. 1966;

 DATA:

 COST = .1666, .1428, .1250, .1111;

 VOLUME = 8, 60, 100 190;

 ENDDATA

! The model;

 SETS:

 ! The derived set OBSN contains the set of

ADDITIONAL EXAMPLES 753

 logarithms of our dependent and independent

 variables as well the mean shifted values;

 OBSN(OBS): LX, LY, XS, YS;

 ENDSETS

 NK = @SIZE(OBS);

 ! Take the logs;

 @FOR(OBSN(I):

 LX(I) = @LOG(VOLUME(I));

 LY(I) = @LOG(COST(I)););

 ! Compute means;

 XBAR = @SUM(OBSN: LX)/ NK;

 YBAR = @SUM(OBSN: LY)/ NK;

 ! Shift the observations by their means;

 @FOR(OBSN:

 XS = LX - XBAR;

 YS = LY - YBAR);

 ! Compute various sums of squares;

 XYBAR = @SUM(OBSN: XS * YS);

 XXBAR = @SUM(OBSN: XS * XS);

 YYBAR = @SUM(OBSN: YS * YS);

 ! Finally, the regression equation;

 SLOPE = XYBAR/ XXBAR;

 CONS = YBAR - SLOPE * XBAR;

 RESID = @SUM(OBSN: (YS - SLOPE * XS)^2);

 ! The unadjusted/adjusted fraction of variance

 explained;

 [X1]R(@INDEX(RSQRU)) = 1 - RESID/ YYBAR;

 [X2]R(@INDEX(RSQRA)) = 1 - (RESID/ YYBAR) *

 (NK - 1)/(NK - 2);

 [X3]R(@INDEX(A)) = @EXP(CONS);

 [X4]R(@INDEX(B)) = - SLOPE;

 [X5]R(@INDEX(RATE)) = 2 ^ SLOPE;

 ! Some variables must be unconstrained in sign;

 @FOR(OBSN: @FREE(LY); @FREE(XS); @FREE(YS));

 @FREE(YBAR); @FREE(XBAR); @FREE(SLOPE);

 @FREE(XYBAR); @FREE(CONS);

END

Model: LEARNC

754 APPENDIX A

Markov Chain Model Model: MARKOV
A standard approach used in modeling random variables over time is the Markov chain approach. The

basic idea is to think of the system as being in one of a discrete number of states at each point in time.

The behavior of the system is described by a transition probability matrix, which gives the probability

the system will move to a specified other state from some given state. Some example situations are:

System States Cause of Transition

Consumer brand

switching

Brand of product most recently

purchased by consumer

Consumer changes mind,

advertising

Inventory System Amount of inventory on hand Orders for new material,

demands

In the following model, we use Markov chain analysis to determine the long-term, steady state

probabilities of the system. A detailed discussion of this model may be found in Chapter 12,

Developing More Advanced Models.

MODEL:

 ! Markov chain model;

SETS:

 ! There are four states in our model and over

 time the model will arrive at a steady state

 equilibrium.

 SPROB(J) = steady state probability;

 STATE/ A B C D/: SPROB;

 ! For each state, there's a probability of moving

 to each other state. TPROB(I, J) = transition

 probability;

 SXS(STATE, STATE): TPROB;

ENDSETS

DATA:

 ! The transition probabilities. These are proba-

 bilities of moving from one state to the next

 in each time period. Our model has four states,

 for each time period there's a probability of

 moving to each of the four states. The sum of

 probabilities across each of the rows is 1,

 since the system either moves to a new state or

 remains in the current one.;

 TPROB = .75 .1 .05 .1

 .4 .2 .1 .3

 .1 .2 .4 .3

 .2 .2 .3 .3;

ENDDATA

! The model;

! Steady state equations;

! Only need N equations, so drop last;

 @FOR(STATE(J)| J #LT# @SIZE(STATE):

 SPROB(J) = @SUM(SXS(I, J): SPROB(I) *

ADDITIONAL EXAMPLES 755

 TPROB(I, J))

);

! The steady state probabilities must sum to 1;

 @SUM(STATE: SPROB) = 1;

! Check the input data, warn the user if the sum

 of probabilities in a row does not equal 1.;

 @FOR(STATE(I):

 @WARN('Probabilities in a row must sum to 1.',

 @ABS(1 - @SUM(SXS(I, K): TPROB(I, K)))

 #GT# .000001);

);

END

Model: MARKOV

756 APPENDIX A

Matching Model Model: MATCHD
Pair-matching problems require a number of objects be grouped into pairs subject to some criteria. The

objective may be to minimize cost, to group like objects, etc. As an example, the following matching

model pairs workers into offices to minimize total incompatibilities between paired individuals. A

detailed discussion of this model may be found in Chapter 2, Using Sets.

MODEL:

SETS:

 ANALYSTS / 1..8/;

 PAIRS(ANALYSTS, ANALYSTS) | &2 #GT# &1:

 RATING, MATCH;

ENDSETS

DATA:

 RATING =

 9 3 4 2 1 5 6

 1 7 3 5 2 1

 4 4 2 9 2

 1 5 5 2

 8 7 6

 2 3

 4;

ENDDATA

MIN = @SUM(PAIRS(I, J):

 RATING(I, J) * MATCH(I, J));

@FOR(ANALYSTS(I):

 @SUM(PAIRS(J, K) | J #EQ# I #OR# K #EQ# I:

 MATCH(J, K)) = 1

);

@FOR(PAIRS(I, J): @BIN(MATCH(I, J)));

END

Model: MATCHD

ADDITIONAL EXAMPLES 757

Computing Demand Backlog Model: METRIC
The METRIC model estimates the average number of backorders in a two level inventory system

composed of a single depot or distribution center and any number of outlets served by the depot.

Inventory policy at each location is described by a single number S. Whenever the sum of the amount

on hand and on order drops below S, an order is placed to bring inventory back up to S. This is an

evaluation model, rather than an optimization model. The user is prompted for the S values (SDEPOT

and SOUTLET).

MODEL:

! The two level METRIC inventory model. ;

 SETS:

 OUTLET/1..2/: ! Each outlet has a...;

 ROUTLET, ! Resupply time from depot to outlet;

 DEM, ! Demand rate at outlet;

 SOUTLET, ! Stock level to use at outlet;

 ERT, ! Effective resupply time to outlet;

 AL; ! Average level of backlogged demand;

 ENDSETS

DATA:

 ROUTLET = 2 2;

 DEM = .1 .1;

 RDEPOT = 14;

! Get the stock levels from the user;

 SDEPOT = ?;

 SOUTLET = ?, ?;

 ENDDATA

! Compute total demand;

 DEM0 = @SUM(OUTLET: DEM);

! Effective expected wait at depot;

 EWT0 = @PPL(DEM0 * RDEPOT, SDEPOT)/ DEM0;

 @FOR(OUTLET(I):

! Estimate the resupply time including depot delay;

 ERT(I) = ROUTLET(I) + EWT0;

! Expected demand on backorder;

 AL(I) = @PPL(DEM(I) * ERT(I), SOUTLET(I));

);

! Total expected demand on backorder;

 TBACK = @SUM(OUTLET: AL);

END

Model: METRIC

758 APPENDIX A

The Mexican Steel Problem Model: MEXICO
The following model is a production-planning model adapted from the GAMS documentation.

MODEL:

 ! The Mexican Steel problem;

 SETS:

 ! Steel plants;

 PLANT /AHMSA FUNDIDA SICARTSA HYLSA HYLSAP/:

 RD2, MUE;

 ! Markets;

 MARKET / MEXICO MONTE GUADA /: DD, RD3, MUV;

 ! Final products;

 CF /STEEL/: PV, PE, EB;

 ! Intermediate products;

 CI / SPONGE PIGIRON/;

 ! Raw materials;

 CR /PELLETS COKE NATGAS ELECTRIC SCRAP/ : PD;

 ! Processes;

 PR /PIGIRON1 SPONGE1 STEELOH STEELEL STEELBOF/;

 ! Productive units;

 UNIT / BLASTFUR OPENHEAR BOF DIRECT ELECARC/;

 ! ;

 CRXP(CR, PR) : A1; CIXP(CI, PR) : A2;

 CFXP(CF, PR) : A3; UXP(UNIT, PR) : B;

 UXI(UNIT, PLANT) : K;

 PXM(PLANT, MARKET) : RD1, MUF;

 PXI(PR, PLANT) : Z;

 CFXPXM(CF, PLANT, MARKET) : X;

 CRXI(CR, PLANT) : U; CFXI(CF, PLANT) : E;

 CFXM(CF, MARKET) : D, V;

 ENDSETS

 ! Demand equations;

 @FOR(CFXM(C, J):

 D(C,J) = 5.209 * (1 + 40/ 100) * DD(J)/100);

 ! Transport rate equations;

 @FOR(PXM(I, J)| RD1(I, J) #GT# 0:

 MUF(I, J) = 2.48 + .0084 * RD1(I, J));

 @FOR(PXM(I, J)| RD1(I, J) #LE# 0:

 MUF(I, J) = 0);

 @FOR(PLANT(I)| RD2(I) #GT# 0:

 MUE(I) = 2.48 + .0084 * RD2(I));

 @FOR(PLANT(I)| RD2(I) #LE# 0: MUE(I) = 0);

ADDITIONAL EXAMPLES 759

 @FOR(MARKET(J)| RD3(J) #GT# 0:

 MUV(J) = 2.48 + .0084 * RD3(J));

 @FOR(MARKET(J)| RD3(J) #LE# 0: MUV(J) = 0);

 ! For each plant I1;

 @FOR(PLANT(I1):

 ! Sources >= uses, final products;

 @FOR(CF(CF1): [MBF]

 @SUM(PR(P1): A3(CF1, P1) * Z(P1, I1)) >=

 @SUM(MARKET(J1): X(CF1, I1, J1)) +

 E(CF1, I1));

 ! Intermediate products;

 @FOR(CI(CI1): [MBI]

 @SUM(PR(P1): A2(CI1, P1) *

 Z(P1, I1)) >= 0);

 ! Raw materials;

 @FOR(CR(CR1): [MBR]

 @SUM(PR(P1): A1(CR1, P1) *

 Z(P1, I1)) + U(CR1, I1) >= 0);

 ! Capacity of each productive unit M1;

 @FOR(UNIT(M1): [CC]

 @SUM(PR(P1): B(M1, P1) * Z(P1, I1)) <=

 K(M1, I1));

);

 ! For each final product CF1;

 @FOR(CF(CF1):

 ! Demand requirements for each market J1;

 @FOR(MARKET(J1): [MR]

 @SUM(PLANT(I1): X(CF1, I1, J1)) + V(CF1, J1)

 >= D(CF1, J1));

 ! Upper limit on exports ;

 [ME] @SUM(PLANT(I1): E(CF1, I1)) <= EB(CF1);

);

 ! Components of objective;

 PHIPSI = @SUM(CR(CR1):

 @SUM(PLANT(I1): PD(CR1) * U(CR1, I1)));

 PHILAM = @SUM(CF(CF1):

 @SUM(PLANT(I1): @SUM(MARKET(J1):MUF(I1,J1)*

 X(CF1, I1, J1))) + @SUM(MARKET(J1):

 MUV(J1) * V(CF1, J1)) + @SUM(PLANT(I1):

 MUE(I1) * E(CF1, I1)));

 PHIPI = @SUM(CFXM(CF1, I1):

 PV(CF1) * V(CF1, I1));

 PHIEPS = @SUM(CFXP(CF1, I1):

 PE(CF1) * E(CF1, I1));

 [OBJROW] MIN = PHIPSI + PHILAM + PHIPI - PHIEPS;

760 APPENDIX A

ADDITIONAL EXAMPLES 761

DATA:

 A1= -1.58, -1.38, 0, 0, 0,

 -0.63, 0, 0, 0, 0,

 0, -0.57, 0, 0, 0,

 0, 0, 0, -0.58, 0,

 0, 0, -0.33, 0, -0.12;

 A2= 1, 0, -0.77, 0, -0.95,

 0, 1, 0, -1.09, 0;

 A3= 0, 0, 1, 1, 1;

 B = 1 0 0 0 0

 0 0 1 0 0

 0 0 0 0 1

 0 1 0 0 0

 0 0 0 1 0;

 K = 3.25, 1.40, 1.10, 0, 0,

 1.50, 0.85, 0, 0, 0,

 2.07, 1.50, 1.30, 0, 0,

 0, 0, 0, 0.98, 1,

 0, 0, 0, 1.13, 0.56;

 RD1= 1204 218 1125

 1017 0 1030

 819 1305 704

 1017 0 1030

 185 1085 760;

 RD2 = 739, 521, 0, 521, 315;

 RD3 = 428, 521, 300;

 PD = 18.7, 52.17, 14, 24, 105;

 PV = 150;

 PE = 140;

 EB = 1;

 DD = 55, 30, 15;

 ENDDATA

END

Model: MEXICO

762 APPENDIX A

Multiprod. Capac. Lot Sizing Model: MPSCHD
The following model is a production-planning model where multiple products compete for scarce

capacity. Each product has a setup time, setup cost, production time, production cost, and holding cost.

The question is how much of each product should we produce in each period to minimize total

production costs.

MODEL:

! Multiproduct Capacitated lot sizing;

 SETS:

 PROD/1..2/: ! Each product has a ...;

 ST, ! Setup time;

 VT, ! Production time per unit;

 SC, ! Setup cost;

 VC, ! Production cost per unit;

 HC; ! Holding cost per unit per period;

 TIME/1..6/:;

 PXT(PROD, TIME):

! Each product in each period has...;

 DEM, ! Demand;

 MAKE, ! Amount to produce;

 Y; ! = 1 if anything is produced;

 ENDSETS

 DATA:

 CAP = 200; ! Capacity per period;

 ST = 0 0; ! Setup times;

 VT = 1 1; ! Production time per unit;

 SC = 150 45; ! Setup costs;

 VC = 7 4; ! Cost per unit to produce;

 HC = 2 1; ! Holding cost per unit;

 DEM = 40 60 130 0 100 200 ! Demands;

 0 45 50 35 20 35;

 ENDDATA

!——————————————————;

! The Eppen/Martin model;

 SETS:

 PXTXT(PROD, TIME, TIME)| &3 #GE# &2:

 PCOF,

 CCOF,

 X;

 ENDSETS

! Compute cost and production amounts for

 various production runs;

 @FOR(PROD(I):

 @FOR(TIME(S):

 PCOF(I, S, S) = DEM(I, S);

 CCOF(I, S, S) = VC(I) * DEM(I, S);

ADDITIONAL EXAMPLES 763

 @FOR(TIME(T)| T #GT# S:

 PCOF(I, S, T) = PCOF(I, S, T - 1) +

 DEM(I, T);

 CCOF(I, S, T) = CCOF(I, S, T - 1) +

 (VC(I) + HC(I) * (T - S)) * DEM(I, T);

)

)

);

! The objective;

 MIN = TCOST;

 TCOST = @SUM(PXTXT: CCOF * X) +

 @SUM(PXT(I, S): SC(I) * Y(I, S));

 @FOR(PROD(I):

! In period 1, some production run must be started;

! Note, watch out for periods without demand;

 @SUM(PXTXT(I, S, T) | S #EQ# 1:

 X(I, S, T)) = 1;

 @FOR(TIME(K)| K #GT# 1:

! If we ended a run in period K - 1...;

 @SUM(PXTXT(I, S, T)| T #EQ# K - 1:

 X(I, S, K - 1))

! then we must start a run in period k;

 = @SUM(PXTXT(I, K, T): X(I, K, T));

);

! Setup forcing;

 @FOR(TIME(S):

 Y(I, S) = @SUM(PXTXT(I, S, T)

 : (PCOF(I, S, T) #GT# 0) * X(I, S, T));

! Calc amount made each period;

 MAKE(I, S) = @SUM(PXTXT(I, S, T):

 PCOF(I, S, T) * X(I, S, T))

)

);

! The capacity constraints;

 @FOR(TIME(S):

 @SUM(PROD(I): ST(I) * Y(I, S)) +

 @SUM(PXTXT(I, S, T):

 VT(I) * PCOF(I, S, T) * X(I, S, T)) <= CAP

);

! Make the Y's integer;

 @FOR(PXT: @GIN(Y));

END

Model: MPSCHD

764 APPENDIX A

Machine Repair Model Model: MREPAR
This model illustrates the tradeoff between the cost of service people and the costs of machine

downtime. In our model, we have ten machines that have a tendency to break down randomly. It costs

$350/hour in lost production whenever a machine is broken. The question we need to answer is how

many service people should we hire to minimize the total cost of down time and salaries for service

people.

MODEL:

 ! Machine repair model;

 SETS:

 NREP/1..5/: !Consider 5 possible repair persons;

 NDOWN, !Expected no. of down machines;

 CPERHR,Expected cost/hour of down machines;

 TCOST; !Total expected cost/hour;

 ENDSETS

! The input data;

 NMACH = 10;! No. machines subject to breakdown;

 RTIME = 1; ! Average repair time;

 UPTIME = 5;! Mean time between failures;

 CR = 30; ! Hourly cost of a repair person;

 CM = 350; ! Hourly cost of a down machine

 ! The machine repairman queuing model;

 ! For each case of 1 - 5 service people calculate

 expected number of machines down, cost per hour

 of down machines, and total cost per hour of

 operations. @PFS calculates the Probability in

 a Finite Source, in this case expected number

 of machines under repair. ;

 @FOR(NREP(I):

 NDOWN(I) =

 @PFS(NMACH * RTIME / UPTIME, I, NMACH);

 CPERHR(I) = CM * NDOWN(I);

 TCOST(I) = CPERHR(I) + CR * I

);

END

Model: MREPAR

ADDITIONAL EXAMPLES 765

Material Requirements Planning Model: MRP
Material Requirements Planning, or MRP, is used to generate production schedules for the

manufacture of complex products. MRP takes the demand schedule for a finished product and the lead

times to produce the finished product and all the various subcomponents that go into the finished

product, and then works backwards to come up with a detailed, just-in-time production schedule that

meets the demand schedule. A detailed discussion of this model may be found in Chapter 12,

Developing More Advanced Models.

MODEL:

! Data for this model is read from MRP.LDT;

SETS:

! The set of parts;

 PART: LT;

 ! LT(i) = Lead time to produce part i;

! The set of time periods;

 TIME;

! A relationship called USES between pairs of parts;

 USES(PART, PART): NEEDS;

 ! Parent part i needs NEEDS(i, j) units of

 child part j;

! For each part and time period we're interested in;

 PXT(PART, TIME): ED, TD;

 ! ED(i, j) = External demand for part i at time j;

 ! TD(i, j) = Total demand for part i at time j;

ENDSETS

DATA:

! Load the data from an external file;

 ! Parts list;

 PART = @FILE('MRP.LDT');

 ! Time periods;

 TIME = @FILE('MRP.LDT');

 ! Get the parent child relations and the

 number of parts required;

 USES, NEEDS = @FILE('MRP.LDT');

! Get the lead times from the file;

 LT = @FILE('MRP.LDT');

! Get the external demands

 over time for each part;

766 APPENDIX A

 ED = @FILE('MRP.LDT');

ENDDATA

! Set NP = no. of time periods in the problem;

 NP = @SIZE(TIME);

! For each part P and period T, the total demand =

 external demand + demand generated by parents

 one lead time in the future;

 @FOR(PXT(P, T) | T + LT(P) #LE# NP :

 TD(P, T) = ED(P, T + LT(P)) +

 @SUM(USES(P2, P): TD(P2, T + LT(P)) *

 NEEDS(P2, P));

);

DATA:

! Display a table showing the production schedule;

 @TEXT() = ' The production schedule:';

 @TEXT() = @TABLE(TD);

ENDDATA

END

Model: MRP

ADDITIONAL EXAMPLES 767

Minimal Spanning Tree Model: MSPAN
In the minimal spanning tree, we need to find a set of links (a tree) in a network that connects all cities.

Furthermore, the sum of the distances over all the links in the tree should be minimized. Among other

things, this application is useful in constructing communications networks at minimal cost.

It turns out that this becomes a very difficult problem to solve using optimization as the number of

nodes grows. For large versions of this problem, the optimization techniques provided by LINGO are

not the appropriate tool. One would be wise to pursue alternatives such as heuristics or dynamic

programming.

MODEL:

!Given the number of nodes and the distance

 between them, finding the shortest total distance

 of links on the network to connect all the nodes

 is the classic problem called minimal spanning tree (MST).

 This model finds the (MST) connecting Atlanta,

 Chicago, Cincinnati, Houston, LA, and Montreal so

 that messages can be sent from Atlanta (base) to

 other cities through the network at minimum cost;

 SETS:

 CITY / 1.. 6/: U; ! U(I) = level of city I;

 ! U(1) = 0;

 LINK(CITY, CITY):

 DIST, ! The distance matrix;

 X; ! X(I, J) = 1 if we use link I, J;

 ENDSETS

DATA: ! Distance matrix need not be symmetric;

 ! However, city 1 is base of the tree;

 !to: Atl Chi Cin Hou LA Mon ;

 DIST = 0 702 454 842 2396 1196 !from Atl;

 702 0 324 1093 2136 764 !from Chi;

 454 324 0 1137 2180 798 !from Cin;

 842 1093 1137 0 1616 1857 !from Hou;

 2396 2136 2180 1616 0 2900 !from LA;

 1196 764 798 1857 2900 0; !from Mon;

 ENDDATA

! The model size: Warning, may be slow for N >= 8;

 N = @SIZE(CITY);

 ! Minimize total distance of the links;

 MIN = @SUM(LINK: DIST * X);

 ! For city K, except the base, ... ;

 @FOR(CITY(K)| K #GT# 1:

 ! It must be entered;

 @SUM(CITY(I)| I #NE# K: X(I, K)) = 1;

768 APPENDIX A

 ! If there are 2 disjoint tours from 1 city to

 another, we can remove a link without

 breaking connections. Note: These are not

 very powerful for large problems;

 @FOR(CITY(J)| J #GT# 1 #AND# J #NE# K:

 U(J) >= U(K) + X (K, J) -

 (N - 2) * (1 - X(K, J)) +

 (N - 3) * X(J, K););

);

 ! There must be an arc out of city 1;

 @SUM(CITY(J)| J #GT# 1: X(1, J)) >= 1;

 ! Make the X's 0/1;

 @FOR(LINK: @BIN(X););

 ! The level of a city except the base is at

 least 1 but no more than N-1, and is 1 if it

 links to the base;

 @FOR(CITY(K)| K #GT# 1:

 @BND(1, U(K), 999999);

 U(K) <= N - 1 - (N - 2) * X(1, K););

END

Model: MSPAN

ADDITIONAL EXAMPLES 769

Multilevel Distribution Model: MULLDC
In this model, we minimize shipping costs over a three tiered distribution system consisting of plants,

distribution centers, and customers. Plants produce multiple products that are shipped to distribution

centers. If a distribution center is used, it incurs a fixed cost. Customers are supplied by a single

distribution center.

MODEL:

! MULLDC;

! Multilevel DC location model, based on

 Geoffrion/Graves, Man. Sci., Jan., 1974;

! Original LINGO model by Kamaryn Tanner;

 SETS:

! Two products;

 PRODUCT/ A, B/;

! Three plants;

 PLANT/ P1, P2, P3/;

! Each DC has an associated fixed cost, F,

 and an "open" indicator, Z.;

 DISTCTR/ DC1, DC2, DC3, DC4/: F, Z;

! Five customers;

 CUSTOMER/ C1, C2, C3, C4, C5/;

! D = Demand for a product by a customer.;

 DEMLINK(PRODUCT, CUSTOMER): D;

! S = Capacity for a product at a plant.;

 SUPLINK(PRODUCT, PLANT): S;

! Each customer is served by one DC,

 indicated by Y.;

 YLINK(DISTCTR, CUSTOMER): Y;

! C= Cost/ton of a product from a plant to a DC,

 X= tons shipped.;

 CLINK(PRODUCT, PLANT, DISTCTR): C, X;

! G= Cost/ton of a product from a DC to a customer.;

 GLINK(PRODUCT, DISTCTR, CUSTOMER): G;

ENDSETS

DATA:

! Plant Capacities;

 S = 80, 40, 75,

 20, 60, 75;

! Shipping costs, plant to DC;

 C = 1, 3, 3, 5, ! Product A;

 4, 4.5, 1.5, 3.8,

 2, 3.3, 2.2, 3.2,

 1, 2, 2, 5, ! Product B;

770 APPENDIX A

 4, 4.6, 1.3, 3.5,

 1.8, 3, 2, 3.5;

! DC fixed costs;

 F = 100, 150, 160, 139;

! Shipping costs, DC to customer;

 G = 5, 5, 3, 2, 4, ! Product A;

 5.1, 4.9, 3.3, 2.5, 2.7,

 3.5, 2, 1.9, 4, 4.3,

 1, 1.8, 4.9, 4.8, 2,

 5, 4.9, 3.3, 2.5, 4.1, ! Product B;

 5, 4.8, 3, 2.2, 2.5,

 3.2, 2, 1.7, 3.5, 4,

 1.5, 2, 5, 5, 2.3;

! Customer Demands;

 D = 25, 30, 50, 15, 35,

 25, 8, 0, 30, 30;

ENDDATA

!—————————————————————————;

! Objective function minimizes costs.;

 [OBJ] MIN = SHIPDC + SHIPCUST + FXCOST;

 SHIPDC = @SUM(CLINK: C * X);

 SHIPCUST =

 @SUM(GLINK(I, K, L):

 G(I, K, L) * D(I, L) * Y(K, L));

 FXCOST = @SUM(DISTCTR: F * Z);

! Supply Constraints;

 @FOR(PRODUCT(I):

 @FOR(PLANT(J):

 @SUM(DISTCTR(K): X(I, J, K)) <= S(I, J))

);

! DC balance constraints;

 @FOR(PRODUCT(I):

 @FOR(DISTCTR(K):

 @SUM(PLANT(J): X(I, J, K)) =

 @SUM(CUSTOMER(L): D(I, L)* Y(K, L)))

);

! Demand;

 @FOR(CUSTOMER(L):

 @SUM(DISTCTR(K): Y(K, L)) = 1

);

Model: MULLDC

ADDITIONAL EXAMPLES 771

Network Equilibrium Model: NETEQ1
In this example, we have a network of pipelines capable of transporting either fluid or gas. There are a

total of eight nodes and 11 arcs between them. Two of the nodes are source nodes, while the remaining

nodes are net demanders of product. The pressures at the source nodes are given. The model

determines the flow of product down each arc and the pressures at each node.

MODEL:

! Network equilibrium NETEQ1:based on Hansen et.al., Math.

Prog. vol. 52, no.1;

 SETS:

 NODE/A, B, C, D, E, F, G, H/:

 P; ! Pressure at this node;

 ARC(NODE, NODE)/ B A, C A, C B, D C, E D,

 F D, G D, F E, H E, G F, H F/ :

 R, ! Resistance on this arc;

 FLO; ! Flow on this arc;

 SRC(NODE)/ G, H/:

 PFIXED; ! Fixed pressure at source nodes;

 DEST(NODE) | #NOT# @IN(SRC, &1):

 DEMAND; ! Given demand at destination nodes;

 ENDSETS

 DATA:

 PFIXED = 240, 240;

 DEMAND = 1, 2, 4, 6, 8, 7;

 R = 1, 25, 1, 3, 18, 45, 1, 12, 1, 30, 1;

! For incompressible fluids and electricity:

 PPAM = 1, for gases: PPAM = 2;

 PPAM = 1;

! For optimization networks: FPAM = 0

 (for arcs withflow >= 0)

 electrical networks: FPAM = 1

 other fluids: 1.8 <= FPAM <= 2;

 FPAM = 1.852;

 ENDDATA

!Set the pressures for the source/reservoir nodes;

 @FOR(SRC(I): P(I) = PFIXED(I));

! Conservation of flow at non-source nodes;

 @FOR(DEST(J):

 @SUM(ARC(I, J): FLO(I, J)) = DEMAND(J) +

 @SUM(ARC(J, K): FLO(J, K)));

! Relate pressures at 2 ends of each arc;

 @FOR(ARC(I, J):

 P(I)^ PPAM - P(J)^ PPAM = R(I, J) *

 FLO(I, J) ^ FPAM;);

END

Model: NETEQ1

772 APPENDIX A

Minimize Traffic Congestion Model: NLTRAZ
In this model, we have a network with seven nodes. Three of the nodes are source nodes and four of

the nodes are destination nodes. Each source node can ship to any of the destination nodes. The

problem is the more of a product you send down an arc, the longer it takes for it to arrive. This might

be the case if the underlying network were a railroad, for instance. We assume that shipping times

obey the following relationship:

Time = Rate / (1 - Flow / Limit)

where,

Time time to ship one unit of product down a route,

Rate time required to transport one unit down a route with no congestion

along the route,

Flow amount of product shipped down a route, and

Limit maximum limit of product flow down a route.

Based on this relationship, we see shipping times go to infinity as the capacity of an arc is approached.

The goal of the model is to determine how much of a product to ship from each source to each

destination so as to minimize total shipping times.

MODEL:

! Traffic congestion transportation problem.

 Cost/unit increases to infinity as traffic on

 link approaches its link capacity.

 Truncated variation of an AMPL example;

 SETS:

 ORIG/ CHIC CINC ERIE/: SUPPLY;

 DEST / HAM AKR COL DAY/ : DEMAND;

 OXD(ORIG, DEST): RATE, LIMIT, TRAF;

 ENDSETS

 DATA:

 SUPPLY = 1200 800 1400;

 DEMAND = 1000 1200 700 500 ;

 RATE = 39 14 11 14

 27 9 12 9

 24 14 17 13 ;

 LIMIT = 500 1000 1000 1000

 500 800 800 800

 800 600 600 600 ;

 ENDDATA

 [TOTCOST] MIN =

 @SUM(OXD: RATE * TRAF/(1 - TRAF/ LIMIT));

 @FOR(ORIG(I):

 @SUM(OXD(I, J): TRAF(I, J)) = SUPPLY(I));

 @FOR(DEST(J):

 @SUM(OXD(I, J): TRAF(I, J)) = DEMAND(J));

 @FOR(OXD: @BND(0, TRAF, LIMIT););

END

Model: NLTRAZ

ADDITIONAL EXAMPLES 773

Newsboy with Fixed Order Charge Model: NUSBOY
In the simple newsboy model (EZNEWS), presented earlier in this chapter, we did not have a fixed

ordering charge to deal with. We add this minor complication to the model below. Assuming you

decide to order, the fixed charge is a sunk cost and you should therefore order up to the same quantity,

S, as in the standard newsboy model. However, there may be cases where preexisting inventory is of a

level close enough to S that the expected gains of a minimal increase in inventory are not outweighed

by the fixed order charge. The problem now is to not only determine S (or “big S”), but also to

determine the additional parameter, s (or “little s”), where when inventory exceeds s the optimal

decision is to not incur a fixed charge by foregoing an order for additional stock. Inventory strategies

such as this are referred to as “little s-big S”, or (s,S), policies.

One additional feature to note in this model is we now assume demand to be normally distributed. This

is acceptable because the newsboy model does not demand any particular form of demand distribution.

As with the EZNEWS model, we could have also used a Poisson distribution if we felt it was more

appropriate.

MODEL:

! Newsboy inventory model;

! This model calculates the optimal stock levels

 for a product with normally distributed demand

 and a fixed ordering cost;

ATA:

 P = 11; ! Penalty/unit for not having enough;

 H = 5; ! Holding cost/unit for excess;

 MU = 144; ! Mean demand;

 SIGMA = 25; ! Standard deviation in demand;

 K = 15; ! Fixed cost of placing an order;

ENDDATA

! Compute reorder point, SLIL, and order up to

 point, SBIG;

! Calculate the order up to point, SBIG, using

 standard newsboy formula;

 @PSN(ZBIG) = P /(P + H);

 ZBIG = (SBIG - MU)/ SIGMA;

! and the expected cost of being there, CSBIG;

 CSBIG = SIGMA * @PSL(ZBIG) * (P+H) + H * (SBIG-MU);

! The expected cost at the reorder point should

 differ from the expected cost at SBIG by the

 fixed order cost, K;

 CSLIL = K + CSBIG;

! Solve for SLIL;

 CSLIL=SIGMA*@PSL(ZLIL)*(P+H)*H*(ZLIL*SIGMA);

 ZLIL = (SLIL - MU)/ SIGMA;

END

Model: NUSBOY

774 APPENDIX A

Optimal Airline Overbooking I Model: OBOOKO
Closely related to the newsboy problem (in a mathematical sense) is the airline-overbooking problem.

Given that a certain percentage of fliers with reservations will not show up for a flight, airlines that

don’t overbook will be sending most planes up with empty seats. Assuming the penalty cost for

overbooking is not too high, an airline that hopes to maximize revenue should overbook its flights. The

following model determines the optimal number of reservations to allow on a flight, and assumes the

number of no-shows on a flight has a binomial distribution.

MODEL:

!

 This overbooking model determines the number of

 reservations, M, to allow on a flight if the

 no-show distribution is binomial;

! Some available data ;

 N = 16; ! total seats available;

 V = 225; !Revenue from a sold seat;

 P = 100; !Penalty for a turned down customer;

 Q = .04; !Probability a customer is a no-show;

! The probability to turn down customers is

 @PBN(Q, M, M - N), therefore the corresponding

 expected loss due to imperfect information is:

 (V + P) * @PBN(Q, M, M - N), and we want the

 loss to equal the revenue V on the margin. So,

 the break-even equation is:;

 (V + P) * @PBN(Q, M, M - N) = V;

! Note, you should round up if M is fractional;

END

Model: OBOOKO

ADDITIONAL EXAMPLES 775

Optimal Airline Overbooking II Model: OBOOKT
For those of you uncomfortable with the previous overbooking example, we use a “brute force”

method here to compute the expected profits from overbooking 1 to 6 seats. Solving this model, you

will find the results agree with the previous—the overbooking level that maximizes expected revenue

is 1 passenger.

MODEL:

! A strategy for airlines to minimize loss from

 no-shows is to overbook flights. Too little

 overbooking results in lost revenue. Too much

 overbooking results in excessive penalties.

 This model computes expected profits for

 various levels of overbooking.;

 SETS:

 SEAT/1..16/; ! seats available ;

 EXTRA/1..6/: EPROFIT; ! expected profits from

 overbooking 1-6 seats;

 ENDSETS

! Available data;

 V = 225; ! Revenue from a sold seat;

 P = 100; ! Penalty for a turned down customer;

 Q = .04; ! Probability customer is a no-show;

 ! No. of seats available;

 N = @SIZE(SEAT);

 ! Expected profit with no overbooking;

 EPROFIT0 = V * @SUM(SEAT(I):

 (1 - @PBN(1- Q, N, I - 1)));

 ! Expected profit if we overbook by 1 is:

 EPROFIT0 + Prob(he shows) * (V - (V + P) *

 Prob(we have no room));

 EPROFIT(1) = EPROFIT0 +

 (1 - Q) * (V - (V + P) * @PBN(Q, N, 0));

 ! In general;

 @FOR(EXTRA(I)| I #GT# 1:

 EPROFIT(I) = EPROFIT(I - 1) +

 (1 - Q) * (V - (V + P) *

 @PBN(Q, N + I - 1, I - 1));

);

END

Model: OBOOKT

776 APPENDIX A

Black & Scholes Options Pricing Model: OPTION
A call option is a financial instrument that gives the holder the right to buy one share of a stock at a

given price (the exercise price) on or before some specified expiration date. A frequent question is,

“How much should one be willing to pay for such an option?” An exact answer to this question eluded

researchers for many years until Fischer Black and Myron Scholes derived an option pricing formula

in 1973. A Nobel Prize was subsequently awarded for their work in 1997. A detailed discussion of this

model may be found in Chapter 12, Developing More Advanced Models.

MODEL:

! Computing the value of an option using the Black

 Scholes formula (see "The Pricing of Options and

 Corporate Liabilities", Journal of Political

 Economy, May-June, 1973);

SETS:

! We have 27 weeks of prices P(t), LOGP(t) is log of prices;

 WEEK/1..27/: P, LOGP;

ENDSETS

DATA:

! Weekly prices of National Semiconductor;

 P = 26.375, 27.125, 28.875, 29.625, 32.250,

 35.000, 36.000, 38.625, 38.250, 40.250,

 36.250, 41.500, 38.250, 41.125, 42.250,

 41.500, 39.250, 37.500, 37.750, 42.000,

 44.000, 49.750, 42.750, 42.000, 38.625,

 41.000, 40.750;

! The current share price;

 S = 40.75;

! Time until expiration of the option, expressed

 in years;

 T = .3644;

! The exercise price at expiration;

 K = 40;

! The yearly interest rate;

 I = .163;

ENDDATA

SETS:

! We will have one less week of differences;

 WEEK1(WEEK)| &1 #LT# @SIZE(WEEK): LDIF;

ENDSETS

! Take log of each week's price;

 @FOR(WEEK: LOGP = @LOG(P));

! and the differences in the logs;

 @FOR(WEEK1(J): LDIF(J) =

 LOGP(J + 1) - LOGP(J));

ADDITIONAL EXAMPLES 777

! Compute the mean of the differences;

 MEAN = @SUM(WEEK1: LDIF)/ @SIZE(WEEK1);

! and the variance;

 WVAR = @SUM(WEEK1: (LDIF - MEAN)^2)/

 (@SIZE(WEEK1) - 1);

! Get the yearly variance and standard deviation;

 YVAR = 52 * WVAR;

 YSD = YVAR^.5;

! Here is the Black-Scholes option pricing formula;

 Z = ((I + YVAR/2) *

 T + @LOG(S/ K))/(YSD * T^.5);

! where VALUE is the expected value of the option;

 VALUE = S *@PSN(Z) - K *@EXP(- I * T) *

 @PSN(Z - YSD *T^.5);

! LDIF may take on negative values;

 @FOR(WEEK1: @FREE(LDIF));

! The price quoted in the Wall Street Journal for

 this option when there were 133 days left was

 $6.625;

 END

Model: OPTION

778 APPENDIX A

Binomial Options Pricing Model: OPTIONB
Compared to the Black & Scholes example above, we take a slightly different approach to options

pricing in this example. We now assume a stock’s return has a binomial distribution, and use dynamic

programming to compute the option’s value.

MODEL:

SETS:

! Binomial option pricing model: We assume that

a stock can either go up in value from one period

to the next with probability PUP, or down with

probability (1 - PUP). Under this assumption,

a stock's return will be binomially distributed.

In addition, the symmetric probabilities allow

us to build a dynamic programming recursion to

determine the option's value;

! No. of periods, e.g., weeks;

 PERIOD /1..20/:;

ENDSETS

DATA:

! Current price of the stock;

 PNOW = 40.75;

! Exercise price at option expiration;

 STRIKE = 40;

! Yearly interest rate;

 IRATE = .163;

! Weekly variance in log of price;

 WVAR = .005216191 ;

ENDDATA

SETS:

! Generate our state matrix for the DP.

 STATE(S, T) may be entered from STATE(S, T - 1)

 if stock lost value, or it may be entered from

 STATE(S - 1, T - 1) if stock gained;

 STATE(PERIOD, PERIOD)| &1 #LE# &2:

 PRICE, ! There is a stock price, and...;

 VAL; ! a value of the option;

ENDSETS

! Compute number of periods;

 LASTP = @SIZE(PERIOD);

! Get the weekly interest rate;

 (1 + WRATE) ^ 52 = (1 + IRATE);

! The weekly discount factor;

 DISF = 1/(1 + WRATE);

! Use the fact that if LOG(P) is normal with

 mean LOGM and variance WVAR, then P has

ADDITIONAL EXAMPLES 779

 mean EXP(LOGM + WVAR/2), solving for LOGM...;

 LOGM = @LOG(1 + WRATE) - WVAR/ 2;

! Get the log of the up factor;

 LUPF = (LOGM * LOGM + WVAR) ^ .5;

! The actual up move factor;

 UPF = @EXP(LUPF);

! and the down move factor;

 DNF = 1/ UPF;

! Probability of an up move;

 PUP = .5 * (1 + LOGM/ LUPF);

! Initialize the price table;

 PRICE(1, 1) = PNOW;

! First the states where it goes down every period;

 @FOR(PERIOD(T) | T #GT# 1:

 PRICE(1, T) = PRICE(1, T - 1) * DNF);

! Now compute for all other states S, period T;

 @FOR(STATE(S, T)| T #GT# 1 #AND# S #GT# 1:

 PRICE(S, T) = PRICE(S - 1, T - 1) * UPF);

! Set values in the final period;

 @FOR(PERIOD(S):

 VAL(S, LASTP) =

 @SMAX(PRICE(S, LASTP) - STRIKE, 0));

! Do the dynamic programing;

 @FOR(STATE(S, T) | T #LT# LASTP:

 VAL(S, T) = DISF *

 (PUP * VAL(S + 1, T + 1) +

 (1 - PUP) * VAL(S, T + 1)));

! Finally, the value of the option now;

 VALUE = VAL(1, 1);

END

Model: OPTION

780 APPENDIX A

Bond Portfolio Optimization Model: PBOND
In certain situations, a business or individual may be faced with financial obligations over a future

number of periods. In order to defease (i.e., eliminate) this future debt, the debtor can determine a

minimal cost mix of current assets (e.g., cash and bonds) that can be used to cover the future stream of

payments. This problem is sometimes referred to as the cash flow matching problem, or the debt

defeasance problem. A detailed discussion of this model may be found in Chapter 12, Developing

More Advanced Models.

MODEL:

!Bond portfolio/cash matching problem. Given cash

 needs in a series of future periods, what

 collection of bonds should we buy to meet needs?;

SETS:

 BOND/A B/ :

 MATAT, ! Maturity period;

 PRICE, ! Price;

 CAMNT, ! Coupon;

 BUY; ! Amount to buy;

 PERIOD/1..15/:

 NEED, ! Cash needed each period;

 SINVEST; !Short term investment each period;

ENDSETS

DATA:

 STRTE = .04; ! Short term interest rate;

 MATAT = 6, 13; ! Years to maturity;

 PRICE = .980, .965; ! Bond purchase prices;

 CAMNT = .060, .065; ! Bond coupon amounts;

 NEED = 10, 11, 12, 14, 15, 17, 19, 20, 22, 24,

 26, 29, 31, 33, 36; ! Cash needs;

ENDDATA

! Minimize the total investment required to

 generate the stream of future cash needs;

 MIN = LUMP;

! First period is slightly special;

 LUMP = NEED(1) + SINVEST(1) +

 @SUM(BOND: PRICE * BUY);

! For subsequent periods;

 @FOR(PERIOD(I)| I #GT# 1:

 @SUM(BOND(J)| MATAT(J) #GE# I:

 CAMNT(J) * BUY(J)) +

 @SUM(BOND(J)| MATAT(J) #EQ# I:

 BUY(J)) + (1 + STRTE) * SINVEST(I - 1) =

 NEED(I) + SINVEST(I);

);

! Can only buy integer bonds;

 @FOR(BOND(J): @GIN(BUY(J)));

Model: PBOND

ADDITIONAL EXAMPLES 781

Simple Product-Mix Model: PC
In this example, we illustrate a simple product-mix model for deciding how many of two types of

computers to produce. Note, LINGO allows you to use scalar variables and forgo the use of sets, thus

allowing straightforward entry of simpler models.

MODEL:

 ! Total profit for the week;

 MAX = 200 * WS + 300 * NC;

 ! The total number of Wordsmiths produced is

 limited by the supply of graphics chips;

 WS <= 60;

 ! The total number of Numbercrunchers produced

 is limited by the supply of math

 coprocessors;

 NC <= 40;

 ! The total amount of memory used in all

 machines manufactured for the week can't

 exceed 120 Mb;

 WS + 2 * NC <= 120;

END

Model: PC

782 APPENDIX A

Project Management Model: PERT
In this example, we will set up a PERT model to determine the critical path of tasks in a project

involving the roll out of a new product. For those not familiar, PERT stands for Project Evaluation

and Review Technique. PERT is a simple, but powerful, technique developed in the 1950s to assist

managers in tracking the progress of large projects. A detailed discussion of this model may be found

in Chapter 2, Using Sets.

MODEL:

SETS:

 TASKS / DESIGN, FORECAST, SURVEY, PRICE,

 SCHEDULE, COSTOUT, TRAIN/: TIME, ES, LS, SLACK;

 PRED(TASKS, TASKS) /

 DESIGN,FORECAST,

 DESIGN,SURVEY,

 FORECAST,PRICE,

 FORECAST,SCHEDULE,

 SURVEY,PRICE,

 SCHEDULE,COSTOUT,

 PRICE,TRAIN,

 COSTOUT,TRAIN /;

ENDSETS

DATA:

 TIME = 10, 14, 3, 3, 7, 4, 10;

ENDDATA

@FOR(TASKS(J)| J #GT# 1:

 ES(J) = @MAX(PRED(I, J): ES(I) + TIME(I))

);

@FOR(TASKS(I)| I #LT# LTASK:

 LS(I) = @MIN(PRED(I, J): ES(J) - TIME(I));

);

@FOR(TASKS(I): SLACK(I) = LS(I) - ES(I));

ES(1) = 0;

LTASK = @SIZE(TASKS);

LS(LTASK) = ES(LTASK);

DATA:

!Use @TABLE() to display the precedence relations set, PRED;

 @TEXT() = @TABLE(PRED);

END

Model: PERT

ADDITIONAL EXAMPLES 783

Proj. Management with Crashing Model: PERTC
In the previous example, PERT, it was assumed each task takes a fixed amount of time to complete.

However, if we allocated additional resources to a task, it is reasonable to assume that we could

complete that task in a shorter time period. This option of speeding up a task by spending more on it is

referred to as crashing. In this next model, we incorporate crashing as an option. The goal is to meet

the project’s due date, while minimizing total crashing costs.

MODEL:

 ! A PERT/CPM model with crashing;

 ! The precedence diagram is:

 ! /FCAST\—SCHED——COSTOUT\

 ! / \ \

 ! FIRST \ \

 ! \ \ \

 ! \SURVEY-PRICE—————————FINAL;

SETS:

 TASK/ FIRST, FCAST, SURVEY, PRICE,

 SCHED, COSTOUT, FINAL/:

 TIME, ! Normal time for task;

 TMIN, ! Min time at max crash;

 CCOST, ! Crash cost/unit time;

 EF, ! Earliest finish;

 CRASH; ! Amount of crashing;

 ! Here are the precedence relations;

 PRED(TASK, TASK)/ FIRST,FCAST FIRST,SURVEY,

 FCAST,PRICE FCAST,SCHED SURVEY,PRICE,

 SCHED,COSTOUT PRICE,FINAL COSTOUT,FINAL/;

 ENDSETS

DATA:

 TIME = 0 14 3 3 7 4 10; ! Normal times;

 TMIN = 0 8 2 1 6 3 8; ! Crash times;

 CCOST = 0 4 1 2 4 5 3; ! Cost/unit to crash;

 DUEDATE = 31; ! Project due date;

ENDDATA

! The crashing LP model;

! Define earliest finish, each predecessor of a

 task constrains when the earliest time the task

 can be completed. The earliest the preceding

 task can be finished plus the time required for

 the task minus any time that could be reduced by

 crashing this task.;

 @FOR(PRED(I, J):

 EF(J) >= EF(I) + TIME(J) - CRASH(J)

);

784 APPENDIX A

! For each task, the most it can be crashed is the

 regular time of that task minus minimum time for

 that task;

 @FOR(TASK(J):

 CRASH(J) <= TIME(J) - TMIN(J)

);

! Meet the due date;

! This assumes that there is a single last task;

 EF(@SIZE(TASK)) <= DUEDATE;

! Minimize the sum of crash costs;

 MIN = @SUM(TASK: CCOST * CRASH);

END

Model: PERTC

ADDITIONAL EXAMPLES 785

Product-Mix with Setup Costs Model: PRODMIX
In a product-mix model, the decision is how much of a number of different products should be

produced to maximize total revenue. Each product competes for a number of scarce resources. In this

example, we produce six different flying machines from six different raw materials. This model also

has the feature that, should we produce a given product, we incur a fixed setup cost.

MODEL:

SETS:

 PLANES/ ROCKET, METEOR, STREAK,

 COMET, JET, BIPLANE /:

 PROFIT, SETUP, QUANTITY, BUILD;

 RESOURCES /STEEL, COPPER, PLASTIC,

 RUBBER, GLASS, PAINT/: AVAILABLE;

 RXP(RESOURCES, PLANES): USAGE;

ENDSETS

DATA:

 PROFIT SETUP =

 30 35

 45 20

 24 60

 26 70

 24 75

 30 30;

 AVAILABLE =

 800 1160 1780 1050 1360 1240;

 USAGE = 1 4 0 4 2 0

 4 5 3 0 1 0

 0 3 8 0 1 0

 2 0 1 2 1 5

 2 4 2 2 2 4

 1 4 1 4 3 4;

ENDDATA

MAX = @SUM(PLANES: PROFIT*QUANTITY - SETUP*BUILD);

@FOR(RESOURCES(I):

 @SUM(PLANES(J):

 USAGE(I,J) * QUANTITY(J)) <= AVAILABLE(I)

);

@FOR(PLANES:

 QUANTITY <= 400 * BUILD;

 @BIN(BUILD)

);

@FOR(PLANES:

 @GIN(QUANTITY)

);

END

Model: PRODMIX

786 APPENDIX A

Scenario Portfolio Selection Model: PRTSCEN
Scenarios here refer to outcomes of events with an influence on the return of a portfolio. Examples

might include an increase in interest rates, war in the Middle East, etc. In the scenario-based approach

to portfolio selection, the modeler comes up with a set of scenarios, each with a certain probability of

occurring over the next period. Given this set of scenarios and their probabilities, the goal is to select a

portfolio that minimizes some measure of risk, while meeting a target return level. A detailed

discussion of this model may be found in Chapter 12, Developing More Advanced Models.

MODEL:

! Scenario portfolio model;

SETS:

 SCENE/1..12/: PRB, R, DVU, DVL;

 STOCKS/ ATT, GMT, USX/: X;

 STXSC(SCENE, STOCKS): VE;

ENDSETS

DATA:

 TARGET = 1.15;

! Data based on original Markowitz example;

 VE =

 1.300 1.225 1.149

 1.103 1.290 1.260

 1.216 1.216 1.419

 0.954 0.728 0.922

 0.929 1.144 1.169

 1.056 1.107 0.965

 1.038 1.321 1.133

 1.089 1.305 1.732

 1.090 1.195 1.021

 1.083 1.390 1.131

 1.035 0.928 1.006

 1.176 1.715 1.908;

! All scenarios happen to be equally likely;

 PRB= .08333;

ENDDATA

! Compute expected value of ending position;

 AVG = @SUM(SCENE: PRB * R);

! Target ending value;

 AVG >= TARGET;

 @FOR(SCENE(S):

! Compute value under each scenario;

 R(S) = @SUM(STOCKS(J): VE(S, J) * X(J));

! Measure deviations from average;

 DVU(S) - DVL(S) = R(S) - AVG

);

! Budget;

 @SUM(STOCKS: X) = 1;

ADDITIONAL EXAMPLES 787

! Our three measures of risk;

 [VARI] VAR = @SUM(SCENE: PRB * (DVU + DVL)^2);

 [SEMI] SEMIVAR = @SUM(SCENE: PRB * (DVL) ^2);

 [DOWN] DNRISK = @SUM(SCENE: PRB * DVL);

! Set objective to VAR, SEMIVAR, or DNRISK;

 [OBJ] MIN = VAR;

END

Model: PRTSCEN

788 APPENDIX A

Quadratic Assignment Model: QASGN
In this example, we need to assign airline flights to gates at a hub to minimize the distance traveled

from gate to gate by passengers transferring between flights. This model is called the quadratic

assignment model because we are assigning planes to gates, and a straightforward formulation would

involve the use of quadratic terms in the objective. By complicating things slightly through the

introduction of an additional variable (Y in this case), we are able to replace each quadratic objective

term with one of the new variables. The result of this substitution is a linear model, allowing us to

tackle much larger models.

MODEL:

! A quadratic assignment problem:

 Given transfers between flights and distance between gates,

assign flights to gates to minimize total transfer distance;

 SETS:

 FLIGHT/1..3/; ! There are three flights;

 GATE/1..4/; ! There are five gates;

 FXG(FLIGHT, GATE): X; !Flight-gate assignment;

 GXG(GATE, GATE): T; !Distance between gates;

 FXF(FLIGHT, FLIGHT): N; !Transfers btwn flights;

 ENDSETS

DATA:

 N = 0 30 5 ! No. transfers between flights;

 20 0 0

 30 40 0 ;

 T = 0 5 10 14 ! distance between gates;

 5 0 5 10

 10 4 0 6

 15 10 5 0 ;

 ENDDATA

 SETS:

 ! Transfer between 2 flights must be required and related to

2 different gates. Warning: this set gets big fast.;

 TGTG(FLIGHT, GATE, FLIGHT, GATE)|

 &1 #LT# &3 #AND# ((N(&1, &3) #NE# 0) #AND#

 (T(&2, &4) #NE# 0) #OR# (N(&3, &1) #NE# 0)

 #AND# (T(&4, &2) #NE# 0)): Y;

 ENDSETS

 ! Each flight, B, must be assigned to a gate;

 @FOR(FLIGHT(B):

 @SUM(GATE(J): X(B, J)) = 1);

 ! Each gate, J, can receive at most one flight;

 @FOR(GATE(J):

 @SUM(FLIGHT(B): X(B, J)) <= 1);

ADDITIONAL EXAMPLES 789

 ! Force Y(B,J,C,K)=1 if B assigned to J and C

 assigned to K;

 ! Assumes the T and N matrices are nonnegative;

 @FOR(TGTG(B, J, C, K):

 Y(B, J, C, K) >= X(B, J) + X(C, K) - 1);

 ! Min the sum of transfers * distance;

 MIN = @SUM(TGTG(B, J, C, K): Y(B, J, C, K) *

 (N(B, C) * T(J, K) + N(C, B) * T(K, J)));

 ! Make the X's 0/1 (Y's will naturally be 0/1);

 @FOR(FXG: @BIN(X));

END

Model: QASGN

790 APPENDIX A

Economic Order Quantity Model: QDISCX
The classic EOQ (Economic Order Quantity) inventory model detailed in every introductory

operations research text tells us the optimal order quantity of an item given its demand rate, unit

holding cost, and fixed order cost. A common situation not handled by the standard EOQ model is

quantity discounts. In this model, we extend the EOQ analysis by allowing for quantity discounts.

MODEL:

! Economic order quantity with quantity discounts;

! This model determines the optimal order quantity

 for a product that has quantity discounts;

SETS:

 ! Each order size range has;

 RANGE/1..4/:

 B, ! An upper breakpoint;

 P, ! A price/unit over this range;

 H, ! A holding cost/unit over this range;

 EOQ, ! An EOQ using this ranges H and K;

 Q, ! An optimal order qty within this range;

 AC; ! Average cost/year using this range's Q;

ENDSETS

DATA:

 D = 40000; ! The yearly demand;

 K = 90; ! The fixed cost of an order;

 IRATE = .2; ! Yearly interest rate;

!The upper break points, B, and price per unit, P:

 Range: 1 2 3 4;

 B = 10000, 20000, 40000, 60000;

 P = .35225, .34525, .34175, .33825;

ENDDATA

 ! The model;

 ! Calculate holding cost, H, and EOQ for each

 range;

 @FOR(RANGE:

 H = IRATE * P;

 EOQ = (2 * K * D/ H) ^.5;

);

 ! For the first range, the optimal order

 quantity is equal to the EOQ ...;

 Q(1) = EOQ(1)

 ! but, if the EOQ is over the first breakpoint,

 lower it;

 - (EOQ(1) - B(1) + 1) *

 (EOQ(1) #GE# B(1));

 @FOR(RANGE(J)| J #GT# 1:

 ! Similarly, for the rest of the ranges, Q = EOQ;

 Q(J) = EOQ(J) +

ADDITIONAL EXAMPLES 791

 ! but, if EOQ is below the lower breakpoint,

 raise it up;

 (B(J-1) - EOQ(J)) *

 (EOQ(J) #LT# B(J - 1))

 ! or if EOQ is above the upper breakpoint,

 lower it down;

 - (EOQ(J) - B(J) + 1) *

 (EOQ(J) #GE# B(J));

);

 ! Calculate average cost per year, AC,

 for each stage;

 @FOR(RANGE: AC = P * D + H * Q/ 2 + K * D/ Q);

 ! Find the lowest average cost, ACMIN.;

 ACMIN = @MIN(RANGE: AC);

 ! Select the Q that gives the lowest AC per year;

 ! Note: TRUE = 1, FALSE = 0;

 QUSE = @SUM(RANGE: Q * (AC #EQ# ACMIN));

END

Model: QDISCX

An interesting feature to note in this model is the use of logical expressions as in the following:

QUSE = @SUM(RANGE: Q * (AC #EQ# ACMIN));

In this formula, we have the logical expression:

AC #EQ# ACMIN

Logical expressions will return the value 1 if they evaluate to TRUE, or 0 if they evaluate to FALSE.

As you know, expressions of this nature are discontinuous, and will make it very difficult for the

solver to find reliable answers to an optimization model. It turns out in this model, however, that all

the variables and formulas are fixed. When a formula is fixed in value, logical expressions contained in

the formula do not cause a problem.

792 APPENDIX A

Simple Queuing System Model: QMMC
In this simple queuing model, we use LINGO’s runtime prompt feature to prompt the user for the

arrival rate of service customers, the time required by a typical service call, and the number of

available servers. Once you enter these values, LINGO computes various statistics about the system

including using the Erlang busy function (@PEB) to compute the probability that a customer must wait

for service.

MODEL:

 ! Compute statistics for a multi-server system

 with Poisson arrivals, exponential service time

 distribution.

 ! We prompt the user for he system parameters;

DATA:

 ARV_RATE = ?;

 SRV_TIME = ?;

 NO_SRVRS = ?;

 ENDDATA

! The model;

! Average no. of busy servers;

 LOAD = ARV_RATE * SRV_TIME;

! Probability a given call must wait;

 PWAIT = @PEB(LOAD, NO_SRVRS);

!Conditional expected wait, i.e., given must wait;

 WAITCND = SRV_TIME/(NO_SRVRS - LOAD);

! Unconditional expected wait;

 WAITUNC = PWAIT * WAITCND;

END

Model: QMMC

ADDITIONAL EXAMPLES 793

Minimal Cost Queuing Model: QUEUEL
The objective of this model is to choose the number of servers in a queuing system that minimizes total

cost. If all servers are busy when a customer arrives, then the customer is lost. Total cost is composed

of the cost of hiring our servers plus the expected cost of lost customers. The @PEL function is used to

get the fraction of customers lost due to all servers being busy when they arrive.

MODEL:

! Model of a queuing system with N servers, each

 of which costs $17/hour. Arrivals occur at a

 rate of 70 per hour in a Poisson stream. Arrivals finding

 all servers busy are lost. A lost customer costs

 $35. The average time to process a customer is 5

 minutes;

! Minimize total cost =

 service costs + lost customer cost;

 [COST] MIN = SCOST + LCOST ;

! Cost of servers;

 SCOST = 17 * N ;

! Cost of lost customers;

 LCOST = 35 * 70 * FLOST ;

! The fraction of customers lost;

 FLOST = @PEL(70 * 5 / 60 , N);

END

Model: QUEUEL

794 APPENDIX A

Steady State Queuing Model Model: QUEUEM
A useful approach for tackling general queuing models is to use the Rate In = Rate Out Principle

(RIRO) to derive a set of steady state equations for a queuing system. RIRO assumes a system can

reach a state of equilibrium. In equilibrium, the tendency to move out of a certain state must equal the

tendency to move towards that state. Given the steady state equations derived from this assumption,

we can solve for the probability that a system is in a given state at any particular moment. A detailed

discussion of this model may be found in Chapter 12, Developing More Advanced Models.

MODEL:

! Model of a queue with arrivals in batches. In

 this particular example, arrivals may show up in

 batches of 1, 2, 3, or 4 units;

SETS:

! Look at enough states so that P(i) for large i

 is effectively zero, where P(i) is the steady

 state probability of i customers in the system;

 STATE/ 1..41/: P;

! Potential batch sizes are 1, 2, 3 or 4 customers,

 and A(i) = the probability that an arriving

 batch contains i customers;

 BSIZE/ 1..4/: A;

ENDSETS

DATA:

 ! Batch size distribution;

 A = .1, .2, .3, .4;

 ! Number of batches arriving per day;

 LMDA = 1.5;

 ! Number of servers;

 S = 7;

 ! Number of customers a server can

 process per day;

 MU = 2;

ENDDATA

! LAST = number of STATES;

 LAST = @SIZE(STATE);

! Balance equations for states where the number of

 customers in the system is less than or equal to

 the number of servers;

 @FOR(STATE(N)| N #LE# S:

 P(N) * ((N - 1)* MU + LMDA) =

 P(N + 1) * MU * N +

 LMDA * @SUM(BSIZE(I)| I #LT# N: A(I)

 * P(N - I))

);

! Balance equations for states where number in system is

ADDITIONAL EXAMPLES 795

 greater than the number of servers, but less than the limit;

 @FOR(STATE(N)| N #GT# S #AND# N #LT# LAST:

 P(N) * (S * MU + LMDA) =

 P(N + 1) * MU * S +

 LMDA * @SUM(BSIZE(I)| I #LT# N: A(I) *

 P(N - I))

);

! Probabilities must sum to 1;

 @SUM(STATE: P) = 1;

END

Model: QUEUEM

796 APPENDIX A

Designing a Computer Cabinet Model: BOX
In this example, we create a nonlinear optimization model to design the case for a computer.

MODEL:

! Design a box at minimum cost that meets area,

 volume, marketing and aesthetic requirements;

 [COST] min = 2*(.05*(d*w + d*h) +.1*w*h);

 [SURFACE] 2*(h*d + h*w + d*w) >= 888;

 [VOLUME] h*d*w >= 1512;

! These two enforce aesthetics;

 [NOTNARRO] h/w <= .718;

 [NOTHIGH] h/w >= .518;

! Marketing requires a small footprint;

 [FOOTPRNT] d*w <= 252;

END

Model: BOX

ADDITIONAL EXAMPLES 797

Linear Regression Model: REGRES
Linear Regression is a forecasting technique used to predict the value of one variable (called the

dependent variable) based upon the value of one or more other variables (the independent variables).

Our example is a simple linear regression model with one independent variable. The data is fit to a

linear equation of the form:

Y(i) = CONS + SLOPE * X(i)

where Y is the dependent variable, X is the independent variable, CONS is the value of Y when X = 0,

and SLOPE is the rate of change in Y with a unit change in X.

For our example, the dependent variable, Y, is the number of annual road casualties and the

independent variable, X, is the number of licensed vehicles. We have 11 years of data.

MODEL:

! Linear Regression with one independent variable;

! Linear regression is a forecasting method that

 models the relationship between a dependent

 variable to one or more independent variable.

 For this model we wish to predict Y with the equation:

 Y(i) = CONS + SLOPE * X(i);

 SETS:

 ! The OBS set contains the data points for

 X and Y;

 OBS/1..11/:

 Y, ! The dependent variable (annual road

 casualties);

 X; ! The independent or explanatory variable

 (annual licensed vehicles;

 ! The OUT set contains model output.;

 OUT/ CONS, SLOPE, RSQRU, RSQRA/: R;

 ENDSETS

 ! Our data on yearly road casualties vs. licensed

 vehicles, was taken from Johnston, Econometric

 Methods;

 DATA:

 Y = 166 153 177 201 216 208 227 238 268 268 274;

 X = 352 373 411 441 462 490 529 577 641 692 743;

 ENDDATA

 SETS:

 ! The derived set OBS contains the mean

 shifted values of the independent and

 dependent variables;

 OBSN(OBS): XS, YS;

 ENDSETS

798 APPENDIX A

! Number of observations;

 NK = @SIZE(OBS);

! Compute means;

 XBAR = @SUM(OBS: X)/ NK;

 YBAR = @SUM(OBS: Y)/ NK;

! Shift the observations by their means;

 @FOR(OBS(I):

 XS(I) = X(I) - XBAR;

 YS(I) = Y(I) - YBAR);

! Compute various sums of squares;

 XYBAR = @SUM(OBSN: XS * YS);

 XXBAR = @SUM(OBSN: XS * XS);

 YYBAR = @SUM(OBSN: YS * YS);

! Finally, the regression equation;

 R(@INDEX(SLOPE)) = XYBAR/ XXBAR;

 R(@INDEX(CONS)) = YBAR - R(@INDEX(SLOPE)) * XBAR;

 RESID= @SUM(OBSN:(YS - R(@INDEX(SLOPE)) * XS)^2);

! A measure of how well X can be used to predict Y

 - the unadjusted (RSQRU) and adjusted (RSQRA)

 fractions of variance explained;

 R(@INDEX(RSQRU)) = 1 - RESID/ YYBAR;

 R(@INDEX(RSQRA)) = 1 - (RESID/ YYBAR) *

 (NK - 1)/(NK - 2);

! XS and YS may take on negative values;

 @FOR(OBSN: @FREE(XS); @FREE(YS));

END

Model: REGRES

ADDITIONAL EXAMPLES 799

Acceptance Sampling I Model: SAMPLE
In this example, we have a lot of 400 items. We take a sample of 100 items from the lot. We accept the

entire lot as being good if the sample has 2 or less defective items.

We use the hypergeometric distribution (@PHG) to determine the exact producer risk (probability of

rejecting a good lot), and the exact consumer risk (probability of accepting a bad lot). In the days

before computers were widely available, statisticians had to rely on published tables of the probability

distributions to compute probabilities such as these. Because the hypergeometric distribution is

specified by four parameters, it would have been unrealistic to carry around hypergeometric tables that

covered all possible scenarios. Instead, statisticians routinely used distributions of fewer parameters to

approximate the hypergeometric. So, in deference to the good old days, we make use of the binomial,

Poisson, and normal approximations to the hypergeometric to compute these same risk probabilities.

The interested reader can compare the accuracy of the various approximations.

MODEL:

! Acceptance sampling: taking one or more samples at random

from a lot, inspecting each of the items in the sample(s),

and deciding on the basis of inspection results whether to

accept or reject the entire lot. This Acceptance Sampling

model illustrates the effect choice of distribution.;

 ! From a lot of 400 items;

 LOTSIZE = 400;

 ! We take a sample of size 100;

 SAMPSIZE = 100;

 ! Producer considers the lot good if

 the lot fraction defective is .0075 or less;

 FGOOD = .0075;

 ! Consumer considers the lot bad if

 the lot fraction defective is .025 or more;

 FBAD = .025;

 ! We accept the lot if sample contains 2 or less;

 ACCEPTAT = 2;

! The model;

 ! What is producer risk of rejecting a good lot;

 !Using the (exact) hypergeometric distribution;

 PGOODH = 1 - @PHG(LOTSIZE, LOTSIZE * FGOOD,

 SAMPSIZE, ACCEPTAT);

 ! Using binomial approx. to the hypergeometric;

 PGOODB = 1 - @PBN(FGOOD, SAMPSIZE, ACCEPTAT);

 ! Using the Poisson approx. to the binomial;

 PGOODP = 1 - @PPS(FGOOD * SAMPSIZE, ACCEPTAT);

 ! Using Normal approximation;

 PGOODN =

 1 - @PSN((ACCEPTAT + .5 - MUG) / SIGMAG);

800 APPENDIX A

 ! where;

 MUG = SAMPSIZE * FGOOD;

 SIGMAG = (MUG * (1 - FGOOD)) ^ .5;

!What is the consumer risk of accepting a bad lot;

! Using the hypergeometric;

 PBADH = @PHG(LOTSIZE, LOTSIZE * FBAD,

 SAMPSIZE, ACCEPTAT);

 ! Binomial;

 PBADB = @PBN(FBAD, SAMPSIZE, ACCEPTAT);

 ! Poisson;

 PBADP = @PPS(FBAD * SAMPSIZE, ACCEPTAT);

 ! Using Normal approximation;

 PBADN = @PSN((ACCEPTAT + .5 - MUB) / SIGMAB);

 ! where;

 MUB = SAMPSIZE * FBAD;

 SIGMAB = (MUB * (1 - FBAD)) ^ .5;

END

Model: SAMPLE

ADDITIONAL EXAMPLES 801

Stratified Sampling Design Model: SAMPLE2
In this model, we want to come up with a sampling strategy that yields a variance within a specified

target at minimal cost. We have four strata of a population that we will be querying on two topics.

There is a maximum variance limit on the two questions. We know the variance in responses for each

stratum on each question. How many respondents must you select from each stratum to meet your

maximal variance requirements at minimal cost?

MODEL:

! Stratified sampling plan design, taken from Bracken and McCormick.

Minimize the cost of sampling from 4 strata, subject to

constraints on the variances of the sample based estimates of two

categories;

 SETS:

 STRATUM/1..4/: SIZE, POP, COST, WEIGHT;

 CATEGORY/1..2/: VARMAX, K2;

 SXC(STRATUM, CATEGORY): VAR, K1;

 ENDSETS

! POP = population of each stratum. COST = cost of sampling in each.

VARMAX = variance limits. VAR = variance for each category in each

stratum. CFIX = a fixed cost;

 DATA:

 POP = 400000, 300000, 200000, 100000;

 COST = 1, 1, 1, 1;

 VARMAX = .043, .014;

 VAR = 25 1

 25 4

 25 16

 25 64;

 CFIX = 1;

 ENDDATA

 [OBJ] MIN = CFIX + @SUM(STRATUM: SIZE * COST);

! Compute some parameters;

 TOTP = @SUM(STRATUM(I): POP(I));

 @FOR(STRATUM(I):

! Weight given each stratum;

 WEIGHT(I) = POP(I)/TOTP;

 @GIN(SIZE(I));

);

 @FOR(CATEGORY(J):

 K2(J) =

 @SUM(STRATUM(I): VAR(I, J)^2 *

 WEIGHT(I)/ POP(I));

);

 @FOR(SXC(I, J):

802 APPENDIX A

 K1(I, J) = VAR(I, J)^2* WEIGHT(I)^2;

);

 @FOR(CATEGORY(J):

 @SUM(STRATUM(I): K1(I, J) / SIZE(I))

 - K2(J) <= VARMAX(J)

);

@FOR(STRATUM(I):

 @BND(0.0001, SIZE(I), POP(I) -1);

);

END

Model: SAMPLE2

ADDITIONAL EXAMPLES 803

Acceptance Sampling II Model: SAMSIZ
We are sampling items from a large lot. If the number of defectives in the lot is 3% or less, the lot is

considered “good”. If the defects exceed 8%, the lot is considered “bad”. We want a producer risk

(probability of rejecting a good lot) below 9% and a consumer risk (probability of accepting a bad lot)

below 5%. We need to determine N and C, where N is the minimal sample size, and C is the critical

level of defects such that, if defects observed in the sample are less-than-or-equal-to C, we accept the

lot.

MODEL:

! Acceptance sampling design. From a large lot, take a sample

of size N, accept if C or less are defective;

! Poisson approximation to number defective is used;

DATA:

 AQL = .03; ! "Good" lot fraction defective;

 LTFD = .08; ! "Bad" lot fraction defective;

 PRDRISK = .09; ! Tolerance for rejecting good lot;

 CONRISK = .05; ! Tolerance for accepting bad lot;

 MINSMP = 125; ! Lower bound on sample size to help solver;

ENDDATA

 [OBJ] MIN = N;

! Tolerance for rejecting a good lot;

 1 - @PPS(N * AQL, C) <= PRDRISK;

! Tolerance for accepting a bad lot;

 @PPS(N * LTFD, C) <= CONRISK;

! Give solver some help in getting into range;

 N >= MINSMP; C>1;

! Make variables general integer;

 @GIN(N); @GIN(C);

END

Model: SAMSIZ

804 APPENDIX A

Seasonal Sales Forecasting Model: SHADES
We have quarterly observations of sales for the last two years. We would like to estimate a base, trend,

and seasonal factors to form a sales forecasting function that minimizes the sum of squared prediction

errors when applied to the historical sales. A detailed discussion of this model may be found in

Chapter 3, Using Variable Domain Functions.

MODEL:

SETS:

 PERIODS /1..8/: OBSERVED, PREDICT,

 ERROR;

 QUARTERS /1..4/: SEASFAC;

ENDSETS

DATA:

 OBSERVED = 10 14 12 19 14 21 19 26;

ENDDATA

MIN = @SUM(PERIODS: ERROR ^ 2);

@FOR(PERIODS: ERROR = PREDICT - OBSERVED);

@FOR(PERIODS(P): PREDICT(P) = SEASFAC(@WRAP(P, 4))

 * (BASE + P * TREND));

@SUM(QUARTERS: SEASFAC) = 4;

@FOR(PERIODS: @FREE(ERROR));

END

Model: SHADES

ADDITIONAL EXAMPLES 805

Exponential Smoothing Model: SIMXPO
Exponential smoothing is a technique that is relatively easy to implement, and yet has proven to be an

effective tool at forecasting sales. In its simplest form, this technique assumes, on average, sales are

constant, but include a random error term about the average. It is also assumed the underlying average

can drift from period to period. These assumptions lead to the following smoothing equation:

S
t
= X

t
 + (1 -) S

t-1

where,

S
t
= predicted sales, or signal, in period t,

X
t
= observed sales in period t, and

= a constant term between 0 and 1.

From this equation, we can see the closer is to 1, the more the current observation affects our signal

and, subsequently, the less “memory” our equation has. Frequently, a value for is chosen in the

range of .01 to .3. In this example, we will solve for an that minimizes the sum of the squared

prediction errors.

For more information on exponential smoothing, see Winston (1995).

MODEL:

SETS:

 PERIODS /1..8/: OBSERVED, ERROR, PREDICT;

ENDSETS

DATA:

! The degree of the objective. N may be changed

 to 1 to minimize absolute deviation;

 N = 2;

! The observed values of the time series;

 OBSERVED = 10 14 12 19 14 21 19 26;

ENDDATA

! Force Period 1 prediction to 10;

 PREDICT(1) = 10;

! The objective function;

 [OBJ] MIN= @SUM(PERIODS: @ABS(ERROR) ^ N);

! Calculate the forecasts;

 @FOR(PERIODS(T) | T #GT# 1:

 PREDICT(T) = ALPHA * OBSERVED(T - 1) +

 (1 - ALPHA) * PREDICT(T - 1));

! Calculate forecast errors;

 @FOR(PERIODS: ERROR = PREDICT - OBSERVED);

! Error terms may be negative as well as positive;

 @FOR(PERIODS: @FREE(ERROR));

806 APPENDIX A

! Exclude meaningless Alphas of zero or one;

 @BND(.01, ALPHA,.9999);

END

Model: SIMXPO

ADDITIONAL EXAMPLES 807

Placing Songs on a Cassette Tape Model: SONGS
In this model, we have seven songs, each with a different length, that must be placed on a cassette

tape. The goal is to maximize the number of songs on one side of the tape without exceeding half of

the total time of the music on the other side.

MODEL:

SETS:

 SONG/1..7/: LENGTH, Y;

ENDSETS

 ! Maximize number of songs on short side;

 MAX = @SUM(SONG: Y);

 ! It must contain at most half the music;

 @SUM(SONG: LENGTH * Y) <= HALF;

 ! Compute half the length;

 HALF = @SUM(SONG: LENGTH)/ 2;

 ! We want the Y's to be 0/1;

 @FOR(SONG: @BIN(Y));

 DATA:

 LENGTH = 7, 5, 2, 2, 2, 2, 2;

 ENDDATA

END

Model: SONGS

808 APPENDIX A

Computing Sort Order Model: SORTIN
This simple model sorts cities according to their distance from the equator.

MODEL:

! Compute sort order ;

SETS:

CITY: ! Some cities;

 LAT, ! Their latitudes;

 RANKLT, ! Compute rank in distance from equator;

 RDRLIST; ! Store in this ordered list;

ENDSETS

DATA:

 CITY = BEIJING LONDON PARIS NYC LA MOSCOW TOKYO;

 LAT = 39.6 51.3 48.5 40.4 34.1 55.5 35.4;

ENDDATA

CALC:

 ! Minimize output;

 @SET('TERSEO', 2);

 ! Compute rank of each city;

 RANKLT = @RANK(LAT);

 ! Put the original indices in order in a list;

 @FOR(CITY(i):

 RDRLIST(RANKLT(i)) = i;

);

 !Display them;

 @WRITE(' The cities from closest to farthest from equator:',

@NEWLINE(1));

 @WRITE(' Latitude City', @NEWLINE(1));

 @FOR(CITY(i):

 @WRITE(' ', LAT(RDRLIST(i)),' ', CITY(RDRLIST(i)),

@NEWLINE(1));

);

ENDCALC

END

Model: SORTIN

ADDITIONAL EXAMPLES 809

Traveling Salesman Problem Model: TSP
In the traveling salesman problem (TSP), we have a network of cities connected by roads. We need to

find a tour that visits each city exactly once, minimizing the total distance traveled.

As it turns, large TSP models are difficult to solve using optimization, and are best approached using

some form of heuristic (see Lin and Kernighan, 1973). The problem lies in the fact that solutions to

large models tend to contain subtours. A subtour is a tour of a subset of cities unconnected to the main

tour. One can add constraints to break the subtours, but the number of constraints required grows

dramatically as the number of cities increase.

MODEL:

 ! Traveling Salesman Problem for the cities of

 Atlanta, Chicago, Cincinnati, Houston, LA,

 Montreal;

 SETS:

 CITY / 1.. 6/: U; ! U(I) = sequence no. of city;

 LINK(CITY, CITY):

 DIST, ! The distance matrix;

 X; ! X(I, J) = 1 if we use link I, J;

 ENDSETS

DATA: !Distance matrix, it need not be symmetric;

 DIST = 0 702 454 842 2396 1196

 702 0 324 1093 2136 764

 454 324 0 1137 2180 798

 842 1093 1137 0 1616 1857

 2396 2136 2180 1616 0 2900

 1196 764 798 1857 2900 0;

 ENDDATA

 !The model:Ref. Desrochers & Laporte, OR Letters,

 Feb. 91;

 N = @SIZE(CITY);

 MIN = @SUM(LINK: DIST * X);

 @FOR(CITY(K):

 ! It must be entered;

 @SUM(CITY(I)| I #NE# K: X(I, K)) = 1;

 ! It must be departed;

 @SUM(CITY(J)| J #NE# K: X(K, J)) = 1;

 !Weak form of the subtour breaking constraints;

 !These are not very powerful for large problems;

 @FOR(CITY(J)| J #GT# 1 #AND# J #NE# K:

 U(J) >= U(K) + X (K, J) -

 (N - 2) * (1 - X(K, J)) +

 (N - 3) * X(J, K)

);

);

810 APPENDIX A

 ! Make the X's 0/1;

 @FOR(LINK: @BIN(X));

 ! For the first and last stop we know...;

 @FOR(CITY(K)| K #GT# 1:

 U(K) <= N - 1 - (N - 2) * X(1, K);

 U(K) >= 1 + (N - 2) * X(K, 1)

);

END

Model: TSP

ADDITIONAL EXAMPLES 811

The Log Gamma Function Model: EZCOUNT
The factorial function is used in many probability computations. Unfortunately, the factorial function

can generate some very large numbers that can exceed the fixed word size of most computers. A

common way around this is to use the Log Gamma function (@LGM), which returns the logarithm of

the factorial function. In the following model, we use @LGM to compute the number of possible poker

hands.

MODEL:

! This model computes the number of ways of

 selecting 5 objects from a set of 52 objects;

! This is expressed by 52! / (5! * 47!). The

 actual computation uses the log-gamma function;

 WAYS = @EXP(@LGM(53) - @LGM(6) - @LGM(48));

! Note that the arguments of the @LGM functions

 are one greater than the corresponding arguments

 of the factorial functions, due to the

 definition of the Gamma function;

END

Model: EZCOUNT

812 APPENDIX A

Vehicle Routing Problem Model: VROUTE
The vehicle routing problem occurs in many service systems such as delivery, customer pick-up, repair

and maintenance. A fleet of vehicles, each with fixed capacity, starts at a common depot and returns to

the depot after visiting locations where service is demanded. The objective is to minimize the total

distance of all the routes.

In general, it takes much longer to find the best routes as the number of locations grow. Large versions

of this model may have to be tackled using some form of heuristics.

In this particular example, we are delivering one product to seven cities with the depot at city 1.

MODEL:

! The Vehicle Routing Problem (VRP) occurs in many service systems

such as delivery, customer pick-up, repair and maintenance. A fleet

of vehicles, each with fixed capacity, starts at a common depot and

returns to the depot after visiting locations where service is

demanded. The objective is to minimize total routes.

In general it takes much longer time to find the best routes when the

number of locations become larger.

This model involves delivering the required amount of goods to seven

cities with depot at city 1 ;

SETS:

! Q(I) is the amount required at city I

 U(I) is the accumulated delivers at city I ;

 CITY/1..8/: Q, U;

! DIST(I,J) is the distance from city I to city J

 X(I,J) is 0-1 variable: It is 1 if some vehicle travels from

 city I to J, 0 if none ;

 CXC(CITY, CITY): DIST, X;

ENDSETS

DATA:

! city 1 represent the common depot, i.e. Q(1) = 0;

 Q = 0 6 3 7 7 18 4 5;

! distance from city I to city J is same from city J to city I

distance from city I to the depot is 0, since the vehicle has to

return to the depot ;

 DIST = ! To City;

 ! Chi Den Frsn Hous KC LA Oakl Anah From;

 0 996 2162 1067 499 2054 2134 2050! Chicago;

 0 0 1167 1019 596 1059 1227 1055! Denver;

 0 1167 0 1747 1723 214 168 250! Fresno;

 0 1019 1747 0 710 1538 1904 1528! Houston;

 0 596 1723 710 0 1589 1827 1579! K. City;

 0 1059 214 1538 1589 0 371 36! L. A.;

 0 1227 168 1904 1827 371 0 407! Oakland;

 0 1055 250 1528 1579 36 407 0;! Anaheim;

ADDITIONAL EXAMPLES 813

! VCAP is the capacity of a vehicle ;

 VCAP = 18;

ENDDATA

! The objective is to minimize total travel distance;

 MIN = @SUM(CXC: DIST * X);

! for each city, except depot....;

 @FOR(CITY(K)| K #GT# 1:

! a vehicle does not traval inside itself,...;

 X(K, K) = 0;

! a vehicle must enter it,... ;

 @SUM(CITY(I)| I #NE# K #AND# (I #EQ# 1 #OR#

 Q(I) + Q(K) #LE# VCAP): X(I, K)) = 1;

! a vehicle must leave it after service ;

 @SUM(CITY(J)| J #NE# K #AND# (J #EQ# 1 #OR#

 Q(J) + Q(K) #LE# VCAP): X(K, J)) = 1;

! U(K) is at least amount needed at K but can't exceed capacity;

 @BND(Q(K), U(K), VCAP);

! If K follows I, then can bound U(K) - U(I);

 @FOR(CITY(I)| I #NE# K #AND# I #NE# 1: U(K) >=

 U(I) + Q(K) - VCAP + VCAP*(X(K, I) + X(I, K))

 - (Q(K) + Q(I)) * X(K, I);

) ;

! If K is 1st stop, then U(K) = Q(K);

 U(K) <= VCAP - (VCAP - Q(K)) * X(1, K);

! If K is not 1st stop...;

 U(K)>= Q(K)+ @SUM(CITY(I)| I #GT# 1: Q(I) * X(I, K));

);

! Make the X's binary;

 @FOR(CXC(I, J): @BIN(X(I, J)) ;

);

! Minimum no. vehicles required, fractional and rounded;

 VEHCLF = @SUM(CITY(I)| I #GT# 1: Q(I))/ VCAP;

 VEHCLR = VEHCLF + 1.999 - @WRAP(VEHCLF - .001, 1);

! Must send enough vehicles out of depot;

 @SUM(CITY(J)| J #GT# 1: X(1, J)) >= VEHCLR;

END

Model: VROUTE

814 APPENDIX A

Home Mortgage Calculation Model: WHATIF
This example models a home mortgage. The user is prompted for the monthly payment, the length of

the mortgage, and the interest rate. The model then solves for the value of the home that can be

purchased with the mortgage.

MODEL:

! A model of a home mortgage(WHATIF.LNG);

! The user is prompted for values for the

 payment, years, and interest rate. The

 face value of the mortgage (LUMP) is

 solved for.;

DATA:

! User is prompted for these:

 PAYMENT = ?; ! Monthly payment;

 YEARS = ?; ! No. of years;

 YRATE = ?; ! Interest rate;

 ENDDATA

! Relate no. of months to no. of years;

 MONTHS = YEARS * 12;

! Relate monthly interest rate to yearly rate;

 (1 + MRATE) ^ 12 = 1 + YRATE;

! Relate lump sum to monthly payment, monthly

 interest rate, and no. of months;

 LUMP = PAYMENT * @FPA(MRATE, MONTHS);

END

Model: WHATIF

ADDITIONAL EXAMPLES 815

Transportation Problem Model: WIDGETS
In this example, we want to ship a product from warehouses to vendors at minimal cost. An in-depth

description of this model can be found in Chapter 1, Getting Started with LINGO.

MODEL:

! A 6 Warehouse 8 Vendor Transportation Problem;

SETS:

 WAREHOUSES / WH1 WH2 WH3 WH4 WH5 WH6/: CAPACITY;

 VENDORS / V1 V2 V3 V4 V5 V6 V7 V8/ : DEMAND;

 LINKS(WAREHOUSES, VENDORS): COST, VOLUME;

ENDSETS

! The objective;

 MIN = @SUM(LINKS(I, J):

 COST(I, J) * VOLUME(I, J));

! The demand constraints;

 @FOR(VENDORS(J):

 @SUM(WAREHOUSES(I): VOLUME(I, J)) =

 DEMAND(J));

! The capacity constraints;

 @FOR(WAREHOUSES(I):

 @SUM(VENDORS(J): VOLUME(I, J)) <=

 CAPACITY(I));

! Here is the data;

DATA:

 CAPACITY = 60 55 51 43 41 52;

 DEMAND = 35 37 22 32 41 32 43 38;

 COST = 6 2 6 7 4 2 5 9

 4 9 5 3 8 5 8 2

 5 2 1 9 7 4 3 3

 7 6 7 3 9 2 7 1

 2 3 9 5 7 2 6 5

 5 5 2 2 8 1 4 3;

ENDDATA

END

Model: WIDGETS

817

Appendix B: Error
Messages

Listed below by code number are the error messages you may encounter when using LINGO.

Suggestions for overcoming the errors are also included.

0. THE MODEL GENERATOR RAN OUT OF MEMORY.

LINGO’s model generator ran out of working memory. The model generator converts the text

of your LINGO model to an expanded form suitable for an appropriate solver engine. On

most platforms, you can increase the amount of working memory allocated to the model

generator. Note that memory set aside for LINGO’s model generator will not be available to

LINGO’s various solver engines. Given this, you should not allocate an overly excessive

amount of memory to the generator.

In Windows versions, select the LINGO|Options command, then the General tab, and in the

Generator Memory Limit box increase the amount of working memory. Press the Save button

and then restart LINGO. You can verify the new memory allotment by issuing the Help|About

LINGO command.

On other platforms, use the following commands:

SET MAXMEMB n

FREEZE

where n is the new memory allotment in megabytes. Exit LINGO and restart. Once LINGO

restarts, you can verify the new memory allotment with the MEM command.

1. TOO MANY LINES OF TEXT IN THE MODEL.

There are too many lines in the model’s text. For all practical purposes, the limit on total lines

of text is large enough that this error message should never be encountered.

2. TOO MANY CHARACTERS IN THE MODEL TEXT.

There are too many characters in the model’s text. For all practical purposes, the limit on the

number of characters is large enough that this message should never be encountered.

3. OVERLENGTH LINE, CHARACTERS MAY HAVE BEEN LOST OFF END. USE

CARRIAGE RETURN TO BREAK UP OVER SEVERAL INPUT LINES.

Input lines are limited to 200 characters. You will need to break up long input lines into

shorter ones.

4. VALID LINES ARE 1 TO N. TYPE ‘ALL’ TO REFERENCE ALL LINES.

The LOOK command expects a range of row numbers. If the range is invalid, you will get this

message. Enter a new range with valid numbers.

818 APPENDIX B

5. THERE IS NO CURRENT MODEL.

Any command that makes sense only if there is a current model in memory will print this

message if invoked without the presence of a model. You need to load a model with the

File|Open command in Windows or the TAKE command on other platforms, or enter a new

model with the File|New command in Windows or the MODEL command on other platforms.

6. TOO MANY NESTED TAKE COMMANDS.

You have exceeded LINGO’s limit of ten nested TAKE commands within a command script.

If possible, try combining some commands into a single file.

7. UNABLE TO OPEN FILE: FILENAME.

The file you tried to read doesn’t exist, or you misspelled its name. Try opening the file again.

8. TOO MANY CONSECUTIVE COMMAND ERRORS. REVERT TO TERMINAL

INPUT.

LINGO prints this message after having encountered a number of consecutive errors in a

command script. LINGO assumes that something has gone seriously awry, closes the script

file, and returns you to command level.

9. NOT USED.

10. NOT USED.

11. INVALID INPUT. A SYNTAX ERROR HAS OCCURRED.

This is the generic error issued by the LINGO compiler when it detects a syntax error. In

Windows, when you close the error box, the cursor will be on the line where the error

occurred. Other versions of LINGO will try print out the general area where the error has

occurred, but LINGO cannot always pinpoint the exact line. Examine this area for any

obvious syntax errors. If you are unable to find any obvious errors, a useful technique is to

comment out small sections of the model until the error goes away. This should give you a

good idea of exactly where the error is occurring.

Syntax errors may also occur if you are not invoking the correct compiler in LINGO. Most

users will choose to build models using the native LINGO syntax, however, some users may

prefer building their models using LINDO syntax. LINGO can compile models written in

either native LINGO syntax or LINDO syntax. LINGO chooses the compiler based on a

model's file extension. LINGO models must have an extension of lg4 (the default) or lng.

LINDO models must have an ltx extension. The default model extension may be set by

clicking on: LINGO | Options | Interface | File Format. Each model window's title bar

displays whether it is a LINGO or LINDO model.

12. MISSING RIGHT PARENTHESIS.

A LINGO expression is missing at least one closing right parenthesis. LINGO will point to

the end of the expression where the error occurred. Count the number of parentheses in this

expression to verify if you have input the correct number, or, in Window use the Edit|Match

Parenthesis command to find the unmatched parenthesis.

ERROR MESSAGES 819

13. A SPECIFIED SPREADSHEET RANGE WAS NOT FOUND. RANGE_NAME.

You specified a spreadsheet range titled RANGE_NAME that LINGO was unable to find.

Check the spelling of the range name and be sure that the range is defined in the spreadsheet.

14. NOT ENOUGH TEMPORARY OPERATOR STACK SPACE.

LINGO uses a stack to temporarily hold operators and prefix functions during compilation of

an expression. It is possible, though unlikely, that this stack will overflow. If so, try breaking

up lengthy expressions, or adding parentheses to offending expressions.

15. NO RELATIONAL OPERATOR FOUND.

Each LINGO expression (with the exception of variable domain expressions) must contain

one relational operator (e.g., =, <, >). Check to be sure that all expressions contain relational

operators.

16. ALL MODEL OBJECTS MUST HAVE THE SAME PARENT SET FOR THIS

OPERATION.

You have attempted to use an import or export function in the data section that involves two

or more attributes from different parent sets. Break the function into multiple calls, so each

instance refers to attributes belonging to the same parent set.

17. NOT ENOUGH INDEX STACK SPACE.

LINGO uses a stack to keep track of indices referenced by set operators. It is possible, though

unlikely, that this stack will overflow. The only way to remedy this situation is to rewrite the

given expression, so it uses fewer indices.

18. OUT OF SET STACK SPACE.

LINGO uses a stack to keep track of sets referenced by set operators. This stack may

overflow, though it’s unlikely. The only way to remedy this situation is to rewrite the given

expression, so the maximum number of pending set operators is reduced.

19. INVALID USE OF @INDEX FUNCTION.

The @INDEX function expects an optional set name followed by a mandatory set number.

Check to see that your arguments comply with these restrictions.

20. IMPROPER USE OF SET NAME.

A set name has been used in an improper manner. For instance, you may have attempted to

set the name equal to a quantity. Check your model’s syntax.

21. IMPROPER USE OF ATTRIBUTE NAME.

This message is printed if an attribute name is used incorrectly. For instance, you may have

attempted to use it as a scalar (single value) variable. Check your model’s syntax.

22. TOO MANY INEQUALITY OR EQUALITY RELATIONS.

A constraint may have only one relational operator (i.e., =, <, or >). A two-sided constraint

such as 2 < X < 4 is not permitted. Instead, write it as two one sided constraints: X > 2; and X

< 4;.

820 APPENDIX B

23. IMPROPER NUMBER OF ARGUMENTS.

LINGO’s predefined functions generally expect a specific number of arguments. You’ll get

this message if you are passing an incorrect number of arguments. Check the syntax of the

function in question.

24. INVALID SET NAME.

If LINGO was expecting a set name and didn’t find it, you will get this message. Note that all

sets must be defined in a sets section before they are referenced in a model expression.

25. NOT USED.

26. IMPROPER NUMBER OF INDEX VARIABLES.

When using indices in conjunction with a set in a set operator function, LINGO checks to be

sure that you have specified the correct number of indices for the set. If not, it prints this

message.

27. THE FOLLOWING SPREADSHEET RANGE IS DISCONTINUOUS:

RANGE_NAME.

At present, LINGO only supports continuous ranges. Continuous ranges are simple,

rectangular ranges. Discontinuous ranges are unions of two, or more, continuous ranges. You

will need to break your discontinuous range up into a set of equivalent, continuous ranges.

28. INVALID USE OF A ROW NAME.

A row name may be input within brackets at the start of a constraint and may contain up to 32

characters. This error message indicates some improper use. Check your model’s syntax.

29. INVALID NUMBER OF INITIALIZATION VALUES IN A DATA/INIT/CALC

SECTION. THE REQUIRED NUMBER OF VALUES IS: N

When assigning values to an array, you must assign a value to every element in data, init and

calc statements. LINGO keeps track of the number of values you specified and checks this

against the length of each array being assigned. If the two numbers don’t agree, LINGO

prints this message along with the number of values that are required.

30. A GENERAL FAILURE OCCURRED WHILE ATTEMPTING A LINK TO EXCEL.

LINGO attempted to open an OLE link to Excel, but was unsuccessful. Be sure that Excel is

installed on your machine (version 5, or later). Also, if your machine is busy, this error

message can occur because it is taking an excessive amount of time to load Excel. In which

case, simply retry the action when the machine is less busy.

31. INVALID ARGUMENT LIST FOR AN @TEXT() FUNCTION CALL.

An instance of the @TEXT function has an invalid argument list. Check the documentation on

this function for the correct syntax.

32. ATTEMPT TO IMPORT A BLANK SET MEMBER NAME.

You have attempted to import a set member name that is entirely blank. All set member

names must conform to standard LINGO naming conventions and may not be blank. Assign a

nonblank name to the set member and retry.

ERROR MESSAGES 821

33. INVALID ARGUMENT LIST FOR AN @OLE() FUNCTION CALL.

Check the documentation on the @OLE function to determine the correct syntax.

34. RANGE LENGTHS MUST BE IDENTICAL WHEN IMPORTING DERIVED SETS.

You are importing a derived set from multiple ranges of varying lengths. When using

multiple ranges, each range must contain the same number of cells. Adjust the sizes of the

ranges so they agree and retry.

35. UNRECOGNIZED NAME IN AN OUTPUT FUNCTION.

You have attempted to use an output function (e.g., @OLE or @ODBC) to export the value of

a variable that does not exist. Check your output functions to see if all the variables exist and

that they are spelled correctly.

36. ATTEMPT TO IMPORT INVALID PRIMITIVE SET ELEMENT NAME: NAME.

A primitive set name imported from an external source is invalid. Make sure the name

conforms to normal LINGO naming standards.

37. NAME ALREADY IN USE: NAME. CHOOSE A DIFFERENT NAME.

A model can’t use duplicate names. Select a new, unique name.

38. THE ODBC SERVER RETURNED THE FOLLOWING ERROR MESSAGE:

MESSAGE-TEXT.

The ODBC server encountered an error. The text of the message will be displayed. In many

cases, the text of the message should help clarify the problem. Unfortunately, some ODBC

servers will not return an explanatory message for all error conditions, in which case, you

may need to experiment with the format of your data to determine the cause of the problem.

39. THE FOLLOWING SET ELEMENT WAS NOT DERIVED FROM ITS PARENT

PRIMITIVE SET: SET-ELEMENT.

When defining a sparse derived set, LINGO checks each set element against the parent set. If

the element is not found in the parent set, you will get this message. Please check the spelling

and ordering of the set elements in the sparse derived set you are defining.

40. INVALID NUMBER OF DERIVED SET INDEX ELEMENTS.

If a sparse derived set is formed from, say, three primitive sets, then there must be a multiple

of three primitive set element names in the explicit definition of the derived set. LINGO

checks this, and issues this message if there is not a match.

41. OUT OF ATTRIBUTE INDEX SPACE.

LINGO imposes a limit on the total number of primitive sets used in defining derived sets.

The current limit is quite large and should not pose a problem.

42. EXPLICIT VARIABLE IN A SET CONDITION FOR SET: SET_NAME.

When using a conditional expression to define the members of a derived set, you cannot

reference a variable that has not been fixed in a previous data statement. LINGO must be able

to completely evaluate these conditional expressions during compilation so it knows the size

of the set.

822 APPENDIX B

43. EXECUTOR ERROR IN SET CONDITION FOR SET: SET_NAME.

LINGO prints this message if an arithmetic error occurred when it was trying to evaluate a

conditional expression used to define the members of a derived set. Check all arithmetic

operations in the set definition in question.

44. UNTERMINATED CONDITION.

Each conditional expression placed on a set operator must be terminated with a colon (:).

LINGO prints this message if you fail to add one.

45. INVALID ARGUMENT LIST FOR AN @ODBC FUNCTION CALL.

You have a syntax error in an argument list of an @ODBC function call. Check the

documentation on the @ODBC function to determine the proper syntax.

46. INADMISSIBLE FILE NAME: FILENAME.

The file name is either too long or it contains characters not permitted on this platform. Use a

different file name and try again.

47. TOO MANY FILES OPEN: NAME_OF_LAST_FILE.

LINGO imposes a limit on the total number of files that can be opened simultaneously

through use of the @FILE command. You can try placing all the data in fewer files. Also,

avoid using the LINGO end-of-record mark (~) at the end of files. This allows LINGO to

“see” the end of the file, forcing it to close the file down, thus allowing for an additional open

file.

48. UNABLE TO OPEN FILE: FILENAME.

LINGO prints this message when it is unable to open a file. Check the spelling of the

filename. Be sure a copy of the file exists on your disk and that the file is not open in another

application.

49. ERROR READING FILE: FILENAME.

LINGO prints this message in case an error occurred while reading a file with the @FILE

function. Check the file to be sure it is not damaged. Another possibility is that you do not

have read access to the disk or directory where the file resides.

50. IMPROPER USE OF @FOR() FUNCTION.

LINGO prints this message if you’ve attempted to nest an @FOR function inside some other

set operator. You can nest @FOR functions within other @FORs, and other set operators

within @FORs, but nesting an @FOR inside any function other than another @FOR is not

permitted.

51. RAN OUT OF GENERATOR MEMORY COMPILING MODEL.

LINGO exhausted available generator memory compiling a model and was forced to halt. See

error message 0 for suggestions on increasing the model generator’s allotment of working

memory.

52. IMPROPER USE OF @IN() FUNCTION.

You passed incorrect arguments to the @IN function. Check the documentation on the @IN

function.

ERROR MESSAGES 823

53. UNABLE TO LOCATE RANGE NAME: RANGE_NAME.

You specified a range name in a spreadsheet interface function, which is either inadmissible

or was not found in the specified worksheet. Please check the worksheet file to be sure the

range name exists as spelled.

54. ERROR (N) READING FROM FILE.

LINGO was unable to read from the file FILE_NAME. Possible causes include the file being

locked by another user or the file being corrupted. Please check to see that the file is valid

and available for reading.

55. UNABLE TO OPEN @TEXT DATA FILE: FILENAME.

You have specified a file as part of the @TEXT function that could not be opened. Check to

see that the file exists and that you have spelled the name correctly.

56. ERROR READING FROM @TEXT DATA FILE: FILENAME.

A read error was encountered when LINGO attempted to read data from a file specified in an

@TEXT function. Check to be sure that the file is not corrupted.

57. INVALID INPUT ENCOUNTERED IN @TEXT DATA FILE: TEXT_STRING.

The @TEXT function may be used in the data section to read and write numeric values. This

error message results when nonnumeric data is encountered in a file being read with @TEXT.

If you need to import nonnumeric data from a text file, use the @FILE function.

58. NOT ENOUGH VALUES FOUND IN @TEXT DATA FILE: FILENAME.

 N VALUES NEEDED.

 M VALUES FOUND.

The @TEXT function may be used in the data section to read and write numeric values. This

error message results when an insufficient number of data points were found in a file being

read with @TEXT. Add enough data to the file to fully initialize the attributes of interest.

59. TOO MANY VALUES ENCOUNTERED IN @TEXT DATA FILE: FILENAME.

The @TEXT function may be used in the data section to read and write numeric values. This

error message results when too many data points were found in a file being read with

@TEXT. Remove data from the file until you have the exact number required to initialize the

attributes of interest.

60. FILE NAME REQUIRED IN AN @TEXT() INPUT OPERATION.

The @TEXT function may be used in the data section to read and write numeric values. This

error message results when an input file was not specified when attempting to read data points

from a file using @TEXT.

61. COMMAND DISREGARDED.

LINGO prints this message when it was unable to interpret a command you typed at the colon

prompt (:). Check the spelling of the command and that you are using correct syntax for the

command.

62. RAN OUT OF WORKSPACE IN MODEL GENERATION (N).

LINGO ran out of working memory generating your model. Refer to error message 0 for

strategies to increase the model generator’s working memory allotment.

824 APPENDIX B

63. MODEL IS ILL DEFINED. CHECK FOR UNDEFINED INDICES AND/OR

CONDITIONS IN EXPRESSION: EXPRESSION.

LINGO will print this message for one of two reasons: 1) a conditional expression used to

qualify a set operator function cannot be evaluated, or 2) a subscript expression cannot be

evaluated. When we say an expression cannot be evaluated, we mean that one or more

variables in the expression are not fixed. LINGO will report the expression number, or row

name (if used), where the fault occurred. Please be sure to add constraints or data statements

to fix all the variables in the conditional or subscript expression in question. Also, if you are

using primitive set member names in the model’s equations, you must use the @INDEX

function to get the index of the primitive set member. If you don’t use the @INDEX function,

LINGO will treat the primitive set member as if it is a new scalar variable. You can have

LINGO check for primitive set names that are in use in both the data and the model equations

by checking the Check for duplicate names in data and model box on the General Solver tab

of the LINGO|Options command dialog box (or the SET CHKDUP 1 command on other

platforms). Finally, if you would like to use primitive set names directly in your model’s

equations (a practice we don’t recommend), you can force LINGO to allow this by checking

the Allow unrestricted use of primitive set member names checkbox on the General Solver tab

(or the SET USEPNM 1 command on other platforms).

64. TOO MANY NESTED @FOR OPERATORS.

LINGO maintains a stack to keep track of pending nested @FOR functions. Too many nested

@FORs could cause this stack to overflow, although it would be an unusual model that

triggers this error. You can avoid nesting some @FORs by forming derived sets, and looping

over a single derived set as opposed to many primitive sets.

65. IMPROPER USE OF @WARN FUNCTION.

You have used the @WARN function incorrectly. Check the documentation on @WARN to

determine where you went wrong.

66. WARNING: TOTAL FIXED ROWS WITH NONUNIQUE ROOTS: N

When LINGO generates a model, it determines if a variable can be solved for directly and

substituted out of the model. These variables are referred to as being fixed, and the row in the

model used to solve for a fixed variable is referred to as a fixed row. When LINGO solves for

the value of a fixed variable in its fixed row, it will look around a neighborhood of the

variable’s value to determine if multiple roots exist, and display this message if any are

found. An example of an equation with such multiple roots would be: @SIGN(X) = 1. All

non-negative values of X would satisfy this relation. LINGO will display the names of up to

three variables and their corresponding fixed rows with this symptom. LINGO will continue

to process the model, however. You should examine the model closely when this error occurs,

because it would be unusual to find a well formulated model displaying this characteristic.

Keep in mind that there might be a better solution involving a different value for the fixed

variable than was chosen by LINGO.

67. UNSUPPORTED STRING ARITHMETIC OPERATION.

You've attempted to perform an arithmetic operation on a text object.

ERROR MESSAGES 825

68. MULTIPLE OBJECTIVE FUNCTIONS IN MODEL.

The model contains more than one objective function. Possible solutions are to delete some

objectives, convert some objectives to constraints, or combine the multiple objectives into a

single objective using a weighting scheme.

69. UNDEFINED ARITHMETIC OPERATION.

LINGO ran into an undefined arithmetic operation during execution (e.g., 1/0). Check the

constraints to be sure all operations are defined.

70. SUBSCRIPT OUT OF RANGE ON ATTRIBUTE: ATTRIB.

While executing your model, LINGO found a subscript that was out of range. For example, if

you defined the attribute STAFF with the set /1..5/, then referencing STAFF(6) would result in

this error message. Nonintegral subscripts will also generate this message. Please be sure your

sets are defined across the intended range and that any subscript computations are correctly

specified.

71. IMPROPER USE OF A VARIABLE DOMAIN FUNCTION (E.G. , @GIN, @BIN,

@FREE, @BND).

This error results when the syntax of a variable domain function has been violated. Check the

model’s use of these functions.

72. UNABLE TO SOLVE FOR FIXED VARIABLE VAR_NAME IN CONSTRAINT

CONSTRAINT_NAME.

LINGO has determined that it should be able to solve for a particular variable in a given row.

The root finder was not able to converge on a solution. Be sure a solution exists for the row

(e.g., the expression: -1=x^.5, would have no real solution). If possible, rewrite the equation

in the form x = f(.), where x appears only once and is on the left-hand side of the expression.

LINGO is always able to solve expressions in this form, as long as the function is defined and

evaluates to a real number (e.g., x = @LOG(-3) evaluates to an imaginary number; and x/0 is

undefined). If this is not possible, then you might try solving the expression by some other

method, and enter the variable’s value as a constant in LINGO.

73. A USER INTERRUPT OCCURRED.

LINGO was interrupted before the solver completed its run.

74. MAGNITUDE OF BOUND EXCEEDS: 1.E+21 ON VARIABLE: VARIABLE_NAME.

You have entered a bound outside LINGO’s allowable limit. The magnitude of bounds input

using @BND may not exceed 1019.

75. CONFLICTING BOUNDS ON VARIABLE: VAR_NAME.

LINGO has detected a bound on the named variable that is outside of the range of another

bound. For instance, @BND(-6, X, 6), followed by @BND(-5, X, 5) would not yield this error.

However, following it with @BND(7, X, 9) would.

76. ERROR GENERATING MODEL.

LINGO was unable to pass the model to the optimizer. If this error occurs, contact LINDO

Systems technical support.

826 APPENDIX B

77. ARITHMETIC ERROR GENERATING MODEL.

LINGO was unable to generate the model due to an undefined arithmetic operation (e.g.,

division by zero). Remove all undefined arithmetic operations from your model.

78. SET SECTIONS NOT ALLOWED IN SUBMODELS.

Set sections can not be placed inside submodels. You can move the set section before the

relevant submodel to correct the problem.

79. NOT USED.

80. NOT ENOUGH WORKSPACE GENERATING MODEL.

LINGO ran out of working memory while trying to generate the model. Please refer to

message 0 for strategies to increase the model generator’s working memory.

81. NO FEASIBLE SOLUTION FOUND.

LINGO was unable to find a solution that simultaneously satisfies all the constraints. Check

the model’s consistency. Try dropping constraints until the problem goes away to get an idea

of where the trouble may lie. Also, check the solution report. Constraints contributing to the

infeasibility will have a nonzero dual price.

82. UNBOUNDED SOLUTION.

LINGO was able to increase the objective function without bound. Be sure that you have

added all constraints to your model and that they have been input correctly.

83. ATTEMPT TO USE A FUNCTION THAT IS NOT VALID IN A MODEL SECTION.

Not all functions may be used in a model's constraints. Some functions, for example

@WRITE, only make sense in and may only be used in calc and data sections. You will

receive this error message if you attempt to use such functions in a model's constraints or

objective function.

84. @ODBC AND @POINTER MAY NOT BE USED WITH @WRITE/@WRITEFOR IN

CALC SECTIONS.

Calc sections do not presently support the use of the @ODBC and @POINTER output

operators in conjunction with @WRITE/@WRITEFOR. In order to use @ODBC and

@POINTER, you must pass complete attributes as per the following example:

CALC:

 @POINTER(1) = X;

 @POINTER('MYDATA','MYTABLE','MYCOLUMN') = X;

ENDCALC

85. STACK OVERFLOW. EXPRESSION TOO COMPLEX.

LINGO uses a stack to store temporary values while executing the expressions in a model.

The default stack size is quite large. Thus, this message should not occur. Should you receive

this message, contact LINDO Systems technical support.

ERROR MESSAGES 827

86. ARITHMETIC ERROR IN CONSTRAINT: CONSTRAINT.

 INSTRUCTION POINTER: N

An undefined arithmetic operation (e.g., 1/0 or @LOG(-1)) occurred while LINGO was

generating the model. If you have specified a row name for the constraint, LINGO will print

the name of the constraint. If you haven’t specified row names in your model, you may want

to add them to assist in tracking down this error. Check the referenced constraint for any

undefined operations.

87. IMPROPER USE OF @IN FUNCTION.

You have specified improper arguments for the @IN function. Refer to the documentation on

this function for more details.

88. SOLUTION IS CURRENTLY UNDEFINED.

LINGO was not able to solve the model to completion for some reason. In which case, any

attempt to print out a solution will result in this message. Try re-solving the model and

determining the reason LINGO was unable to solve the model.

89. RUNTIME ERROR IN SOLVER ROUTINES. CONTACT LINDO SYSTEMS.

An unexpected runtime error has occurred in LINGO's solver routines. Please contact LINDO

Systems for assistance.

90. THE SOLVER TIME LIMIT WAS EXCEEDED.

The solver time limit was reached and the solution process was halted. If you believe that

there should be no time limit, then you should check to see what the current time limit is. In

Windows, check to see what the current setting is using the LINGO|Options command to

check the Time box on the General Solver tab. On other platforms, run the HELP SET

command to see what the setting is for the TIMLIM parameter.

91. INVALID RUNTIME PARAMETER VALUE.

At runtime, LINGO will prompt for any variable set to equal a question mark in the data

section. If LINGO receives an invalid value, you will get this error message. Correct your

data and try again.

92. WARNING: THE CURRENT SOLUTION MAY BE NONOPTIMAL/INFEASIBLE

FOR THE CURRENT MODEL.

If you’ve solved a model and brought another model window to the front, LINGO prints this

message to remind you that the solution you’ve asked for may not belong to the frontmost

model window. LINGO also prints this message whenever you attempt to examine a

nonoptimal solution. For instance, when you’ve interrupted the solver, or when LINGO

couldn’t find a feasible answer. In the latter case, correct any errors in the model and re-solve.

93. INVALID SWITCH IN COMMAND LINE.

Some LINGO commands accept switches, or modifiers. If there was an error in one of these

command-line modifiers, LINGO will print this message. Refer to the documentation on the

specific command to learn the available modifiers.

828 APPENDIX B

94. NOT USED.

95. NOT USED.

96. NOT USED.

97. NOT USED.

98. NOT USED.

99. NOT USED.

100. A SUBMODEL REFERENCE WAS EXPECTED.

A reference was made to an undefined submodel. Submodels are "models within models"

that may be solved independently or combined with other submodels. You will need to either

define the referenced submodel, or move it to an earlier part of the main model before any

references to the submodel occur. Refer to the SUBMODEL statement for more information.

101. PASSWORDS DON'T MATCH -- MODEL NOT EXTENDED.

You've attempted to extend a password protected model using a model fragment with a

password that differs from the main model's password. The passwords must be identical in

order to add the new model fragment, so you will need to re-save either the main model or the

model fragment with a matching password.

102. UNRECOGNIZED MODEL OBJECT NAME: OBJECT_NAME.

The model object name you have specified does not exist. Please check your spelling.

103. TEXT LITERALS NOT ALLOWED IN VECTOR-BASED, NON-TEXT OUTPUT

OPERATIONS.

When outputting solutions in vector format (i.e., passing an entire attribute at a time), text

literals may not be included in the list of output objects. For example, suppose you had the

following output statement in your model:

DATA:

 @OLE('MYBOOK.XLS', 'HEADER', 'VOLUME') = 'SHIP=', VOLUME;

ENDDATA

In this case, VOLUME is an attribute containing multiple values, while 'SHIP=' is a single text

literal. This is a vector-based output statement in that we aren't embedding output objects in

@WRITE or @WRITEFOR statements. The use of text literals is not permitted in vector

based output. You will need to break the statement up into two statements, one using

@WRITE to output the text literal:

DATA:

 @OLE('MYBOOK.XLS', 'HEADER') = @WRITE('SHIP=');

 @OLE('MYBOOK.XLS', 'VOLUME') = VOLUME;

ENDDATA

104. MODEL NOT SOLVED YET, OR THE MODEL HAS BEEN SOLVED AND FOUND

TO CONTAIN NO CONSTRAINTS OR VARIABLES.

If the model has not already been solved then issue the SolveLINGO_Solve command. If the

model has been solved then it was found to be vacuous.

ERROR MESSAGES 829

105. THE FOLLOWING TABLE IS TOO SMALL TO RECEIVE ALL REQUESTED

OUTPUT.

An ODBC output statement to a database has more rows than is contained in the output

statement. You will need to either increase the size of the table in the database or reduce the

number of rows in the output table.

106. MINIMUM AND MAXIMUM VALUES FOR WIDTH ARE: 68 800.

When changing terminal width using the WIDTH command, you must enter an integer

between 68 and 800.

107. INVALID @POINTER INDEX VALUE

Your model contains a reference to the @POINTER function with an invalid argument list.

The @POINTER function requires one argument that must be integer valued and greater-

than-or-equal-to 1.

108. THE MODEL’S DIMENSIONS EXCEED THE CAPACITY OF THIS VERSION.

Your model is too large for your version of LINGO. Some versions of LINGO limit one or

more of the following model properties: total variables, integer variables, nonlinear variables,

and constraints. This error message displays the dimensions of the model and the limits of

your version. Refer to this information to determine the specific limit that is being exceeded.

You can also view the limits of your version of LINGO by issuing the Help|About command.

Nonlinear variables are allowed only if you have purchased the nonlinear option for your

LINGO system. If you aren't sure which parts of yout model, you can run the Generate |

Display nonlinear rows command to display the rows in the model containing nonlinearities.

It's possible that some or all of the nonlinear rows can be rewritten so that they become linear.

 In general, you must either make your model smaller by simplifying it or upgrade to a larger

version of LINGO. If you are exceeding the limit on constraints and if you have simple

bounds entered as constraints, you should enter them with the @BND function. Constraints

entered using @BND don’t count against the constraint limit.

The limits for the various versions of LINGO are:

Version

Total

Variables

Integer

Variables

Nonlinear

Variables

Constraints

Demo/Web 300 30 30 150

Solver Suite 500 50 50 250

Super 2,000 200 200 1,000

Hyper 8,000 800 800 4,000

Industrial 32,000 3,200 3,200 16,000

Extended Unlimited Unlimited Unlimited Unlimited

If your version of LINGO doesn't include the nonlinear option, then your models can't contain

any nonlinear variables.

830 APPENDIX B

109. THE SOLVER ITERATION LIMIT WAS EXCEEDED.

The solver iteration limit was reached and the solution process was halted. If you believe that

there should be no iteration limit, then you should check to see what the current iteration limit

is. In Windows, check to see what the current setting is using the LINGO|Options command

to check the Iterations box on the General Solver tab. On other platforms, run the HELP SET

command to see what the setting is for the ITRLIM parameter.

110. PASSWORDS ARE LIMITED TO 56 CHARACTERS.

The password associated with your HIDE command is too long. It must be 56 characters, or

less.

111. COMMAND NOT AVAILABLE WHEN MODEL IS HIDDEN.

Any command that reveals the content of a model is not permitted when the model is hidden.

If you know the password to unhide the model, enter it with the HIDE command and try

again.

112. INCORRECT PASSWORD... MODEL REMAINS HIDDEN.

You have entered an incorrect password. The model may not be viewed without the correct

password.

113. LOOK/SAVE FAILED... THE FOLLOWING LINE IS TOO LONG: N. INCREASE

THE TERMINAL WIDTH.

An attempt to view a given line, all lines, or to save the model, has failed because a line is too

long. Lines can't exceed 200 characters in length. You will need to break each long line into

two or more shorter lines.

114. PASSWORD VERIFICATION FAILED... MODEL WILL NOT BE HIDDEN.

You must enter the same password twice to verify it.

115. MODEL MUST BE AT LEAST 64 CHARACTERS LONG FOR ENCRYPTION.

In order to encrypt a model with the HIDE command it must be at least 64 characters long. If

need be, you can extend the model's length using comments.

116. THE MAXIMUM NUMBER OF CHARACTERS IN A FILE NAME IS: N.

The maximum number of characters in a file name, including path, has been exceeded.

117. INVALID COMMAND. TYPE ‘COM’ TO SEE VALID COMMANDS.

You have entered a command that is not implemented in LINGO. Check the list of available

commands with the COMMANDS command to see whether you’ve misspelled a command.

118. AMBIGUOUS COMMAND. TYPE ‘COM’ TO SEE VALID COMMANDS.

You have probably typed an abbreviated command that can be interpreted in more than one

way. Spell out the command name completely.

119. TOO MANY CONSECUTIVE ERRORS IN BATCH MODE. LINGO WILL STOP.

When running a command script, LINGO will stop after the sixth consecutive error.

ERROR MESSAGES 831

120. UNABLE TO WRITE CNF FILE TO STARTUP AND WORKING DIRECTORIES.

LINGO was unable to write its configuration file. You must have write permission for either

the working directory or the startup directory. If you’re connected to a network, check with

your network administrator to determine your disk privileges.

121. RANGE ANALYSIS NOT ALLOWED ON INTEGER PROGRAMMING MODELS.

Range reports are not possible on IP models, given that they have no meaning in this context.

122. RANGE REPORTS NOT POSSIBLE WHEN RANGE ANALYSIS IS DISABLED.

Range computations are currently disabled. To enable range computations in Windows

versions of LINGO, run the LINGO|Options command, click the General Solver tab, and

select the Prices and Ranges option from the Dual Computations list box. To enable range

computations in command-line versions of LINGO, use the command: SET DUALCO 2. Be

aware that range computations will increase solution times.

123. MODELS MUST BE EITHER INFEASIBLE OR UNBOUNDED IN ORDER TO BE

DEBUGGED.

Debugging is permitted only on models that are either infeasible or unbounded.

124. ATTEMPT TO INITIALIZE AN ATTRIBUTE OF A NULL SET.

You are attempting to assign values to an attribute of a null set. Given that the set is null,

each of its attributes also have no members, and, therefore, may not be assigned values.

Check the initialization of the attribute’s parent set to be sure it is being assigned at least one

member.

125. NOT USED.

Error code not currently in use.

126. THE FOLLOWING VARIABLE NAME WAS NOT RECOGNIZED: VAR_NAME.

You have attempted to use an ODBC link to export an unknown variable to a database. Check

the spelling of the variable’s name and try again.

127. THE FOLLOWING VARIABLE IS OF A DIFFERENT DIMENSION: VAR_NAME.

You have attempted to use an ODBC link to export multiple variables of different dimensions

to a database. All variables being simultaneously exported must be of the same dimension.

128. THE PARAMETER INDEX MUST BE BETWEEN 1 AND N.

You have input an invalid parameter index as part of the SET command. Use the HELP SET

command to determine the valid indices.

129. THE PARAMETER VALUE IS NOT VALID.

You have input an invalid parameter value as part of the SET command. LINGO will print the

valid range of values. You should adjust the value of the parameter, so it falls within the valid

range, and reenter the command.

130. THE FOLLOWING PARAMETER NAME WAS NOT RECOGNIZED:

PARAMETER_NAME.

You have input an invalid parameter name as part of the SET command. Use the HELP SET

command to determine the valid parameter names.

832 APPENDIX B

131. UNABLE TO WRITE PARAMETERS TO CONFIGURATION FILE.

You have attempted to save LINGO’s current configuration using the FREEZE command.

LINGO was unable to write the parameter values to its configuration file (LINGO.CNF).

Perhaps you don’t have write access to the drive or the disk is full.

132. ONE OR MORE ERRORS OCCURRED WHILE READING THE

CONFIGURATION FILE.

LINGO was unable to successfully read its configuration file (LINGO.CNF). Perhaps the file

has become corrupted. Beware that some of the parameters you have set may revert back to

their default values.

133. UNABLE TO INITIALIZE WORKBOOK FOR OLE TRANSFERS.

You have attempted to link to a spreadsheet that LINGO was unable to load into Excel. Try

reading the file into Excel yourself, and check to be sure that some other user isn’t accessing

the file.

134. UNABLE TO COMPLETE ALL OUTPUT OPERATIONS.

You have attempted to use interface functions in the data section to export parts of the

solution. One or more of these operations failed. You will receive additional messages from

LINGO detailing the problem.

135. THE FOLLOWING FIXED VARIABLE VIOLATES ITS SEMICONTINUOUS

BOUNDS: VARIABLE.

You have specified semicontinuous bounds for the specified variable using the @SEMIC

function. The variable was determined to be fixed to a particular value that violates its

semicontinuous property. For example, if X were specified to be semicontinuous using the

statement @SEMIC(5, X, 100), then X must be either 0 or lie within the range [5,100]. If the

model generator determines that X is fixed at some value other than this, you will receive this

error message. The most likely cause of this error is incorrect semicontinuous bounds, i.e., in

this example, the bounds of 5 and 100

136. ERROR PERFORMING @TEXT() OUTPUT OPERATION: N.

You have attempted to use the @TEXT interface function to export data to a text file. For

some reason, this operation has failed. Perhaps the disk is full or you don’t have write access

to the drive.

137. ENCRYPTED FILE NOT IN PROPER FORMAT.

An encrypted model (see the HIDE command) was found to not be in the proper format.

Please check the file name to be sure you are referring to the correct file.

138. TOO MANY NESTED DIVERT FILES.

LINGO allows you to nest DIVERT commands up to 10 levels deep. If you attempt to go

beyond 10 levels, you will get this error message.

139. DIVERT COMMAND FAILED. UNABLE TO OPEN FILE.

You have attempted to open a file for output using the DIVERT command. LINGO was

unable to open the files. Perhaps the disk is full or you don’t have write access to the drive.

ERROR MESSAGES 833

140. DUAL VALUES WERE REQUESTED BUT DUAL COMPUTATIONS ARE

DISABLED.

You have attempted to export dual values when the solver is in primals only mode. In primals

only mode, dual values are not computed and, therefore, can't be exported. In Windows

versions of LINGO, to enable dual computations, run the LINGO|Options command, click the

General Solver Tab, and select the Prices option from the Dual Computations list box. To

enable range computations, as well as, dual computations, select the Prices & Ranges option

from the Dual Computations list box. In command-line versions of LINGO, enable dual

computations by using the command: SET DUALCO 1. To enable range computations, as

well as, dual computations, use the command: SET DUALCO 2.

141. RANGE VALUES WERE REQUESTED ON A ROW THAT WAS SUBSTITUTED

FROM THE MODEL.

You have attempted to export range values on a row that is fixed in value. LINGO substitutes

these rows from the model. Therefore, range values are not computed on these rows.

142. AN UNEXPECTED ERROR OCCURRED. PLEASE CONTACT LINDO SYSTEMS

TECHNICAL SUPPORT.

In general, this error message should never occur. Should you receive this message, please

contact a technical support representative.

143. OUTPUT OPERATION FAILED. MODEL OBJECTS NOT OF SAME LENGTH.

You have attempted to use an interface function to export two or more model objects

simultaneously. This interface function requires all objects to be of the same dimension.

Break the output operation up into individual operations that all contain objects of the same

dimension.

144. INVALID ARGUMENT LIST FOR @POINTER FUNCTION.

The @POINTER function only accepts a single positive integer as an argument. Review the

documentation on the use of the @POINTER function.

145. ERROR N PERFORMING @POINTER OUTPUT OPERATION.

A @POINTER output function operation failed. Some of the values for N and their

interpretations are:

No. Interpretation

2 attempt to export an invalid variable

3 ran out of working memory

4 requested duals in primals only mode

5 range values were requested on fixed rows

6 unexpected error, call LINDO Systems Technical

Support

834 APPENDIX B

146. THE FOLLOWING NAMES APPEARED IN THE MODEL AND THE DATA:

NAME1 NAME2 NAME3.

If you go to the Model Generator tab on the LINGO|Options command’s dialog box, you will

see a Check for duplicates names in data and model checkbox. When this option is enabled,

LINGO will compare primal set member names to all the variable names used in the model’s

equations. If any duplicates are found, LINGO will print the first three and print this error

message. To enable this option in command-line versions, use the SET CHKDUP 1

command.

147. UNABLE TO EVALUATE ALL @WARN FUNCTIONS.

Conditional expressions contained in @WARN functions must contain fixed variables only.

When this is not the case, LINGO can’t evaluate the @WARN functions and you will receive

this error message.

148. @OLE FUNCTION NOT SUPPORTED ON THIS PLATFORM.

At present, the @OLE function is supported only in Windows versions of LINGO. If you

don’t have a Windows version of LINGO, you can export the data from your spreadsheet to a

file and use the @FILE function in your LINGO model to import the data.

149. TARGET RANGE NAMES AND ODBC COLUMN NAMES CAN'T TAKE DEFAULT

VALUES FOR INDEX VARIABLE OUTPUT.

If you are outputting an index variable's value to a workbook or database, you must explicitly

provide the name of the workbook range or the database column. LINGO cannot provide

default names in this instance.

150. ODBC INTERFACE NOT SUPPORTED ON THIS PLATFORM.

LINGO’s ODBC link to databases is supported only in Windows versions. If you don’t have a

Windows version of LINGO, you can use text files to move data in and out of LINGO. See

Chapter 8, Interfacing with External Files, for more details.

151. @POINTER NOT SUPPORTED ON THIS PLATFORM.

LINGO’s @POINTER function for interfacing with calling applications is supported only in

Windows versions. If you don’t have a Windows version of LINGO, you can use text files to

move data in and out of LINGO. See Chapter 8, Interfacing with External Files, for more

details.

152. COMMAND NOT SUPPORTED ON THIS PLATFORM.

You have selected a command that is not supported on your platform.

153. SET DEFINITIONS NOT ALLOWED IN INIT SECTIONS.

Sets can’t be initialized in an init section. You must change the model, so the set is initialized

in either a sets section or in a data section.

154. ATTEMPT TO REDEFINE A PREVIOUSLY DEFINED SET.

You have attempted to define a set twice in the same model. A set name can only be used

once. Choose a different name for the two sets and try again.

ERROR MESSAGES 835

155. SET MEMBER NAMES MAY NOT BE OMITTED IN DATA STATEMENTS.

When initializing a set in a model’s data section, you must explicitly list each member. You

may not skip elements as you can with set attributes.

156. INCORRECT NUMBER OF ARGUMENTS IN A DATA SECTION.

 ARGUMENT MUST BE A MULTIPLE OF: N

 NUMBER OF ARGUMENTS FOUND: M

You have a data, init or calc statement in your model that doesn’t have the correct number of

values to initialize a specified list of attributes and/or sets. LINGO will let you know how

many values it found and what the number of arguments should be a multiple of. Add or

subtract values in the data statement and try again.

157. ATTEMPT TO USE @INDEX ON AN UNDEFINED SET.

LINGO can’t compile an instance of the @INDEX function without knowing of the existence

of the set that @INDEX is referencing. Move the expression with the @INDEX function after

the set definition to correct this problem.

158. A SET MEMBER NAME WAS EXPECTED.

You have used a function that was expecting a set member name as an argument. Correct the

arguments to the function and try again.

159. THE FOLLOWING DERIVED SET MEMBER IS NOT CONTAINED IN ITS

PARENT SET.

You have specified a set member in a derived set that is not contained in the parent set. Each

member in a derived set must be derived from a member of its parent set(s). You have

probably misspelled the name of the derived set member. Check the spelling and try again.

160. ONLY ONE SET MAY BE DEFINED IN EACH DATA STATEMENT.

You have attempted to define more than one set in an individual data statement. Break the

data statement into multiple statements with no more that one set per statement.

161. INDEX VARIABLES MAY NOT SHARE NAMES WITH OTHER VARIABLES.

The index variables used in set looping functions may not use the same names as those used

by the structural variables in the model. For example, in the following model:

MODEL:

 SETS:

 S1/1..5/: X;

 ENDSETS

 MAX=I;

 @SUM(S1(I): X(I)) <= 100;

END

the variable name i is used in the objective row for a structural variable. In the next to the last

statement in the model, the name i is also being used as an index variable, which will trigger

the error. In the case, you would need to change the name of either the variable in the

objective or the name of the index variable in the @SUM loop.

836 APPENDIX B

162. ATTEMPT TO INITIALIZE MIXED DATA TYPES (TEXT AND NUMERIC) FROM

A SINGLE WORKBOOK RANGE.

When specifying a single range for multiple model objects, all the objects must be of the

same data type—either text (set members) or numeric (set attributes). LINGO’s spreadsheet

interface can’t handle ranges with mixed data types. Break the data statement up into two—

one containing text model objects and the other containing numeric objects.

163. INVALID NUMBER OF DATA VALUES FOR OBJECT: OBJECT_NAME.

You have attempted to initialize a model object of known length with an incorrect number of

values. Check the initialization statement to be sure that the values are specified correctly.

164. INVALID LINGO NAME: NAME.

You have used a symbol name that doesn’t conform to LINGO’s naming conventions. Please

correct the name and try again.

165. SET EXPORTS NOT SUPPORTED WITH THIS FUNCTION.

Not all of LINGO’s export functions can handle set members. Switch to a different export

function and try again.

166. ATTEMPT TO OUTPUT OBJECTS OF VARYING LENGTHS TO A TABULAR

DEVICE.

LINGO requires output to be in tabular form for certain output devices (databases and text

files). You have constructed an output statement with two or more model objects of varying

length. In which case, it is not obvious how to transform the data into tabular form. Break the

output function call up into two or more function calls such that each call contains model

objects of identical length.

167. INCORRECT NUMBER OF RANGES SPECIFIED: N. NUMBER OF RANGES

REQUIRED: M.

You didn’t specify the correct number of ranges in an import/export function. In general, you

will need one range for each model object.

168. OUTPUT MODIFIERS NOT ALLOWED ON TEXT DATA.

When exporting set members, use of the @DUAL, @RANGEU, and @RANGED modifier

functions are not allowed. Remove the modifier function and try again.

169. RUNTIME INPUT OF SET MEMBERS NOT ALLOWED.

When initializing attributes in a data section, you can initialize all or part of an attribute with

a question mark. In which case, LINGO will prompt you for the values each time the model is

run. This is not the case with sets—all set members must be explicitly listed when initializing

a set in the data section.

170. LICENSE KEY WAS NOT FOUND OR IS INVALID.

LINGO did not recognize your license key. Please check to make sure you have entered it

correctly. If you received it as part of an email, then you may cut-and-paste it from the email

into LINGO's license dialog box.

ERROR MESSAGES 837

171. LICENSE KEY IS INVALID.

Your license key is not recognized by LINGO. LINGO will continue to operate, but only in

demonstration mode.

172. INTERNAL SOLVER ERROR. CONTACT LINDO SYSTEMS.

LINGO’s solver encountered an unexpected error condition and was unable to continue.

Please contact LINDO Systems for assistance.

173. NUMERIC ERROR IN THE SOLVER.

LINGO’s solver experienced numerical problems and was unable to continue. Scaling the

model’s coefficients so that they don’t cover as large a range may be helpful in eliminating

this error. Also, check for potentially undefined arithmetic operations in the model. If these

remedies fail, please contact LINDO Systems for assistance.

174. OUT OF MEMORY IN PREPROCESSOR.

LINGO’s solver ran out of memory during the preprocessor phase. Refer to error message

175 for possible remedies.

175. NOT ENOUGH VIRTUAL SYSTEM MEMORY.

LINGO’s solver ran out of virtual system memory. LINGO’s solver accesses memory from

the system heap. Adding more memory to your machine may help. Note, also, that the

memory allocated to LINGO’s model generator is not available to the solver. Thus, if too

much memory is allocated to the generator there may not be enough left over for the solver. If

you are using a Windows version of LINGO, see the LINGO|Options command for

information on adjusting the generator memory level, otherwise, refer to the SET command.

176. OUT OF MEMORY DURING SOLVER POSTPROCESSING.

LINGO’s solver ran out of memory during the post-processing phase. Refer to error message

175 for possible remedies.

177. OUT OF MEMORY ALLOCATING SET: SET_NAME.

LINGO failed to allocate the internal data structures for a set due to lack of generator

memory. First, check to see that the set's dimensions are not unreasonably large, perhaps

indicating a typo in the model. If all appears well, then you will need to boost the available

generator memory, restart LINGO and try again.

178. OUT OF STACK SPACE ALLOCATING SET: SET_NAME.

When LINGO allocates the data structures for a set, it may find that the set is derived from

another set. If this parent set is also unallocated, LINGO must back track and allocate it, too.

In some rare instances, LINGO might have to backtrack many generations. As LINGO back

tracks, it keeps information on a stack. This error message is triggered when this stack runs

out of space. However, it would be a highly unusual model that causes this error.

838 APPENDIX B

179. THE MODEL TRANSLATOR HAD TO PATCH NAMES TO MAKE THEM

COMPATIBLE

 VAR NAMES PATCHED: N

 ROW NAMES PATCHED: M

This message occurs when LINGO imports a non-native file converting it to a LINGO model.

Non-native file formats (e.g., MPS, MPI and/or LP) allow for variable and row names that

aren’t entirely compatible with LINGO’s syntax (e.g., spaces in names). In order to

overcome this, LINGO will patch these names by replacing inadmissible characters in the

names with underscores and truncating names longer than 64 characters. This can create

problems because two or more unique MPS names may get mapped into one LINGO name .

A technique for avoiding this problem is to use R/C naming conventions. Refer to the Use

R/C format names for MPS I/O option for more information.

180. UNABLE TO CREATE MODEL DATA STRUCTURE.

LINGO was unable to create the internal data structures required for transferring an MPS file.

The most likely cause of the problem is insufficient system memory. Try cutting back on

LINGO’s allotment of generator memory or using a machine with more memory.

181. ERROR EXTRACTING DATA FROM MODEL STRUCTURE.

LINGO was unable to extract model information from a data structure. The most likely cause

of the problem is insufficient system memory. Try cutting back on LINGO’s allotment of

generator memory, or try using a machine with more memory.

182. ERROR IN MPS OR MPI FILE ON LINE NUMBER: N

 TEXT OF INVALID LINE: TEXT

LINGO encountered an error reading an MPS or MPI format file. Go to the line number in the

file, correct the error, and try again.

183. INVALID USE OF SP TABLE DECLARATION FUNCTION @SPDISTTABLE.

The @SPDISTTABLE function is a matrix oriented function that is uses in stochastic

programming models to declare outcome tables and assign to assign random variables to

those tables. Correct usage is:

@SPDISTTABLE(OUTCOME_TABLE_ATTR, RANDOM_VAR_VECTOR[,

PROBABILITY_VECTOR]);

The outcome table argument must be either one or two dimensions, with each row of the table

corresponding to an outcome of the random variable(s) in the random variable vector. The

number of elements in the random variable vector must equal the number of columns in the

outcome table argument. The third argument is optional, is used to pass the probabilities of

the outcomes, and must have one element for each row of the outcome table.

ERROR MESSAGES 839

184. RANGE VALUES CAN'T BE REPORTED WHEN RANGE ANALYSIS IS

DISABLED.

You have attempted to reference range values while the solver is not set to compute ranges.

To enable range computations in Windows versions of LINGO, run the LINGO|Options

command, click the General Solver Tab, and select the Prices and Ranges option from the

Dual Computations list box. To enable dual and range computations in command-line

versions of LINGO use the command: SET DUALCO 2.

185. BARRIER SOLVER REQUESTED WITHOUT A LICENSE.

LINGO’s barrier solver capability is an additional option. To enable the option, contact

LINDO Systems for licensing information and fees.

186. SETS MAY NOT BE INITIALIZED WITH @QRAND.

The @QRAND function may be used for initializing attributes only. Set members can not be

initialized with this function.

187. ONLY ONE LHS ATTRIBUTE MAY BE INITIALIZED IN A @QRAND

STATEMENT.

You can initialize only one attribute at a time with the @QRAND function. For more

information, refer to the Probability Functions section in Chapter 7, Operators & Functions.

188. ATTRIBUTES INITIALIZED WITH @QRAND MUST BELONG TO DENSE SETS.

You can initialize only one attribute of dense sets with the @QRAND function. For more

information, refer to the Probability Functions section in Chapter 7, Operators & Functions.

189. INVALID SEED.

You have attempted to use an invalid seed value for a random number generating function.

Seed values must have non-negative, integer values.

190. INVALID IMPLICIT SET DEFINITION.

LINGO allows you to express sets implicitly. An example would be Jan..Dec, which would

give you a set of 12 elements consisting of the months of the year. There are a number of

syntax rules required of implicit set definitions. For information on the specific rules, refer to

Chapter 2, Using Sets.

191. THE LINDO API RETURNED THE FOLLOWING ERROR CODE: N ERROR_TEXT.

The LINDO API is the core solver engine used by LINGO. On rare occasions, the LINDO

API may raise an unexpected error condition. LINGO will display a text message from the

API regarding the error. In most cases, this message should clarify the situation. If not, please

contact LINDO Systems technical support.

192. @WKX NO LONGER SUPPORTED…USE @OLE INSTEAD.

The @WKX function is no longer supported. You must now use the @OLE function to

interface with spreadsheets.

193. A SOLUTION IS NOT AVAILABLE FOR THIS MODEL.

There is no solution associated with the model. Either an error occurred while attempting to

solve the model, or the model has not been solved yet.

840 APPENDIX B

194. UNABLE TO CREATE ENVIRONMENT DATA STRUCTURE.

LINGO was not able to allocate some internal data structures. This is most likely due to

insufficient memory in your system’s dynamic memory pool. You can try running on a

machine with more memory, increasing Windows allotment of virtual memory, and/or

reducing the amount of generator memory allocated to LINGO’s model generator.

195. AN ERROR OCCURRED WHILE ATTEMPTING TO WRITE TO A FILE.

LINGO experienced problems writing to a file. Be sure your disk is not full and that you have

write access to the target file.

196. A DUAL SOLUTION DOES NOT EXIST FOR THIS MODEL.

The solver was unable to successfully compute the dual solution for the model. Given this,

the solution report will only display primal values. If you don't require dual information, you

can avoid the error by disabling Dual Computations on the General Solver Tab.

197. THE MODEL CONTAINS ONE OR MORE VACUOUS @MAX OR @MIN

FUNCTIONS.

The model contains an @MAX or @MIN function that has no arguments. An example of

this situation is:

MODEL:

SETS:

S1/1..5/: X;

ENDSETS

THEMAX = @MAX(S1(I) | I #LT# 0: X(I));

END

Note that the index variable I will take on values 1, 2, 3, 4 and 5. In no case will I ever be

less than 0. This means that the condition (I #LT# 0) on the @MAX function will never be

satisfied, meaning that there are no explicit arguments to the @MAX function. Please check

that all the @MAX and @MIN functions in the model are correctly specified.

198. QUADRATIC MODEL IS NOT CONVEX.

Quadratic models must be convex in order for them to be solved by the quadratic solver. You

must disable the quadratic solver by turning off Quadratic Recognition and then re-solve.

You can disable Quadratic Recognition with the command:

 LINGO | Options | Nonlinear Solver | Quadratic Recognition

With command-line versions of LINGO, use the command:

 SET USEQPR 0

This will cause the general purpose, nonlinear solver to be invoked. Please see the section

titled Convexity for more information.

199. A BARRIER SOLVER LICENSE IS REQUIRED FOR THE QUADRATIC SOLVER.

You will need a license for the barrier option to run the quadratic solver. You can proceed by

disabling quadratic recognition and re-solving. This will cause the general purpose, nonlinear

solver to be invoked.

ERROR MESSAGES 841

200. UNABLE TO COMPUTE DUAL SOLUTION.

LINGO was unable to compute the dual values. You can proceed by turning off dual

calculations and re-solving.

201. THE MODEL IS LOCALLY INFEASIBLE.

The solver was unable to find a feasible solution within a local region. However, a feasible

solution may exist elsewhere. The global or multistart solvers may have more success.

202. THE NUMBER OF NONLINEAR VARIABLES IN THE MODEL: N1 EXCEEDS

THE GLOBAL SOLVER LIMIT IN THIS VERSION: N2

Some versions of LINGO impose a limit on the total number of nonlinear variables when

running the global solver. You will either need to reduce the number of nonlinear variables,

turn off the global solver, or upgrade to a larger version of LINGO.

203. THE GLOBAL SOLVER OPTION WAS REQUESTED WITHOUT A LICENSE.

LINGO WILL REVERT TO USING THE DEFAULT NONLINEAR SOLVER.

Your installation of LINGO does not have the global solver option enabled. The global solver

is an add-on option to LINGO. LINGO will use the standard nonlinear solver in upgrading

your license in order to enable this option.

204. THE MULTISTART OPTION WAS REQUESTED WITHOUT A LICENSE. LINGO

WILL REVERT TO USING THE DEFAULT NONLINEAR SOLVER.

Your installation of LINGO does not have the global solver option enabled. The multistart

solver is a component of the global solver add-on option. LINGO will use the standard

nonlinear solver in place of the multistart solver. You can contact LINDO Systems for

information on upgrading your license in order to enable this option.

205. THE MODEL IS POORLY SCALED AND MAY YIELD ERRATIC RESULTS. THE

UNITS OF THE ROWS AND VARIABLES SHOULD BE RESCALED SO THE

COEFFICIENTS COVER A MUCH SMALLER RANGE.

After LINGO generates a model, it checks all the nonzero coefficients in the model and

computes the ratio of the largest to smallest coefficients. This ratio is an indicator of how

well the model is scaled. When the ratio gets to be too high, scaling is considered to be poor,

and numerical difficulties may result during the solution phase. If the scaling ratio exceeds

the value of the SCALEW parameter, LINGO will display this error message. The default

value for SCALEW is 1e9. Instead of simply increasing the SCALEW setting to eliminate

error 205, we strongly suggest that you attempt to rescale the units of your model so as to

reduce the largest-to-smallest coefficient ratio.

In some instances, changing the units of measure can be an easy way to improve a model’s

scaling. For instance, suppose we have a model with the following budget constraint in dollar

units:

 1000000 * X + 2200000 * Y + 2900000 * Z <= 5000000;

This constraint introduces several large coefficients into the model. If we rewrote the

constraint so that it is in units of millions of dollars, then we would have:

 X + 2.2 * Y + 2.9 * Z <= 5;

842 APPENDIX B

The coefficients in this new constraint are much less likely to present a problem.

As part of this error message, LINGO reports the values of the largest and smallest

coefficients, as well as where they appear in the model. This information should help in

tracking down the problem. You may also run the LINGO|Generate command to track down

other extreme coefficients. This Generate command displays the full, generated model and

specifically lists all the coefficients.

206. A MODEL MAY NOT BE SOLVED WITH LINEARIZATIONAND THE GLOBAL

SOLVER SIMULTANEOUSLY ENABLED. LINEARIZATION WILL BE

TEMPORARILY DISABLED.

 The linearization and global solver options may not be simultaneously selected when solving

a model. LINGO will default to using the global solver. You can set the linearization option

on the General tab of the LINGO|Options command, while the global solver option is

controlled on the Global Solver tab.

207. MISSING LEFT PARENTHESIS.

A unmatched right parenthesis was encountered in the model. Use the Edit|Match

Parenthesis command to help pair up parentheses.

208. @WRITEFOR() MAY ONLY APPEAR IN A DATA AND CALC SECTIONS.

The @WRITEFOR function is permitted only in the data and calc section of a model. You

will need to move the expression to a data or calc section.

209. RELATIONAL OPERATORS NOT ALLOWED IN @WRITEFOR() STATEMENTS.

The @WRITEFOR function is used to display output. Constraint relational operators may not

be used inside the @WRITEFOR function.

210. INVALID USAGE OF @WRITEFOR() FUNCTION.

The @WRITEFOR function is being used incorrectly. @WRITEFOR may only be used in the

data and calc sections for the purpose of creating reports. Refer to the documentation for the

correct usage of @WRITEFOR.

211. ARITHMETIC ERROR IN OUTPUT OPERATION.

The @WRITEFOR function is being used incorrectly. @WRITEFOR may only be used in the

data section for creating reports. Refer to the documentation for the correct usage of

@WRITEFOR.

212. SUBSCRIPT OUT OF RANGE ON SET NAME: SET_NAME

A subscript was found to be out of range while attempting to output a set member, . Check

all output operations that refer to the set SET_NAME for correctness.

213. TEXT OPERAND NOT PERMITTED HERE.

A text argument to a function was encountered where something other than text was

expected. Please check all function arguments to be sure they are correct.

214. DUPLICATE INITIALIZATION OF A VARIABLE.

A variable has been initialized more than one time in the model's data sections. Eliminate all

duplicate variable initializations.

ERROR MESSAGES 843

215. OUTPUT MODIFIERS NOT ALLOWED HERE (E.G., @DUAL)

Output modifiers (e.g., @DUAL, @RANGEU, @RANGED) are not allowed here. Remove

them to continue.

216. PREFIX FUNCITON EXPECTED A TEXT ARGUMENT.

Output modifiers (e.g., @DUAL, @RANGEU, @RANGED) are not allowed here. Remove

them to continue.

217. PREFIX FUNCTION EXPECTED A NUMERIC ARGUMENT.

A function was expecting a numeric argument, but found something other than a numeric

value. Check all function arguments for correctness.

218. PREFIX FUNCITON EXPECTED A ROW OR VARIABLE INDEX ARGUMENT.

A function was expecting a variable or row name as an arguments but found something

different. Check all function arguments for correctness.

219. UNABLE TO FIND A SPECIFIED INSTANCE OF A ROW NAME.

You've requested the value of a row that does not exist in the model.

220. UNSUPPORTED OPERATION ON TEXT OPERAND.

You've attempted to perform an undefined operation on a text operand.

221. ARGUMENT OVERFLOW IN @WRITE() OR @WRITEFOR().

This error occurs when there are too many text objects being output within a single @WRITE

or @WRITEFOR function call. Reduce the size of any large arguments lists to these

functions.

222. A VARIABLE OR ROW REFERENCE WAS EXPECTED.

A variable or row reference was expected here.

223. A DYNAMIC RANGE EXCEEDED BOUNDARY LIMITS WRITING TO RANGE:

RANGE_NAME

You attempted to write more values to a spreadsheet than it can actually hold. In general, this

means the dynamic range created by LINGO to receive all the values has overflowed the row

limit of the spreadsheet. An option is to specify the range yourself so that it stays within the

limits of the workbook.

224. THE FOLLOWING RANGE IS TOO SMALL TO RECEIVE ALL REQUESTED

OUTPUT: RANGE_NAME

You've specified a workbook range that is too small to receive all the exported values. You'll

need to increase the size of the range.

225. INVALID FORMAT FOR A CALC EXPRESSION.

A calc section is only for performing computations. Various functions are not permitted in

the calc section (e.g., @GIN and @FREE). Remove any disallowed functions to continue.

844 APPENDIX B

226. DEFAULT WORKBOOK NOT OPEN.

If all arguments are omitted to the @OLE spreadsheet interface function, then Excel must be

open with a workbook in memory (@OLE will default to using this open workbook). Open

Excel and then load the workbook containing the data for your model.

227. THE FOLLOWING RANGE: RANGE_NAME MUST HAVE A COLUMN COUNT

EQUAL TO THE NUMBER OF MODEL OBJECTS BEING

IMPORTED/EXPORTED.

When importing values from or exporting values to a workbook you need to consider the

number of model objects involved. When multiple objects are being either sent to or received

from a single range in a workbook, the number of columns in the range must coincide with

the number of model objects. Keep in mind that a derived set counts as more than one object

depending upon its dimension. You must either adjust the size of the workbook range to the

correct number of columns or edit the set of model objects involved in the interface statement.

228. INVALID API PARAMETER INDEX.

The parameter index you specified as part of the APISET command is not valid. Refer to the

LINDO API documentation for a list of valid parameter indices.

229. INVALID API PARAMETER TYPE.

The parameter type you specified as part of the APISET command is not valid. The

parameter type must be specified as either “int” for integer or “double” for double precision

floating point. Refer to the LINDO API documentation for a list of valid parameter indices

and their types.

230. INVALID API PARAMETER VALUE.

The parameter value you specified as part of the APISET command is not valid. Refer to the

LINDO API documentation for a list of valid parameter indices and their permissible values.

231. UNABLE TO SET LINDO API PARAMETER.

The parameter value you specified as part of the APISET command is not valid. Refer to the

LINDO API documentation for a list of valid parameter indices and their permissible values.

To clear all parameter values set with APISET enter the command: APISET DEFAULT.

232. RANGE ANALYSIS NOT AVAILABLE ON QUADRATIC PROGRAMS.

LINGO cannot currently perform range analysis on quadratic programs. You’ll need to

disable range analysis by running the LINGO|Options command, selecting the General Solver

tab, and set the Dual Computations option to disable range analysis. On platforms other than

Windows, you’ll need to set the DUALCO option to disable range analysis.

233. THE DEBUGGING PROCESS WAS INTERRUPTED.

You interrupted the model debugger, before it could complete its analysis. Given this, the

resulting report will be incomplete or empty.

ERROR MESSAGES 845

234. N LARGE NUMBER(S) WERE TRUNCATED TO A VALUE OF:

 <MACHINE_INFINITY>.

You attempted to input one or more numbers that are too large to be handled on your

hardware. LINGO reduced the numbers to your machine’s infinity. In general, you should

scale your models so that very large numbers are not required.

235. THE MODEL IS NONLINEAR AND MAY NOT BE GENERATED AS A LINEAR

 PROGRAM

You have attempted to generate a nonlinear model with the Assume model is linear option

enabled. You will need to run the LINGO|Options command, select the Model Generator tab,

and disable this option. On platforms other than Windows, you will need to issue the SET

LINEAR 0 command.

236. INCORRECT @FORMAT USAGE IN AN OUTPUT STATEMENT.

The arguments to an @FORMAT() reference are not valid. @FORMAT() requires one

numeric argument (the numeric value to be formatted) and one text argument (the format

template). For example,

@FORMAT(X, ’14.5g’)

will cause X to be displayed using 5 significant digits in a field of 14 characters.

237. RANGE ANALYSIS NOT CURRENTLY AVAILABLE ON THIS MODEL.

LINGO does not have range analysis data available for the model. You’ll need to disable

range analysis by running the LINGO|Options command, selecting the General Solver tab,

and set the Dual Computations option to enable range analysis. You should then re-solve the

model.

238. OBJECTS DISPLAYED BY @TABLE() ARE LIMITED TO A DIMENSION OF: 16.

The @TABLE() function can be used to display sets and attributes in tabular format. At the

moment, these objects are limited to a maximum dimension of 16, which should be more than

adequate for most models.

239. A REPORT IS TOO WIDE TO DISPLAY. INCREASE THE PAGE WIDTH LIMIT

AND TRY AGAIN.

You have requested an report that is too wide for the current page width setting. You will

need to increase this setting by running the LINGO|Options command, selecting the Interface

tab and then increase the Width parameter in the Page Size Limits box. On platforms other

than Windows, you will need to adjust the line width parameter with the SET LINLEN

command.

240. INVALID USE OF @TABLE() OUTPUT FUNCTION.

The model contains an invalid reference to the @TABLE() function. The valid forms of

arguments lists for @TABLE() are:

 @TABLE(AttrName|SetName)

 @TABLE(AttrName|SetName, HzPrimSet)

 @TABLE(AttrName|SetName, HzPrimSet1,…, HzPrimSetI)

 @TABLE(AttrName|SetName, HzPrimSet1,…, HzPrimSetK)

846 APPENDIX B

 @TABLE(AttrName|SetName, HzPrimSet1,…, HzPrimSetN, NHz)

Currently, @TABLE() output can only be routed to etiher the standard output device or text

files via the @TEXT() interface function.

241. @IFC STRUCTURE IS TOO DEEPLY NESTED.

Calc sections can use @IFC/@ELSE statements to implement conditional branching.

Presently, you may nest @IF statements up to 64 levels deep. You will receive this error

message if your model exceeds this limit.

242. INVALID USE OF @IFC CONSTRUCT.

Calc sections can use @IFC/@ELSE statements to implement conditional branching. You

will receive this error message if an @IFC is note being used correctly. An example would

be an @ELSE statement appearing before a corresponding @IFC. Refer to the

documentation on the use of @IFC for more information.

243. MULTIPLE @ELSE BLOCKS WERE FOUND.

Calc sections can use the @IFC/@ELSE statements to implement conditional branching.

You will receive this error message if a compound @IFC statement contained more than one

@ELSE branch.

244. @IFC CONTROL STRUCTURE ONLY ALLOWED IN CALC SECTIONS.

Calc sections can use the @IFC/@ELSE statements to implement conditional branching.

You have attempted to use these statements outside of a Calc section. You will need to either

move them to a Calc section or delete them.

245. AN UNTERMINATED @IFC STRUCTURE WAS FOUND.

Calc sections can use the @IFC/@ELSE statements to implement conditional branching. An

@IFC/@ELSE compound statement is terminated with a right parenthesis, which, in this

instance, is missing. You will need to add the terminating right parenthesis at the appropriate

place.

246. THE @SOLVE() FUNCTION IS ONLY VALID IN CALC SECTIONS.

A number of command functions are allowed only in Calc sections, one of which is the

@SOLVE() function for solving a model. You will need to either delete the function

reference or move it to a Calc section.

247. INVALID USE OF A SUBMODEL NAME.

LINGO allows you to define submodels within a main model. These submodels can be

solved using the @SOLVE() function in Calc sections. Your model has an invalid reference

to a submodel. You must remove this reference in order to proceed.

248. SUBMODEL NAMES MUST BE UNIQUE.

LINGO allows you to define submodels within a main model using the SUBMODEL

statement. These submodels can be solved using the @SOLVE() function in Calc sections.

You have attempted to use the same submodel name more that once. You must change the

names of the submodels so that all the names are unique.

ERROR MESSAGES 847

249. SUBMODEL NOT VALID HERE.

LINGO allows you to define submodels within a main model using the SUBMODEL

statement. These submodels can be solved using the @SOLVE() function in Calc sections.

You have attempted to locate a submodel in an invalid section of the model. Please move the

submodel to the main part of the model, outside of all Data, Calc and Init sections.

250. SUBMODEL NOT DEFINED YET.

LINGO allows you to define submodels within a main model using the SUBMODEL

statement. These submodels can be solved using the @SOLVE() function in Calc sections.

You have referenced a submodel that has not been defined. Submodels must be defined in

the model before any occurrences of references to them. You may be able to solve this error

by moving the submodel in question to an earlier position in the model text.

251. MODEL CONTAINS AN UNTERMINATED SUBMODEL STATEMENT.

LINGO allows you to define submodels within a main model using the SUBMODEL

statement. These submodels can be solved using the @SOLVE() function in Calc sections.

Your model contains a submodel without a terminating ENDSUBMODEL statement.

252. A VARIABLE OR ROW REFERENCE WAS EXPECTED.

LINGO was expecting a reference to a row or variable name. You will need to correct the

problem to continue.

253. OPERATION ALLOWED ONLY IN CALC SECTIONS.

A number of operators are allowed only in Calc sections. An example would be the

@SOLVE() function. You will need to either delete the function reference or move it to a

Calc section.

254. INVALID PARAMETER ARGUMENT FOR @SET(PARAM, VALUE).

The @SET() function can be used in a Calc section to set any of LINGO’s parameters . You

must provide the parameter’s name as text, and a permissible value for the parameter. For

instance, to turn set the iteration limit to one million, you would use @SET(‘ITRLIM’, 1.e6).

You can refer to documentation on the SET command to learn all the parameters and their

names.

255. IMPROPER USE OF A CALC COMMAND FUNCTION.

You may include a Calc section in your model that contains a series of commands for LINGO

to execute. Examples would include the @SOLVE() and @WRITE() command functions.

This error is triggered when one of these command functions is used incorrectly. You should

refer to the documentation to learn the correct usage and syntax for the function.

256. @WHILE() ALLOWED ONLY IN CALC SECTION.

At present, the @WHILE() statement is allowed only in calc sections and may not appear in

the model section. You may be able to use the @FOR() statement instead.

257. INVALID ARGUMENT FOR @SET(‘PARAM’, VALUE).

In order to set a parameter via the @SET command you must specify a correct parameter

name in quotes and a correct value. Please be sure you have spelled the parameter name

848 APPENDIX B

correctly and that you have placed it in quotes. Also, check that the specified value is

permissible for the parameter.

258. MODEL EXECUTION HALTED. STOP STATEMENT ENCOUNTERED.

LINGO encountered an @STOP() statement while processing a calc section. This terminates

execution of the current model. If a text string was specified in the reference to @STOP(),

then it will also be displayed as part of this message. @STOP is typically used in response to

some unexpected condition.

259. FILE NAME LENGTH EXCEEDS: N

You’ve specified a file name whose length exceeds the maximum length allowed of N

characters. You will need to shorten the length of the file name to continue.

260. @BREAK() MAY ONLY APPEAR IN @WHILE() AND @FOR() LOOPS INSIDE

CALC SECTIONS

The @BREAK() statement is used for unconditional breaks out of @FOR() and @WHILE()

loops. It may also only be used inside calc sections, and is not valid in the model section.

You will need to delete the reference to @BREAK() to continue.

261. INVALID ARGUMENT FOR @RELEASE(). ARGUMENTS MUST BE A SINGLE

 VARIABLE REFERENCE, E.G., @RELEASE(X).

The @RELEASE() statement is used in calc sections to release a variable that was previously

fixed so it may once again become optimizable. To release an entire attribute, place the

@RELEASE() reference in an @FOR() loop, e.g., @FOR(SET(I): @RELEASE(X(I))).

262. INVALID ARGUMENT FOR @APISET(PARAM-ID, ‘INT|DOUBLE’, VALUE).

The @APISET() statement is used in calc sections to set options in the LINDO API

(LINGO’s solver engine) that aren’t available through the standard option set in LINGO. The

argument list consists of a parameter-id (an integer value), a string specifying if the parameter

is an integer or a double precision value, and the parameter value. More information on the

parameters available in the LINDO API may be found in the LINDO API documentation and

the Lindo.h header file included with your LINGO installation.

263. MODEL WAS FOUND TO BE FEASIBLE AND CANNOT BE DEBUGGED.

You have run the LINGO|Debug to find the infeasibilities in a model that was found to be

feasible. In which case the model debugger will stop its search for an infeasible subset of

constraints.

264. LINEARIZED MODEL TOO LARGE FOR THIS VERSION.

You have enabled LINGO's linearization option, which attempts to rewrite nonlinear models

in an equivalent, but linear, manner. This requires the addition of variables and constraints,

whose increased counts have exceeded the limits of your version. You will need to either

disable linearization or upgrade to a larger capacity version of LINGO.

265. DUPLICATE VARIABLES WERE FOUND IN THE SEMI-CONTINUOUS SET.

LINGO supports semi-continuous (SC) variables. SC variables are restricted to being either

0, or to lie within some non-negative range. Semi-continuous variables are declared using the

@SEMIC statement. A variable may only be declared semi-continuous once in a model.

ERROR MESSAGES 849

You will receive this error message if one or more variables are declared semi-continuous

more than one time.

266. BOUNDS OUT OF RANGE ON A SEMI-CONTINUOUS VARIABLE.

LINGO supports semi-continuous (SC) variables. SC variables are restricted to being either

0, or to lie within some non-negative range. Semi-continuous variables are declared using the

@SEMIC statement. The syntax for @SEMIC is:

 @SEMIC(lower_bound, variable, upper_bound)

You will receive this error whenever the variable bounds fall outside the range permitted by

LINGO.

267. @SPCHANCE, @SOS OR @CARD SET LABEL EXCEEDS LIMIT OF: <N>

LINGO supports chance-constrained constraint sets, special ordered sets (SOS) of variables

as well as cardinality sets of variables. Each set is denoted by a unique name/label, which is

limited to <N> characters in length. You will need to choose a shorter label name for the

variable set.

268. VARIABLE SET LABEL USED TO REPRESENT MORE THAN ONE SET TYPE.

LINGO supports chance-constrained constraint sets, special ordered sets (SOS) of variables

as well as cardinality sets of variables. Each set is denoted by a unique label/name. You

have attempted to use the same set label for different set types (e.g., SOS1 and SOS2). Check

to be sure you've specified the correct set name and/or set type.

269. THE FIRST ARGUMENT TO @SOS/@CARD MUST BE A STRING.

LINGO supports special ordered sets (SOS) of variables as well as cardinality sets of

variables. Each set is denoted by a unique label/name. The first argument to the @SOS and

@CARD functions must be a string representing the label name for the particular variable set.

Furthermore, the label name must be contained in single or double quotation marks.

270. THE SOS/CARD SET: <SET_NAME> CONTAINS THE FIXED VARIABLE:

<VAR_NAME>

LINGO supports special ordered sets (SOS) of variables as well as cardinality sets of

variables. All variables belonging to these sets must not be fixed, i.e., they must be

optimizable decision variables. You will need to remove the fixed variable from the

designatged set.

271. NO CARDINALITY WAS SPECIFIED FOR @CARD SET: <SET_NAME>

LINGO supports cardinality sets of variables. All variables belonging to a particular

cardinality set must sum to a specified integer value. To form a cardinbality set for variable

X, Y and Z that sums to 2, you would specify the following in your model:

@CARD('MYSET', X);

@CARD('MYSET', Y);

@CARD('MYSET', Z);

@CARD('MYSET', 2);

850 APPENDIX B

You will receive this error message when the cardinality value, @CARD('MYSET', 2) in this

case, is omitted. You will need to add a cardinality value reference for the set.

272. DUAL FORMULATIONS MAY ONLY BE GENERATED FOR LINEAR

PROGRAMS.

LINGO can generate the dual formulation for linear programming models. You have

attempted to generate the dual for a model that is not a linear program, i.e., the model is either

nonlinear or it contains integer variables. If it is possible to rewrite the model so that it

becomes linear without any integer variables, then you should be able to generate the dual

formulation. Otherwise, it will not be possible to generate the dual formulation.

273. THE LICENSE MANAGER RETURNED THE FOLLOWING ERROR:

<LICENSE_ERROR>

 LINGO's license manager was unable to find a valid license file. The license file is normally

located in your main LINGO subdirectory under the name: lndlng<version>.lic, where

<version> is the version number of your LINGO installation. You may want to examine this

file for any obvious errors or problems. The license manager will also return a brief string

with more specific information (e.g., "No dongle found"), which will be displayed as part of

this message. This additional information should help you narrow down the problem. If you

are still unable to resolve this problem, please contact LINDO Systems Technical Support for

assistance.

 274. THE MODEL CONTAINS FUNCTIONS NOT SUPPORTED BY THE GLOBAL

SOLVER.

The model contains functions not supported by the global solver. You will need to either

remove these functions or disable the global solver options.

The global solver supports most of the functions of the LINGO language. However, there are

few that aren’t currently, or can’t be supported. You may refer the Use Global Solver section

of Chapter 5 for a listing of functions not supported by the global solver.

275. A BARRIER LICENSE IS REQUIRED TO RUN BARRIER IN A CORE.

LINGO can run multiple linear programming solvers in parallel on multi-core machines. You

have requested to run the barrier solver in parallel, but your installation does not have a

license for the barrier solver. You will need to run the LINGO|Options command, go to the

Linear Solver tab, and disable the request to run the barrier solver in parallel.

276. PRIMAL2 MAY NOT BE RUN WITHOUT BARRIER RUNNING IN PARALLEL.

LINGO can run multiple linear programming solvers in parallel on multi-core machines. You

have requested to run the Primal2 solver in parallel without also requesting the barrier solver.

You will need to run the LINGO|Options command, go to the Linear Solver tab, and either

enable the barrier solver to run parallel or disable Primal2 from running in parallel.

277. INCONSISTENT BOUNDS ON VARIABLE: <NAME> IN THE SOS/CARD SET:

<SET>

LINGO supports special ordered sets (SOS) of variables as well as cardinality sets of

variables. You have specified bounds on variables in the designated set that are inconsistent

ERROR MESSAGES 851

with variables belonging to such a set. Check to be sure you've specified the bounds

correctly.

278. ERROR IN DYNAMIC SET DEFINITION FOR SET: SET_NAME.

In some instances, you may not need to explicitly define a set. Instead, you can have LINGO

infer the dimensions of the set from the number data points assigned to an attribute of the set

in the model's Data section. This is referred to as a dynamic set definition. It's not always

possible for LINGO to accurately deduce a set's dimension from a data statement, in which

case, you will receive this error message. A valid solution is to explicitly define the set in

question in the model's Sets section.

279. AN UNALLOCATED SET WAS REFERENCED: <SET_NAME>

You've referenced members of a set that has not been allocated. You must allocate sets in a

model before they can be referenced. Many times, all that is required is to move the set's

allocation to a point in the model that precedes any references to it. Set allocation refers to

the declaration of the set's members. Allocation is generally done in a sets section or in a data

section.

280. INVALID SYNTAX FOR A CALC SECTION I/O OPERATION.

You have incorrectly specified an I/O function (@TEXT, @OLE, @ODBC, @POINTER) in

a calc section. Please refer to the documentation for the correct usage of these functions.

281. I/O OPERATIONS MAY ONLY APPEAR IN CALC, DATA AND INIT SECTIONS.

You have attempted to us an I/O function (@TEXT, @OLE, @ODBC, @POINTER) in the

model section. These fucntions are available only in calc, data and init sections of a model.

Please refer to the documentation for the correct usage

282. SETS MAY ONLY BE INITIALIZED IN SETS AND DATA SECTIONS.

You have attempted to initialize a set outside of a set and data section. You will need to

move the initiation statement to the correct model section.

283. TEXT AND NUMERIC OBJECTS CAN'T BE COMBINED IN A SINGLE

@POINTER OPERATION.

You have attempted to reference both text and numeric objects in a single @POINTER

statement. A given reference to the @POINTER function can only import/export items of

one type, i.e., text or numeric. You will need to split the statement up into two or more

statements, such that each new statement only references either text or only references

numeric objects.

284. INVALID @POINTER SET I/O OPERATION. @POINTER CAN ONLY

REFERENCE ONE SET AT A TIME.

You have attempted to reference both more than one set in a single @POINTER statement. A

given reference to the @POINTER function can only import/export one set at a time. You

will need to split the statement up into two or more statements, such that each new statement

only references no more than one set.

285. INCORRECT USAGE OF @RANK.

You used the @RANK sorting function incorrectly. Proper usage is:

852 APPENDIX B

 ATTR_RANK = @RANK(ATTR1[,...,ATTRN);

where ATTR_RANK receives the ranking of attribute ATTR1, with ties being broken by the

optionally supplied attributes ATTR2 through ATTRN. In addition, @RANK is only valid in

calc sections. Please refer to the documentation on @RANK for more details.

286. INCORRECT USAGE OF @SOLU.

You used the @SOLU sorting solution report function incorrectly. This function displays the

standard LINGO solution report and may be called in calc sections. Proper usage is:

 @SOLU([0|1[, OBJECT_NAME[, ''HEADER_TEXT'']]]);

where the first argument is set to 1 if only nonzero variable values are desired (and binding

rows), OBJECT_NAME is the optional name of an object to report on (the entire report will

be generated otherwise), and the optionalHEADER_TEXT is a header line to display in the

report. Please refer to the documentation on @SOLU for more details.

287. INCORRECT USAGE OF @SPSTGVAR/@SPSTGRNDV/@SPSTGROW.

You used either the @SPSTGVAR, @SPSTGRNDV or @SPSTGROW function incorrectly.

Proper usage is:

@SPSTG[VAR | RNDV | ROW](STAGE, VARIABLE_OR_ROW_NAME);

where the first argument is the stage of the variable or row and the second argument the name

of the variable or row.

288. INVALID STAGE VALUE.

An invalid stage value was specified. Stage values must be non-negative, integer values. In

addition, random variables must have stages of 1, or higher. Please correct the indicated stage

value and retry.

289. STOCHASTIC PROPERTIES MAY ONLY BE ASSIGNED ONCE.

You may assign stochastic properties to variable and rows one time only. Please remove

multiple declarations and retry.

290. INVALID DECLARATION OF A STOCHASTIC DISTRIBUTION.

A stochastic distribution declaration was incorrectly specified. Please refer to the Declaring

Distributions section of Chapter 12 for clarification.

291. NAME IS TOO LONG.

The indicated name in the model exceeds the maximum name length of 64 characters. You

must shorten the name to continue.

292. NAME ALREADY IN USE.

The indicated name is already in use. To continue, you will need to change the.name so that

it is unique.

293. INVALID DISTRIBUTION PARAMETER.

The indicated parameter is invalid for the chosen probability distribution. Please refer to the

Declaring Distributions section of Chapter 12 for clarification.

ERROR MESSAGES 853

294. INVALID USE OF @SPTABLEOUTC.

The @SPTABLEOUTC function for declaring discrete distribution outcomes was used

incorrectly. The correct usage is:

@SPTABLEOUTC('DIST_NAME', OUTC_PROB, OUTC_VAL1[,...,

OUTC_VALN])

For more information, refer to the Declaring Distributions Using Outcome Tables in Chapter

14.

295. OUTCOME TABLE NAME NOT PREVIOUSLY DEFINED.

You have attempted to use the designated outcome table name before defining it. For more

information on defining outcome tables, please refer to the Declaring Outcome Tables

section of Chapter 14. Note that the declaration of an outcome table must occur before the

name is used for other purposes.

296. INCORRECT NUMBER OF OUTCOMES FOR OUTCOME TABLE.

When declaring an outcome table using @SPDISTTABLE you declare its total number of

outcomes. The number of outcomes loaded via @SPTABLEOUTC does not match this total

number for the specified table. Please check the declaration of the table and the calls to

@SPTABLEOUTC. For more information on defining outcome tables, please refer to the

Declaring Outcome Tables section of Chapter 14.

297. INVALID USE OF @SPTABLERNDV.

The @SPTABLERNDV is used to associate random variables with an instance of a discrete

outcome table. The format of @SPTABLERNDV is:

@SPTABLERNDV('DIST_INSTANCE_NAME', RANDOM_VAR_1[, ... ,

RANDOM_VAR_N]);

Please check to see that the arguments conform to this syntax. For more information on

defining outcome tables and using @SPTABLERNDV, please refer to the Declaring Outcome

Tables section of Chapter 14.

298. INCORRECT NUMBER OF RANDOM VARIABLES ASSIGNED TO

DISTRIBUTION.

The @SPTABLERNDV is used to associate random variables with an instance of a discrete

outcome table. The format of @SPTABLERNDV is:

@SPTABLERNDV('DIST_INSTANCE_NAME', RANDOM_VAR_1[, ... ,

RANDOM_VAR_N]);

When the parent outcome table was defined using @SPDISTTABLE, the number of

associated random variables was also declared. The number of variables associated with the

specified outcome table instance does not match this declared number. For more information

on defining outcome tables and using @SPTABLERNDV, please refer to the Declaring

Outcome Tables section of Chapter 14.

854 APPENDIX B

299. VARIABLES ASSIGNED TO DISTRIBUTIONS MUST BE DESIGNATED AS

RANDOM VARIABLES.

All variables associated with a probability distribution must first be declared as random

variables using the @SPSTGRNDV function. For more information on identifying random

variables and associating them with distributions, please refer to the Language Features for

SP Models section in Chapter 14.

300. RANDOM VARIABLES CAN ONLY BE ASSIGNED TO ONE DISTRIBUTION.

Only one random variable may be associated with a probability distribution. For more

information on identifying random variables and associating them with distributions, please

refer to the Language Features for SP Models section in Chapter 14.

301. INVALID USE @SPTABLEINST.

The @SPTABLEINST function is used to declare a particular instance of an outcome table.

The syntax for @SPTABLEINST is as follows:

@SPTABLEINST('PARENT_TABLE_NAME', 'TABLE_INSTANCE_NAME')

The parent table must have already been declared using @SPDISTTABLE. For more

information on declaring outcome tables and using @SPTABLEINST, please refer to the

Declaring Outcome Tables section of Chapter 14.

302. INVALID USE @SPSAMPSIZE.

The @SPSAMPSIZE function is used to declare a sample size for a particular stage of a

stochastic programming model. The syntax for @SPSAMPSIZE is as follows:

@SPSAMPSIZE(STAGE, SAMPLE_SIZE)

For more information on using @SPSAMPSIZE, please refer to the Declaring Parametric

Distributions section of Chapter 14.

303. PROBABILITIES DO NOT SUM TO 1 FOR OUTCOME TABLE.

Outcome tables are loaded with outcomes and their respective probabilities using the

@SPDISTOUTC function. You will receive this error message if the sum of the probabilities

for all outcomes for the specified outcome table do not sum to 1. You should check the

probability values for the specified distribution. For more information on defining outcome

tables and using @SPTABLEOUTC, please refer to the Declaring Outcome Tables section of

Chapter 14.

304. NO OUTCOMES DECLARED FOR OUTCOME TABLE.

Outcome tables are loaded with outcomes and their respective probabilities using the

@SPDISTOUTC function. You will receive this error message if no outcomes were declared

for the specified outcome table. You will need to load at least one or more outcomes into the

specified table instance. For more information on defining outcome tables and using

@SPTABLEOUTC, please refer to the Declaring Outcome Tables section of Chapter 14.

ERROR MESSAGES 855

305. NO RANDOM VARIABLES ASSIGNED TO STAGE.

Each stage other than stage 0 of a stochastic programming model must have at least one

random variable assigned to it. Random variables are assigned to stages using the

@SPSTGRNDV function, which has the following syntax:

@SPSTGRNDV(STAGE, VARIABLE_NAME);

You will need to assign a random variable to the specified stage or reduce the number of

stages in the model. For more information on identifying random variables and associating

them with distributions, please refer to the Language Features for SP Models section in

Chapter 14.

306. SP CORRELATION TYPES CAN'T BE MIXED IN THE SAME MODEL.

There are three methods available for inducing correlations between random variables -

Pearson, Kendall and Spearman. You may use only one method throughout an entire model.

Trying to use more than one particular method will trigger this error message.

307. STOCHASTIC PROGRAMS MUST HAVE AT LEAST TWO STAGES.

Stochastic programs must have two, or more, stages. The first stage, stage 0, is the initial

decision stage. The second stage, stage 1, is a recourse decision stage which occurs after the

stage 1 random variable values have been revealed. Subsequent rounds of random variable

revelations and recourse decisions are permitted but not required. For more information on

adding random variables and stages to an SP model, please refer to the Language Features for

SP Models section in Chapter 14.

308. LINEARIZATION OPTION NOT PERMITTED ON STOCHASTIC PROGRAMS.

LINGO has the capability to reformulate certain nonlinear expressions so that they become

linear, while maintaining mathematical equivalency to the original model. This linearization

option is only available on deterministic models. If you enable the linearization option on SP

models, you will receive this error message. An option is to enable the global solver instead

(assuming your license allows for this optional feature). If the SP model can be completely

linearized, the global solver will realize this and perform the linearization, thereby allowing

for a globally optimal solution.

309. THE DETEQ MODEL GENERATED BY THE SP SOLVER EXCEEDS THE

CAPACITY OF THIS VERSION.

LINGO's SP solver generates a deterministic model to solve the original SP model. This

model is called the deterministic equivalent (deteq). Depending on the number of stages,

random variables and samples sizes, the deteq may get to be very large. In which case, there

is a possibility that it will exceed the capacity of your LINGO license. This can occur even

when the core model lies well within the capacity of your license. You will need to either

reduce the size of the model (by using fewer stages, less random variables or smaller sample

sizes), or upgrade to a license with more capacity.

310. INVALID SP CORRELATION MATRIX.

The correlation matrix entered for the random variables using @SPCORREL is not valid.

Please check the correlations to see that they lie within a range of [-1,+1]. Also check to see

856 APPENDIX B

that explicit correlation values lie within any implied range, e.g., CORR(X, Y) = .9 and

CORR(Y, Z) = .9 implies that CORR(X, Z) is at least .62.

311. ATTEMPT TO CORRELATE NON-RANDOM VARIABLES.

In a stochastic programming (SP) model, only random variable may be correlated via the

@SPCORREL function. In addition, the correlated variables must be flagged as random

variables using the @SPSTGRNDV function prior to inputting their correlation coefficient

using @SPCORREL.

312. INVALID CORRELATION COEFFICIENT.

You've input an invalid correlation coefficient that lies outside [-1,+1]. Please correct the

coefficient's value and try again.

313. SCENARIO INDICES MUST BE INTEGRAL.

In referring to a scenario, you've attempted to use an out-of-range index. In other words, the

index is either less than 1 or greater than the total number of scenarios. Please correct the

index and retry.

314. SCENARIO INDEX OUT OF RANGE.

The scenario index must be an integer greater-than-or-equal-to 1 and may not exceed the total

number of scenarios in the model.

315. THE FOLLOWING SET MEMBER: SET-MEMBER APPEARS MORE THAN ONCE

IN SET: SET-NAME.

The indicated set member, SET-MEMBER, appears more than one in its set SET-NAME.

Please correct the duplicated set members to continue.

316. UNABLE TO GENERATE DETERMINISTIC EQUIVALENT.

LINGO's SP solver generates a deterministic model to solve the original SP model. This

model is called the deterministic equivalent (deteq). Depending on the number of stages,

random variables and samples sizes, the deteq may get to be very large. There is a remote

chance that LINGO will not be able to generate the deteq. This would be a very unusual

situation. If there is no obvious reason for this problem, you may wish to contact LINDO

Systems Technical Support desk for assistance.

317. THE MODEL IS NOT A STOCHASTIC PROGRAM.

You've attempted to request information relevant only to stochastic programs while running a

deterministic model.

318. THIS OPERATION REQUIRES THE STOCHASTIC PROGRAMMING OPTION.

You're attempting to solve a stochastic program (SP) on a LINGO installation that does not

support the SP option. You will need to upgrade your license to include the option.

319. ONE OR MORE SP SCENARIO SOLUTIONS DO NOT EXIST.

LINGO was unable to generate solutions for all the models scenarios. This would be a very

unusual situation. If there is no obvious reason for this problem, you may wish to contact

LINDO Systems Technical Support desk for assistance.

ERROR MESSAGES 857

320. @SPLOADSCEN() FAILED FOR SCENARIO: N.

LINGO was unable to load the solution for scenario N via the @SPLOADSCEN function.

This would be an unusual situation. If there is no obvious reason for this problem, you may

wish to contact LINDO Systems Technical Support desk for assistance.

321. UNABLE TO GENERATE INDIVIDUAL SCENARIO MODEL.

LINGO was unable to generate a requested individual scenario for an SP mode. This would

be an unusual situation. If there is no obvious reason for this problem, you may wish to

contact LINDO Systems Technical Support desk for assistance.

322. @CHART NOT SUPPORTED IN LINGO API.

The @CHART function for generating charts is only supported in the interactive version of

LINGO. If you need charting support in an application that call the LINGO API, then you

will need to find a third party charting tool.

323. THE FOLLOWING RANDOM VARIABLE IS NOT ASSIGNED TO A STAGE.

Each random variable declared with @SPSTGRNDV must also be assigned to a stochastic

distribution. LINGO will display the name of the first unassigned random variable. You will

need to use either @SPDISTTABLE or @SPTABLERNDV to assign the variable to a

distribution.

324. THE FOLLOWING RANDOM VARIABLE ATTRIBUTE HAS ELEMENTS

BELONGING TO DIFFERENT STAGES.

The attribute in question was assigned to an outcome table using @SPDISTTABLE. All

elements of the attribute must be random variables and must all be assigned to the same stage

using the @SPSTGRNDV function. Please check to see that all the elements of the attribute

have been assigned to the correct and identical stage.

325. THE FOLLOWING PROBABILITY OR OUTCOME ATTRIBUTE CONTAINS

NON-CONSTANT ELEMENTS.

The attribute in question was used to construct an outcome table distribution using

@SPDISTTABLE. All elements of outcome and probability attributes must be constants and

may not be optimizable. Please assign appropriate values to each element of the attribute.

326. THE SP SAMPLE SIZES ARE NOT LARGE ENOUGH TO GENERATE A

MEANINGFUL SAMPLE.

The sample sizes in your SP model are not large enough to allow for generation of a

meaningful sample of the random variables. Note that models that induce correlation between

random variable will require larger sample sizes. You will need to use the @SPSAMPSIZE

function to increase the sample sizes.

327. UNSUPPORTED MPI INSTRUCTION CODE: N

You are attempting to read an MPI format file that contains an instruction code not currently

supported by LINGO. LINGO supports most of the frequently used MPI instruction codes,

however, it does not support 100% of the codes offered by the MPI format. In order to

continue, you will need to either remove the unsupported function code or rewrite the

expression using supported instructions codes.

858 APPENDIX B

328. MULTIPLE WILDCARD CHARACTERS (*) NOT SUPPORTED.

You are attempting to use the multi-character wildcard (*) more than once in a field. You

will need to either eliminate all but one asterisk or use multiple single-character wildcards

(%).

329. ERROR EXECUTING AN @CHART FUNCTION.

An @CHART function failed to draw the requested chart. This is typically due to lack of

memory. Try closing some windows and /or other applications and then run the model again.

 330. INVALID CHART TYPE.

You've requested an unsupported chart type. Currently supported types are: Bar, Bubble,

Contour, Curve, Histogram, Line, Pie, Radar, Scatter, or Surface.

 331. INVALID ARGUMENT FOR AN @CHART FUNCTION.

You've specified an invalid argument for an @CHART function. Please refer to the

@CHART documentation for information on valid argument syntax.

332. @CHART NOT SUPPORTED IN LINGO API.

The @CHART function for generating charts is only supported in the interactive version of

LINGO. If you need charting support in an application that call the LINGO API, then you

will need to find a third party charting tool.

333. NOT USED

Error code not currently in use.

334. NO RECOURSE VARIABLES ASSIGNED TO STAGE: N

You have a stochastic program without recourse variables in stage N. You will need to use

the @SPSTGVAR function to assign one or more recourse variables to stage N.

335. INVALID @SPCHANCE USAGE.

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. You identify these

constraint sets with the @SPCHANCE function. Refer to the documentation on

@SPCHANCE for information on proper syntax.

336. CHANCE-CONTRAINED PROGRAMS CAN CURRENTLY HAVE ONLY ONE

STAGE.

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. At present, the CCP

solver can handle only single stage models.

337. THE FOLLOWING CHANCE-CONSTRAINED SET IS EMPTY: SET-NAME

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. You've established a

CCP set with the @SPCHANCE function but have assigned any constraints to the set. Refer

to the documentation on @SPCHANCE for information on proper syntax.

ERROR MESSAGES 859

338. THE CHANCE-CONSTRAINED SET NAME IS ALREADY IN USE.

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. You may establish

CCP sets with the @SPCHANCE function but set names must be unique and may not be

reused. Refer to the documentation on @SPCHANCE for information on establishing CCP

sets.

339. THE CHANCE-CONSTRAINED SET NAME WAS NOT PREVIOUSLY DEFINED.

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. Refer to the

documentation on @SPCHANCE for information on defining a CCP set.

340. THE CHANCE-CONSTRAINED ROW: ROW-NAME DOES NOT CONTAIN ANY

RANDOM VARIABLES.

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. Each constraint in a

CCP set must contain at least one random variable. You will need to use the @SPRNDVAR

function to identify at least one random variable in the row.

341. THE OBJECTIVE ROW MAY NOT BE ASSIGNED TO A CHANCE-

CONSTRAINED SET.

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. Note that a model's

objective function may not be assinged to a CCP set only constraints may be assigned to a

CCP set.

342. THE 'ASSUME MODEL IS LINEAR' OPTION MAY NOT BE APPLIED TO

STOCHASTIC PROGRAMS.

The 'Assume Model is Linear' option is an option available for linear models that reduces

peak memory usage. This option is currently not available for stochastic and chance-

constrained programs.

343. STOCHASTIC MODELS MUST HAVE AT LEAST TWO SCENARIOS.

A stochastic program must have at least two scenarios. Without at least two scenarios, the

model would have no stochastic properties. You will need to increase the sample size using

the @SPSAMPSIZE function.

344. A NON-CHANCE-CONSTRAINED ROW CONTAINS RANDOM VARIABLES:

ROW-NAME

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. Each random

variable in a CCP must appear in a CCP constraint set. TYou will get this error message

when a random variable is found in a row not contained in any CCP set. Refer to the

documentation on @SPCHANCE for information on how to add a constraint to a CCP set.

345. THE FOLLOWING ROW HAS MORE THAN ONE CCP ASSIGNMENT.

Chance-constrained programs (CCPs) are stochastic models that allow one or more sets of

constraints to be violated up to a specified percentage of total scenarios. You may establish

860 APPENDIX B

CCP sets with the @SPCHANCE function, but each constraint may appear in no more that

one CCP set. Refer to the documentation on @SPCHANCE for more information on

establishing CCP sets.

346. AN INVALID SET REFERENCE WAS FOUND INSIDE THE MODEL'S

CONSTRAINTS.

There is a reference to a set or set member in a constraint. You will need to remove this

reference in order to continue.

347. AN INVALID/UNSUPPORTED FUNCTION CODE WAS ENCOUNTERED.

The model was found to contain an unsupported function. In general, this error message

indicates a problem in processing the model. You should contact technical support if you

encounter this error.

348. UNABLE TO COMPLETE ALTER COMMAND -- PROCESSING TERMINATED.

An ALTER command to edit the model was too complicated for execution. You should

simplify the command by breaking it up into multiple, more compact commands.

349. THE FOLLOWING VARIABLE VIOLATES ITS BOUNDS: <VAR_NAME>

This error message indicates that a variable whose value was set in either a calc or data

section was found to violate its bounds. You can either change the variable's value or modify

its bounds to include the variable's value. Another solution is to disable the Enforce bounds

in CALC and DATA option on the Model Generator tab of the LINGO|Options command.

350. THE FOLLOWING VARIABLE VIOLATES ITS INTEGRALITY CONDITION:

<VAR_NAME>

This error message indicates that a variable whose value was set in either a CALC or DATA

section was found to violate an integrality condition set with either the @BIN or @GIN

functions. You can either change the variable's value to an integer or disable the Enforce

bounds in CALC and DATA option on the Model Generator tab of the LINGO|Options

command.

351. THE MULTISTART OPTION MAY NOT BE USED IN CONJUNCTION WITH SLP.

You have selected both the Multistart Solver and the Successive Linear Programming (SLP)

Solver options. These two solvers may not be used simultaneously. In order to continue,

LINGO will disable the Multistart option. You will need to disable at least one of these two

options in order to eliminate this error message.

352. NESTED CALC AND/OR PROCEDURE SECTIONS NOT ALLOWED.

Calc sections and/or model procedures may not be nested inside one another. You will need

to separate them into individual sections.

353. THE LIMIT ON RECURSIVE PROCEDURE CALLS IS: N

There is a limit on the number of times a procedure may call itself. You will need to reduce

the number of recursive calls.

ERROR MESSAGES 861

354. DEBUGGING CURRENTLY NOT SUPPORTED FOR STOCHASTIC MODELS.

The model debugger may not currently be used on stochastic models. As an alternative, you

may generate the stochastic equivalent of the model and debug it. One common problem that

makes stochastic models infeasible is having continuous random variables that can take on

negative values. These negative values may get assigned to other variables with default lower

bounds of zero, making the stochastic model infeasible.

355. INVALID SET MEMBER FOR INSERTION INTO SET: SET-NAME

An attempt has been made to insert an invalid set member into set SET-NAME using the

@INSERT function. Set members may only be inserted into derived sets, and the member

being inserted must be a member of the derived set's parent primitive set(s). The following

example illustrates:

MODEL:

SETS:

S1 /M1, M2, M3/;

S2(S1);

ENDSETS

CALC

!The following is valid because M2 is a member

of S2's parent primitive set, S1;

@INSERT(S2, M2);

!The following is not valid because M4 is not a

member of S1;

@INSERT(S2, M4);

!The following is not valid because S1 is not a

derived set;

@INSERT(S1, M4);

ENDCALC

END

862 APPENDIX B

356. INSERTING MEMBERS INTO PRIMITIVE SETS IS NOT CURRENTLY

SUPPORTED.

An attempt has been made to insert a set member into a primitive set using the @INSERT

function. Set members may only be inserted into derived sets, and the member being inserted

must be a member of the derived set's parent primitive sets. The following example

illustrates:

MODEL:

SETS:

S1 /M1, M2, M3/;

S2(S1);

ENDSETS

CALC

!The following is valid because M2 is a member

of S2's parent primitive set, S1;

@INSERT(S2, M2);

!The following is not valid because M4 is not a

member of S1;

@INSERT(S2, M4);

!The following is not valid because S1 is not a

derived set;

@INSERT(S1, M4);

ENDCALC

END

357. THE ENTIRE MODEL IS FIXED. YOU MAY NEED TO DISABLE FIXED

VARIABLE REDUCTION.

When LINGO exports a model to either MPS of MPI format, it first substitutes out any fixed

variables in the model. The purpose is to export a model that exactly matches the one LINGO

is solving internally. In this instance, all the variables were found to be fixed in value, leaving

no model to export. You may disable fixed variable reduction with the LINGO | Options |

Model Generator | Fixed Var Reduction option. Keep in mind, however, that turning off

variable reduction may result in a nonlinear model, which may not be represented in MPS

format.

358. IMPROPER USE OF @BLOCKROW(BLOCKID, ROWNAME) FUNCTION.

The @BLOCKROW function is used in conjunction with the branch-and-price (BNP) solver

to assign rows to blocks. The BNP solver requires that a model be partitioned into two or

more blocks of mostly independent rows. The BLOCKID argument is a non-negative integer,

indicating the block index, while the ROWNAME argument is the name of a row, perhaps

indexed, that appears in the model. For more information on @BLOCKROW, please refer to

the BNP solver documentation.

ERROR MESSAGES 863

359. UNABLE TO FIND A BLOCK PARTITIONING.

The branch-and-price (BNP) solver requires that a model be partitioned into two or more

blocks of mostly independent rows. This error typically occurs if you are explicitly providing

the block structure (as opposed to letting LINGO find the block structure) and an input error

was found in the block assignments. For more information on @BLOCKROW, please refer to

the BNP solver documentation.

360. INVALID PROCEDURE REFERENCE.

Procedures may only be called from within calc sections and may not be embedded in other

statements. Refer to the documentation on procedure calls for more information.

361. INVALID USE OF @INTEGRAL.

You have not correctly set up a call to LINGO's numeric integration function, @INTEGRAL.

The correct usage is:

@INTEGRAL(PROCEDURE, X, LB_X, UB_X, Y);

where PROCEDURE refers to the name of the procedure containing the function to integrate,

X is the variable to integreate over, LB_X and UB_X are the lower and upper bounds on X,

and Y is the variable that stores the value of the function being integrated. Refer to the

@INTEGRAL documentation for more information.

362-1000. NOT USED.

Note: Error messages 1001 through 1016 pertain only to the Windows version of LINGO.

1001. NO MATCHING PARENTHESIS WAS FOUND.

LINGO did not find a closing parenthesis for the selected parenthesis. Add a closing

parenthesis and try again.

1002. UNABLE TO SOLVE ... NO MODEL CURRENTLY IN MEMORY.

LINGO does not have the text of a model available to attempt to solve. Select a model

window and try solving again.

1003. LINGO IS BUSY AND CAN’T COMPLETE YOUR REQUEST RIGHT NOW. TRY

AGAIN LATER.

You have attempted an operation that is not possible because LINGO is currently solving a

model. To halt the solver, press the Interrupt Solver button on the solver status window.

1004. ERROR WRITING TO LOG FILE. PERHAPS THE DISK IS FULL?

LINGO can’t write any additional output from the command window to an open log file.

Check to see if there is any free space remaining on the disk.

1005. UNABLE TO OPEN LOG FILE.

LINGO could not open the log file that you requested. Does the path exist? Do you have write

access to the selected path?

1006. COULD NOT OPEN FILE: FILENAME.

LINGO could not open a requested file. Did you spell the file’s name correctly? Does the file

exist?

mailto:@INTEGRAL
mailto:@INTEGRAL

864 APPENDIX B

1007. NOT ENOUGH MEMORY TO COMPLETE COMMAND.

LINGO was unable to allocate additional system memory while attempting to execute a

command. Exit any other applications and try again. If the error still occurs, you may have set

the model generator’s working memory area to be too large. You can adjust the generator’s

memory allocation downward on the General tab of the LINGO|Options command's dialog

box.

1008. UNABLE TO CREATE A NEW WINDOW.

LINGO was unable to create a new window. This is probably caused by insufficient system

resources.

1009. UNABLE TO ALLOCATE ENOUGH MEMORY FOR SOLUTION REPORT.

LINGO could not allocate enough memory to store the solution report to the model. System

resources must be very low in order to receive this message. Exit any other applications and

try again. If the error still occurs, you may have set the model generator’s working memory

area to be too large. You can adjust the generator’s memory allocation downward on the

General tab of the LINGO|Options command's dialog box. If all else fails, you can use the

LINGO|Solution command to request smaller solution reports for individual variables.

1010. NOT USED.

1011. UNABLE TO COMPLETE GRAPHICS REQUEST.

LINGO was unable to generate a requested graph. Either LINGO is incorrectly installed or

there is not enough free memory to perform the operation. Try cutting back on the amount of

memory allocated to LINGO’s model generator using the LINGO|Options command. If this

doesn’t help, try reinstalling LINGO.

1012. NOT USED.

1013. NOT USED.

1014. NOT USED.

1015. EDIT COMMAND NOT SUPPORTED UNDER WINDOWS. USE THE FILE|OPEN

COMMAND INSTEAD.

The EDIT command is not supported in Windows versions of LINGO. If you need to edit the

file, use the File|Open command to load the file into a window for editing.

1016. COULD NOT SAVE FILE.

 LINGO was unable to save the file. Check for a valid path name and sufficient disk space.

9999. OPTIMIZER FAILED DUE TO A SERIOUS ERROR. PLEASE REFER TO YOUR

DOCUMENTATION UNDER APPENDIX B, “ERROR MESSAGES”.

The optimizer was unable to continue due to a serious error. The most likely cause of this

error stems from a problem in evaluating the functions within your model. Not all functions

are defined for all values of their arguments. For example, @LOG(X – 1) is undefined for

values of X less-than-or-equal-to 1. You should check your model for any such functions, and

use the @BND function to place bounds on your variables to keep the optimizer from straying

into any regions where functions become undefined.

ERROR MESSAGES 865

Another complicating factor can be nonlinear relations in a model. Linear models can be

solved much more reliably and quickly than nonlinear models of comparable size. If possible,

try to linearize your model by approximating nonlinear functions with linear ones, or by

eliminating nonlinear equations.

Another possible remedy when dealing with nonlinear models is to attempt different starting

points. A starting point may be input in the model’s INIT section. Refer to Chapter 5,

Windows Commands, for more details.

If this problem persists after bounding any variables that could potentially lead to a problem,

removing any unnecessary nonlinearities, and attempting new starting points, please contact

LINDO systems for assistance.

867

Appendix C: Bibliography
and Suggested Reading

Anderson, Sweeney, and Williams, Introduction to Management Science, 8th ed. St. Paul, MN: West

Publishing, 1997.

_______________ , Quantitative Methods for Business, 6th ed. St. Paul, MN: West Publishing, 1991.

Birge, J., and F. Louveaux, Introduction to Stochastic Programming, Volume 57, Springer-Verlag New

York, Inc., 1997.

Black, F., and M. Scholes. (1973). “The Pricing of Options and Corporate Liabilities.”, Journal of

Political Economy, vol. 81, pp. 637-654.

Bradley, S.P., A.C. Hax, and T.L. Magnanti, Applied Mathematical Programming. Reading, MA :

Addison-Wesley Publishing Company, Inc., 1977.

Cochran, W.G., Sampling Techniques. 2nd ed. New York, NY : Wiley, 1963.

Conway, R.W., W.L. Maxwell, and L.W. Miller, Theory of Scheduling. Reading, MA :

Addison-Wesley Publishing Company, Inc.,1967.

Cox, John C. and Mark Rubinstein, Options Markets. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Dantzig, G.B., Linear Programming and Extensions. Princeton, N.J. : Princeton University Press,

1963.

Eppen, G.D., F.J. Gould, and Schmidt, C.P., Quantitative Concepts for Management: Decision Making

Without Algorithms, 3rd ed. Englewood Cliffs, N.J. : Prentice-Hall, Inc., 1989.

_______________ , Introductory Management Science, 4th ed. Englewood Cliffs, N.J. : Prentice-Hall,

Inc., 1993.

Gass, S., Decision Making, Models & Algorithms. New York: Wiley-Interscience, 1985.

_______________ , Linear Programming, 5th ed. New York: McGraw-Hill, 1985.

Geoffrion, A., The Theory of Structured Modeling, Western Management Science Institute, UCLA,

1987.

Hadley, G., and T.M. Whitin, Analysis of Inventory Systems. Englewood Cliffs, N.J. : Prentice-Hall,

Inc., 1963.

Hillier, F., and G.J. Lieberman, Introduction to Operations Research, 9th ed. New York :

McGraw-Hill, Inc., 2010.

Johnson, L., and D.C. Montgomery, Operations Research in Production Planning, Scheduling, and

Inventory Control. New York: John Wiley & Sons, Inc., 1974.

868 APPENDIX C

Knowles, T., Management Science. Homewood, IL: Irwin Publishing, 1989.

Lin, S., and B. Kernighan (1973), “An effective Heuristic Algorithm for the Traveling Salesman

Problem.”, Operations Research, vol. 10, pp. 463-471.

Markowitz, H. M., Portfolio Selection, Efficient Diversification of Investments, John Wiley & Sons,

1959.

Nemhauser, G., and L. Wolsey, Integer and Combinatorial Optimization. New York : John Wiley &

Sons, 1988.

Moder, Joseph J., and Salah E. Elmaghraby (editors), Handbook of Operations Research. New York:

Van Nostrand Reinhold Company, 1978.

Schrage, L., Optimization Modeling with LINDO, 5th. ed. Belmont, CA: Duxbury Press, 1997.

_______________, Optimization Modeling with LINGO, 6th. ed. Chicago, IL: LINDO Systems Inc.,

2006.

Wagner, H.M., Principles of Management Science with Applications to Executive Decisions, 2nd ed.

Englewood Cliffs, N.J. : Prentice-Hall, Inc., 1975.

_________, Principles of Operations Research, 2nd ed. Englewood Cliffs, N.J. : Prentice-Hall, Inc.,

1975.

Winston, Wayne L., Introduction to Mathematical Programming: Applications and Algorithms, 3rd

ed. Belmont, CA: Duxbury Press, 1995.

_____________, Operations Research: Applications and Algorithms, 2nd ed. Belmont, CA: Duxbury

Press, 1995.

INDEX 869

Index

!

!, 6, 377

@

@INTEGRAL function, 384

~

~ (End-of-record mark), 423

A

About LINGO command, 43, 281

ABS function, 383, 719

ABSINT parameter, 337

Absolute Integrality, 229

Absolute integrality tolerance, 229, 337

Absolute optimality tolerance, 232

Accelerator key, 126

Acceptance sampling, 799, 803

Access

datasources, 471–76

importing, 429, 479–81

interfacing, 158

ACOS function, 383

ACOSH function, 383

Administrator, ODBC, 471–76

Airline overbooking, 774

Algebraic formulation, 143, 312

Algebraic reformulation, 359

Algorithm

barrier

cold start, 231, 349

error messages, 839

options, 211

parameters, 345

warm start, 231, 349

branch-and-bound, 82, 228, 347

generalized reduced gradient, 712

simplex

cold start, 231, 349

options, 211

parameters, 345

warm start, 231, 349

Allowable Increase/Decrease, 320

ALTER command, 301, 323

Analysis

conjoint, 593, 733

data envelopment, 735

range, 839

regression, 752, 797

What If, 117

Analytical derivatives, 219, 719

Anderson, D., 561

Annuity, present value, 386

APISET, 623

APISET command, 285, 844

Append output checkbox, 140

Application drop-down box, 224

AppWizard, 502, 534

Arithmetic operators, 380, 822, 826

Arrange Icons command, 277

ASCII format, 26, 130, 311, 421, 423, 439

ASIN function, 383

ASINH function, 383

Assembly line balancing, 551, 723

Assume Model is Linear, 206

ATAN function, 383

ATAN2 function, 383

ATANH function, 383

Attributes

definition, 45

dynamic link library, 492

examples

marketing models, 591

portfolio models, 564, 577

production models, 595

exporting, 481

importing, 478

initializing, 115

names, 819

AUTOLG.DAT, 146, 433

AutoUpdate command, 280

B

Backorders, 757

870 INDEX

Balof, J., 752

Barrier algorithm

cold start, 231, 349

error messages, 839

options, 211

parameters, 345

warm start, 231, 349

Barrier Crossover, 215

BAS file, 529, 530

BASCTS, 350

BASCTS parameter, 358

BASIC, 494

Basis cuts, 226, 350, 358

Bayes rule, 725

BCROSS parameter, 361

Best bound, 234, 339

Beta Binomial distribution, 665

Beta distribution, 664

BigM Threshhold., 229

BIGMVL Paramater, 363

BIN function

dual values, 99

options, 227

syntax, 88

Binary

format, 440

operators, 380

Binary integer variables

examples, 553

functions, 81

priority, 228, 348

syntax, 88–99

Binary Search, 628

Binding constraints, 26, 272, 307

Binomial distribution, 386, 665, 774, 778

Black & Scholes pricing model, 573, 776

Black, F., 571, 776

Blending problems, 540, 726, 731

Block Triangular, 268

BLOCKROW function, 418

BND function

error messages, 825

examples, 543, 565

syntax, 105

BND(), 198

BNP Solver, 239

BNPBLK parameter, 375

BNPHEU parameter, 376

Bond portfolio optimization, 575, 780

Bounds

allowable limit, 825

conflicting, 825

variables

global, 359

guidelines for, 720

probing, 226

syntax, 105

Bracken, J., 801

Brahnc-and-bound

global solver, 244

Branch-and-bound

constraint cuts

options, 224, 227

parameters, 337, 350, 358

reports, 272

definition, 82, 597, 711

direction, 347, 359

heuristics, 223, 244, 358

optimality tolerance, 232

solver, 222

strategy, 228

BRANDPR parameter, 348

BRANDR parameter, 347

BREAK, 612

C

C# .NET, 490

C/C++, 490, 501–10

callback function, 524

pointer function, 494

user defined function, 533, 534

Calc Section, 120

Call option, 571, 776

Callable Library, 489–533

Callback functions, 497, 499, 523–33, 529

Capacitated EOQ, 743

Capacitated lot sizing, 762

Capacitated Plant Location, 556, 729

Capacity, scarce, 762

Cartesian product, 52

Cascade command, 277

Case sensitivity, 6

Cash flow matching, 575, 780

CAT command, 283, 285

Cauchy distribution, 664

CCPs, 698

Chance-Constrained Programs, 698

Charting Solutions, 164

Charts, 164

Chemical equilibrium, 732

CHESS model, 731

Chi-Square distribution, 664

Chi-squared distribution, 386

INDEX 871

CHKDUP parameter, 343

Classification statistics, 271, 307, 713

ClassWizard, 504, 525, 526

Clipboard, 148

Close All command, 276

Close command, 137

Coefficient reduction, 350

Coefficients

current, 320

matrix of, 216, 304

nonzeros, 272, 307

objective, 25

objective ranges, 320

reduction, 226, 350

right-hand side, 320

unity, 272, 307

COFCTS, 350

Cold start option, 231, 349

Colon prompt, 23, 283, 289

Coloring, 155, 188, 351

Column length, 486

COM command, 285, 830

Command scripts, 431–33

command-line, 294

DLL, 496, 509, 514

OLE automation

importing, 454–58

Windows, 140–43, 274

Command Window command, 189, 274, 342

Command-line interface, 22, 23, 140, 189

Commands

Command-line, 283–85, 285–377

Windows, 126–28, 129–282

Comments, 6, 377

Compiling the model

generating, 58

solving, 160, 316

CompuQuick Corporation, 4, 16, 23, 83

Concavity, 717

loose, 718

strict, 718

Conditional qualifier, 54, 58

Conjoint analysis, 593, 733

Constraints

binding, 26, 272, 307

cuts

options, 224, 227

parameters, 337, 350, 358

reports, 272

defining, 4, 5, 29

examples, 543, 558, 565, 595

limits, 106

modeling language, 45

names, 38

options, 224

selective evaluation, 220, 345

two-sided, 819

types, 712–14

Constraints Cuts box, 224

Contacting LINDO, 44, 282

convexity, 244, 359

Convexity, 716

loose, 717

strict, 716

Convexity and Concavity, 42

Copy command, 148, 421–22, 422

Correlation, 666

COS function, 383

COSH function, 383

Covariance, 563, 564

Covering model, 740

Crashing, 220, 344, 783

Create from File, 465

Critical path, 782

Cumulative distribution, 387, 388

Current coefficients, 320

Cut command, 148

CUTAPP parameter, 337

Cutoff level, 494

CUTOFF parameter, 348

Cuts

options, 224, 227, 350, 358

parameters, 337

reports, 272

Cutting Stock, 639

Cycle time, 551, 553

D

Dantzig pricing, 346

Data envelopment analysis, 735

Data independence, 26, 92

Data section

definition, 26

error messages, 835

attributes, 819

exporting, 832

importing, 823

names, 823, 835

question marks, 827, 836

examples, 424

syntax, 115–19

Data type, 531

Database User Info command, 146

872 INDEX

Databases, 469–87

exporting

functions, 481–87

reports, 326

importing, 442, 477–81

Datasources, 470–76

linking, 146, 156, 328

ODBC function, 156, 481

DBGCLD parameter, 361

DBGLVL Parameter, 362

DBGWRM parameter, 361

DBPWD command, 146, 328

DBUID command, 146, 328

Debt defeasance, 575, 780

Debug command

command-line, 314

Windows, 268–71

Debugging, 304

Decision variables

defining, 4

examples, 553, 557, 568

ranges, 319

DECOMP parameter, 358

Decomposition, 216

Default button, 181

Delay field, 188

DELETE command, 325

Delphi, 490

Demand backlog model, 757

Dense set, 49

Depth first, 234, 339

DERCMP parameter, 334

Derivatives, 219, 334, 716, 719

Derived sets

defining, 46, 49–52, 837

examples

blending models, 66–69, 542

financial models, 568

marketing models, 594

production models, 548, 553

exporting, 481

Designing a computer cabinet, 796

Desrochers, M., 809

Devex pricing, 213, 346

Direct solver, 597, 711

Direction box, 228

Disaggregation, 226, 350

DISCTS, 350

Display As Icon button, 157

Distribution, 387, 737

binomial, 386, 774, 778

Chi-squared, 386

cumulative, 387, 388

hypergeometric, 387, 799

Multi-level, 769

Poisson, 387, 580, 745

Diversification, 563

DIVERT, 622

DIVERT command

error messages, 832

printing, 24

reverting, 311

syntax, 310

DLLs, 489–533

Domain functions, 825

Double data type, 531

Downloading, 280

Downside risk, 567, 570, 738

Dual computations box, 196

DUAL function, 405

Dual values, 26

enabling, 196, 833

integer programming, 99

nonzeros, 826

ranges, 320

DUALCO, 346

DUALCO parameter, 319

DUALPR parameter, 346

Duplicate names, 821, 834

DYNAMB model, 560

Dynamic Link Library, 489–533

functions, 494–500

Dynamic programming, 560, 741, 767, 778

E

Echo Input, 189

Echo to screen checkbox, 140

ECHOIN parameter, 343

Economic order quantity, 743, 790

Edit menu, 127, 147–59

Efficient Frontier, 632

Eigen values, 716

ELSE, 610

Embedding files, 458–67

END command, 23

End-of-file, 426

End-of-record Mark (~), 423, 426, 548, 822

ENDSUBMODEL, 597

Enforce Bounds in CALC and DATA, 207

Entering a Model

Command-line, 22–23

Windows, 3–22

Eppen/Martin model, 762

INDEX 873

Equality relation, 26, 381

Equilibrium

network, 771

Erlang busy probability, 387, 792

Erlang loss probability, 387, 580, 746

ERRDLG parameter, 343

Error messages, 7, 343, 499, 501, 817–65

Error Text box, 160

Errors In Dialogs, 183

Errors Only output, 186

Excel

exporting, 453

linking with LINGO, 150, 441, 495

OLE automation, 454–68

OLE function, 441, 452

TEXT function, 429

Exclamation point, 6, 377

Exercise price, 571, 776

Exit, 377

Exit command, 146

EXP function, 383

Expected rate of return, 569

Expected Value Statistics, 256

Explicit listing, 50

Exponential distribution, 664

Exponential smoothing, 580, 805

Export summary report

ODBC based, 486

OLE based, 453

Exporting

attributes, 481

databases

functions, 481–87

reports, 326

MPI files, 144, 312

MPS files, 143–45

pasting out, 422

spreadsheets

functions, 446–54

reports, 326

Expressions, 719

EXTEND command, 325

EZCOUNT model, 811

EZMREPAR model, 583, 744

EZNEWS model, 745

F

F distribution, 664

Factorial function, 811

Favor Reproductibility Over Performance, 198

Feasibility tolerances, 212, 218

Feasible solution, 212

Features, new, vii

File

data, 439

format

ASCII, 26, 130, 311, 421, 423, 439

BAS, 529, 530

binary, 440

LDT, 130, 439

LG4

definition, 130

linked objects, 158

saving, 18, 136, 439

LNG, 130, 439

LRP, 439

LTF, 130, 439

MPI, 144, 312

MPS

definition, 127

exporting, 143–44, 312

header, 505, 528

log files, 863

names, 6, 38, 136

script files, 431–33

types, 130

FILE, 423

File Format box, 187

FILE function, 130, 397, 423–27

examples, 433, 547

File menu, 127, 129–46

FILFMT parameter, 342

Filter, 50

Final linear feasibility tolerance, 212, 333

Final nonlinear feasibility tolerance, 218, 334

Financial models, 386, 563–79

Find/Find Next command, 153

Finite source, Poisson, 583

Fixed costs, 94

Fixed ordering charge, 773

Fixed Var Reduction, 202

Fixed variables, 712, 824

FLFTOL parameter, 333

Floating point operations, 212, 333

FLOOR function, 383

Flow Cover, 226, 350

Flow cuts, 350

FLWCTS, 350

FNFTOL parameter, 334

Font selecting, 155

FOR, 611

FOR function

constraints, 40, 57

874 INDEX

error messages, 822, 824

nesting, 59, 154

sets, 47, 396

syntax, 54

variables, 87, 103

FORCEB parameter, 373

Forecasting, 101, 797, 805

FORMAT function, 405

Formatting, 130

FORTRAN

pointer functions, 494

user defined functions, 533, 534

FPA function, 386

FPL function, 386

Fragmentation ratio, 286

Free variables, 100–105

FREEZE command, 328, 336, 832

Functions, 45

callback, 523–33

DLL, 494–500

factorial, 811

interface functions, 423, 833

non-differentiable, 719

pasting, 155

probability, 386–89

set-looping, 53–60, 395

user defined, 533–37

utility, 593

variable domain, 825

G

Gamma distribution, 664

GCD cuts, 226, 350

GCDCTS, 350

GEN, 297, 614

GEN command, 58

GENDUAL, 615

General box, 183

General equilibrium of an economy, 747

General integer variables, 81, 82–87

General Solver tab, 191–210

Generate command, 257

Generate command, 58

Generating a model, 203

Generator Memory Limit Box, 201

Generator memory used, 286

Geoffrion, A., 769

Geometric distribution, 665

GIN function

dual values, 99

examples, 83, 87

options, 227

syntax, 82

GLBBRN parameter, 359

GLBBXS parameter, 359

GLBDLT parameter, 359

GLBOPT parameter, 358

GLBREF parameter, 359

GLBUBD parameter, 359

GLBVBD parameter, 359

Global delta tolerance, 359

Global optimality tolerance, 358

Global optimum, 352, 494, 714, 716

Global solver, 354, 841

Global Solver, 182, 243, 244, 246, 248, 419, 842

Global Solver tab, 243

GO command, 23, 316

Go To Line command, 154

GOMCTS, 350

Gomory, 350

Gomory cuts, 226, 350

GP1, 268

GP2, 268

Gradient, 218, 712, 719

Graves, G., 769

Greatest common divisor, 350

Growth rate, 563

GUB cuts, 226, 272, 307, 350

GUBCTS, 350

Gumbel distribution, 664

H

Handle usage, 286

Hansen, P., 771

Hayes, J.M., 732

Header file, 505, 528

Heap compacts, 286

HELP command, 285

Help menu, 128, 277–82

Help Topics command, 278

HEUCUT parameter, 372

HEURIS parameter, 337

Heuristics, 223, 358, 767, 809, 812

HIDE command, 301

Hieftje, G.M., 732

Higher Dimension Charts, 171

Holding costs, 743, 762

Home mortgage calculation, 814

HUMNTM parameter, 358

Hurdle, 233

HURDLE parameter, 337

Hypergeometric distribution, 387, 665, 799

INDEX 875

Hyperplanes, 718

I

IF function, 418

IFC, 610

ILFTOL parameter, 333

Implicit set members, 839

Implied indexing, 55

Importing

attributes, 478

command scripts, 431–33

databases, 442, 477–81

FILE function, 130, 423–27

pasting in, 421–22

set members, 206

spreadsheets, 441–46

IN function, 822, 827

Include file, 426

Index, 303, 819, 820, 831

implied, 55

internal, 38

placeholder, 50

INDEX function

error messages, 819, 824

examples, 90

parameters, 344

set names, 206, 207

Inequality relation, 381

Infeasible model, 26, 268, 269, 314, 494, 827

INFTOL parameter, 334

Init section, 119–23

importing, 442

Initial linear feasibility tolerance, 212, 333

Initial nonlinear feasibility tolerance, 218, 334

Initializing data

error messages, 839

variables, 720

Insert New Object command, 156–58, 465

Installing LINGO

command-line, 22

Windows, 1

Integer pre-solver tab, 222–26

Integer programming

branch-and-bound

constraint cuts

options, 224, 227

parameters, 337, 350, 358

reports, 272

definition, 82, 597, 711

direction, 347

heuristics, 223, 358

optimality tolerance, 232

solver, 222

strategy, 228

dual values, 99

probing, 226

Integer Solver tab, 227–42

Integer variables

binary (0/1)

examples, 553

functions, 81

priority, 228, 348

syntax, 88–99

examples, 544

general, 81, 82–87

limits, 43

solutions, 721

variable domain functions, 81–100

INTEGRAL function, 384

Integrality tolerance, 229, 334

Integration, 384

Interest rate, 571

Interface functions, 423, 833

Interface tab, 183–90

Interfacing with other applications, 489–537

Interior point algorithm, 211, 345

Interrupting the solver, 863

invalid function, 826

Invalid switch, 827

Inventory system

demand backlog, 757

newsboy model, 745, 773

PERT, 479–81, 484–87, 782

IPTOLA parameter, 338

IPTOLR parameter, 338

Iterations, 212

definition, 195, 335

dynamic link library, 525

limit, 334, 335

max passes, 225

SLP direction, 221

steepest edge, 213, 221, 344, 346

ITERS function, 408

ITRLIM parameter, 335

ITRSLW parameter, 334

J

Job shop scheduling, 750

Just-in-time production, 545, 765

876 INDEX

K

K-Best Solutions, 235

KBESTS Parameter, 364

Kehoe, T.J., 747

Kendall correlation, 666

Kernighan, B., 809

KILLSC Paramater, 363

Knapsack cover, 350

Knapsack cover cuts, 226, 350

Knapsack problem, 88–94, 324, 751

KNPCTS, 350

L

Labor supply, 5

Laplace distribution, 664

Laporte, G., 809

LATCTS, 350

Latin-hyper-square, 660

Lattice, 350

Lattice cuts, 226, 350

LCORE1 – LCORE4 parameters, 364

LCORES Parameter, 364

LCRASH parameter, 361

LDT format, 130, 439

Lead time, 545, 548

Learning curve, 752

LENPAG parameter, 339

LFTCTS, 350

LG4 format

definition, 130

linked objects, 158

saving, 18, 136, 439

LGM function, 384, 811

Libraries (DLL), 489–533

License key

global solver, 243

Windows, 145

Lift cuts, 350

Lifting cuts, 226, 350

Limits

BND function, 106, 825

constraints, 4, 5, 95

cuts, 350

integers, 225

iterations, 218, 334, 335

line counts, 188, 189

page size, 190

runtimes, 195

sets, 27

software version, 43

Lin, S., 809

LINDO API, 145, 312

LINDO contact information, 44, 282

Line capacity, 5

Line count limits, 189

Line limit field, 188

Linear formula, 712

Linear loss function, Poisson, 387

Linear Optimality Tolerance, 215

LINEAR Parameter, 362

Linear regression, 752, 797

Linear solver, 210, 230, 597, 711

Linearization, 204, 356, 842

LINGO menu, 128, 160–273

LINGO.CNF, 832

LINGO|Picture, 266

Linking databases, 146, 156

Links command, 152, 159

LINLEN parameter, 339

Little s-big S policies, 773

LNBIGM parameter, 356

LNDLTA parameter, 356

LNG format, 130, 439

LNRISE parameter, 356

Local optimum, 244, 494, 714

Log files, 495, 498, 509, 863

LOG function, 120, 384

Log Output command, 140, 190

LOG10 function, 384

Logarithm, 573, 732, 752, 811

Logarithmic distribution, 665

Logical expressions

conditions, 92

examples, 549, 791

operators, 51, 381

Logistic distribution, 664

Logistics models, 556–62

Lognormal distribution, 664

Long data type, 531

LOOK command, 273, 303, 817

Loop Optimization, 207

Looping, 611

LOOPOP parameter, 371

Lot sizing, 762

Lower Triangular, 268

LOWMEM parameter, 361

LRP format, 439

LS_DINFO_MIP_BEST_OBJECTIVE_LNG, 497

LS_DINFO_MIP_BOUND_LNG, 497

LS_DINFO_OBJECTIVE_LNG, 497

LS_DINFO_SUMINF_LNG, 497

LS_IINFO_BRANCHES_LNG, 497

INDEX 877

LS_IINFO_CONSTRAINTS_LNG, 497

LS_IINFO_CONSTRAINTS_NONLINEAR_LNG,

497

LS_IINFO_ITERATIONS_LNG, 497

LS_IINFO_NONZEROS_LNG, 497

LS_IINFO_NONZEROS_NONLINEAR_LNG,

497

LS_IINFO_VARIABLES_INTEGER_LNG, 497

LS_IINFO_VARIABLES_LNG, 497

LS_IINFO_VARIABLES_NONLINEAR_LNG,

497

LSclearPointersLng, 495

LScloseLogFileLng, 495, 515

LSdeleteEnvLng, 496

LSERR_INFO_NOT_AVAILABLE_LNG, 501

LSERR_INVALID_INPUT_LNG, 501

LSERR_INVALID_NULL_POINTER_LNG, 501

LSERR_NO_ERROR_LNG, 501

LSERR_OUT_OF_MEMORY_LNG, 501

LSERR_UNABLE_TO_OPEN_LOG_FILE_LNG,

501

LSexecuteScriptLng, 496, 515

LSgetCallbackInfoDoubleLng, 531

LSgetCallbackInfoLng, 497, 524

LSgetCallbackInfoLongLng, 531

LSopenLogFileLng, 498

LSsetCallbackErrorLng, 499

LSsetCallbackSolverLng, 499, 523

LSsetPointerLng, 500

LTF format, 130, 439

M

Machine repairman model, 583, 744, 764

Marketing models, 589–96

Markov chain model, 589, 754

Markowitz portfolio selection, 563, 567, 570, 749

Markowitz, H., 563, 749

Match Parenthesis command, 154, 188

Matching model, 756

Material requirements planning, 545, 765

Mathematical functions, 383

Mathematical notation, 26–32

Matrix decomposition, 216, 358

Matrix Decomposition, 216

Matrix form, 304, 590

Matrix Picture, 267

MAX function, 5, 54, 56, 396, 554, 719

Max passes, 225

Max Scenarios limit, 255

MAXCTP parameter, 350

MAXCTR parameter, 358

McCormick, G., 801

MEM command, 286

Members of sets, 49

Membership filter, 50

Memory

allocated, 286, 336, 494

Memory Limit box, 194

usage, 286

virtual, 337

working, 817, 822

Menu commands, 125, 126, 461

edit, 127, 147–59

file, 127, 129–46

help, 128, 277–82

LINGO, 128, 160–273

window, 128, 273–77

Menu tips, 126, 342

Method, Solution, 211

METRIC model, 757

Mexican steel model, 758

MIN function, 54, 56, 719

Minimal cost queuing, 793

Minimize Memory Usage, 209

MOD function, 384

MODEL command, 23, 289, 818

Model Generator Tab, 200

Model reduction, 211, 346

Model Statistics command, 128, 271

Modeling language, 26–32, 38–41, 45

Models

entering, 3–22

infeasible, 26, 268, 269, 314, 494, 827

nonlinear, 1, 119, 220, 354, 720–21

regenerating, 203

titles, 41

types, 711

unbounded, 268, 314, 494, 826

More button, 190

Mortgage calculation, 814

MPI files, 144, 312

MPS File

command, 127

definition, 127

exporting, 143–44, 198, 312

format, 838

importing, 198

Multi-Core, 213

Multilevel distribution, 769

Multiprod. capacitated lot sizing, 762

MULTIS, 351

Multistart solver, 244, 351, 841

MultiStart Solver, 248

878 INDEX

Multithreading box, 192

MXMEMB parameter, 336

MYUSER.DLL, 534

N

NAME function, 408

Naming conventions

constraints, 38, 820

duplicate names, 207, 834

file names, 136, 821

MPS files, 198

parameters, 347

sets, 206, 819, 821

variables, 6

NCRASH parameter, 344

Necessary set, 268, 314

Negative Binomial distribution, 665

Negative variables, 100–105

Nemhauser, G., 226

Nesting, 59, 154

FOR functions, 824

TAKE command, 818

Network Charts, 174

Network equilibrium, 771

New command, 130, 818

New features, vii

NEWLINE function, 408

Newsboy problem, 745, 773

No output, 186

Node selection, 234, 339

NODESL parameter, 339

Non-differentiable functions, 719

Nonlinear

limits, 43

models, 1, 119, 244, 720–21

optimality tolerance, 218

solver, 597, 711

Nonlinear models, 354

Nonlinear Solver tab, 217–21

derivatives box, 219

NONNEG Parameter, 363

Nonoptimal solution, 827

Nonzeros, 272, 307

dual price, 826

NOPTOL parameter, 334

Normal distribution, 664, 737

NSLPDR parameter, 345

NSLPSV parameter, 373

NSTEEP parameter, 344

NTHRDS parameter, 373

NTMODE parameter, 374

NUMBIN parameter, 372

Numeric Integration, 384

Numeric precision, 212, 216, 494

O

OBJBND function, 408

OBJCTS, 350

OBJCTS parameter, 335

Object Linking and Embedding, 440

Object Properties command, 159

Object, Insert New, 156–58, 465

Objective coefficient ranges, 320, 321

Objective coefficients, 25

Objective cuts, 350

Objective function

cuts, 226, 350

definition, 4

developing, 5, 28

examples

financial models, 565, 569, 577

marketing models, 595

plant location, 557

production models, 542, 553

ODBC, 469–87

administrator, 471, 487

datasources

linking, 146, 156, 328

ODBC function, 156, 481

exporting, 481–87

importing, 477–81

ODBC function, 397

OLE automation

importing, 454–58

OLE function, 397

exporting

reports, 453

syntax, 447–53

importing, 441–46

Omitting values, 118

One Page button, 139

On-line registration, 279

Open command, 818, 864

Open Data Base Connectivity, 469–87

Operators, 379–82, 819, 822, 826

Optimal solution, 352, 494, 714

Optimality tolerance, 218, 232

Optimization, 1, 4

Optimization Modeling with LINGO, 539

Options command, 181–273

Options pricing, 571, 778

Oracle, 476

INDEX 879

OROUTE parameter, 342

Overbooking, Airline, 774

P

PAGE command, 326

Page size limits, 190

Parameters

error messages, 829, 831

pre-defined, 319, 327, 333–47

user defined, 116

Paren Match checkbox, 188

Parent sets, 49

Parentheses, 154, 188, 863

Pareto distribution, 664

Passwords

databases, 146, 328

error messages, 830

HIDE command, 301

Paste command, 148, 422

Paste Function command, 155

Paste Special command, 149

PAUSE, 621

PAUSE command, 326

PBN function, 386

PCX function, 386

Pearson correlation, 666

PEB function, 387, 792

PEL function, 387, 580, 746, 793

PERT, 479–81, 484–87, 782

Peters, D.G., 732

PFD function, 387

PFS function, 387, 583

PHG function, 387, 799

PIC, 616

Picture command, 128, 266

PICTURE command, 304

Plant location, 226, 350, 556, 729

Platforms, 283

PLOCTS, 350

pLSenvLINGO, 508

Pluto Dogs, 60, 86

POINTER function, 398

data section, 492, 494

DLL, 495, 500, 508

Poisson

finite source, 583

linear loss function, 387

probability distribution, 387, 580, 745

random variable, 387

Poisson distribution, 665

Portfolio selection

Markowitz, 563, 567, 570, 749

scenario based, 738, 786

Portfolio Selection, Markowitz, 632

POW function, 384

Powerstation FORTRAN

pointer functions, 494

user defined functions, 533, 534

PPL function, 387

PPS function, 387

PRBLVL parameter, 345

Precedence relations, 551, 554

PRECIS parameter, 370

Precision, Numeric, 212

Present value, 386

Prices

Black & Scholes, 573, 776

computing, 196

options, 571, 778

strategies, 212, 346

Primal/dual interior point algorithm, 211, 345

Primitive set

defining, 46–48

examples, 46, 60–65, 66

exporting, 481

names, 206, 821

PRIMPR parameter, 346

Print command, 18, 137

Print Preview command, 139

Print Setup command, 138

PRIORITY function, 99

Priority option, 228, 348

PRNCLR parameter, 351

Probabilities, 568

Probability distribution

binomial, 386, 774, 778

Erlang busy, 387, 792

Erlang loss, 387, 580, 746

Erlang queuing, 580

exponential, 580

hypergeometric, 387, 799

normal, 388, 737

Poisson, 387, 580, 583, 745

steady state, 589, 754

t distributions, 737

transition, 589

Probability functions, 386–89

Probing, 226, 345

Procedures, 624

PROD function, 396

Product form inverse, 712

Production, 762

planning, 762

880 INDEX

product mix, 4, 94–99, 141, 781, 785

rates, 743

schedules, 545, 765

Production management models, 540–55

Programming Example

Binary Search, 628

Cutting Stock, 639

Markowitz Efficient Frontier, 632

Project Evaluation and Review Technique, 479–81,

484–87, 782

Prompts, 23, 283, 289

Properties command, 435

Proportionality, 712

PSL function, 387

PSMSTCDF distribution, 401

PSMSTINV distribution, 401

PSMSTPDF distribution, 401

PSN function, 388, 737

PTD function, 388, 737

Purchase transition matrix, 590

Q

QRAND function, 388, 839

Quadratic functions, 788

Quadratic recognition, 220

Quasi-random numbers, 388

Question mark prompt, 23, 289

Queuing models

examples

Erlang, 580–88, 746, 792–93

machine repairman, 744

steady state, 794

probabilities, 387

QUIT command, 377

R

R/C format names

options, 198

parameter, 347

RAND function, 389, 737

Random Generator Seed, 253

Random numbers, 388, 389, 737, 754, 839

Range

analysis, 839

bounding, 244

dual values, 320

names

defining, 452

exporting (OLE), 448

exporting (WKX), 454

importing (OLE), 446

OLE automation, 455

reports

command-line, 319

error messages, 831

Range command, 25, 26

RANGE command, 319

RANGED function, 408

RANGEU function, 409

Rate of return, 565, 569

RCMPSN parameter, 347

RCTLIM parameter, 350

Read error, 823

Redirecting I/O, 439

Redo command, 147

REDUCE parameter, 346

Reduced cost, 25

ranges, 320

REFRAQ parameter, 367

Register command, 279

Regression Analysis, 752, 797

Relational operators, 381, 819

Relationships, 721

Relative Integrality, 229

Relative integrality tolerance, 229, 334

Relative limit box, 225

Relative optimality tolerance, 232

RELEASE, 618

RELINT parameter, 334

REOPTB parameter, 349

REOPTX parameter, 349

Replace command, 153

Reports, 342

export summary report

ODBC based, 486

OLE based, 453

generating, 310

range report

command-line, 319

error messages, 831

send to command window, 189

solution report

command-line, 23, 316

exporting, 486

naming constraints, 40

tolerances, 212, 333, 348

width, 327

Windows, 162

statistics, 128, 271, 307

REPROD parameter, 376

Resource limits, 4, 5, 27, 95

INDEX 881

Right-hand side

probing, 226

range report, 321

Risk

downside risk, 738

portfolio selection, 563–70, 749, 786

sampling, 799, 803

RLPF command, 292

RMPI command, 289

Root filed, 225

Rounding, 82, 87, 216, 348

Row name, 820

RunLingo, 436

Runtime, 232

Runtime Limits box, 195

RVRT command, 311

S

Sales forecasting, 804

Sample Continuous Only, 254

sample size, 666

Sampling, 388, 799, 801, 803

SAVE command, 25, 311

Save/Save As command, 18, 136

Scalar variables

examples, 27, 29, 553, 781

initializing, 116

Scale Model, 216

SCALEM parameter, 346

SCALEW parameter, 366

Scaling, 212, 333, 720, 841

Scaling Warning Threshold, 197

Scarce capacity, 762

Scenario portfolio selection, 567, 738, 786

SCENE command, 305

Scholes, M., 571, 776

Schrage, L., 100, 539, 735

SCLRDL parameter, 351

SCLRLM parameter, 351

Script files, 431–33, 514

command-line, 294

DLL, 496, 509

OLE automation

importing, 454–58

Windows, 140–43, 274

Script processor, 492

Scripting, 610

Second order derivatives, 219

SECORD Parameter, 363

Seed value, 839

SELCON parameter, 345

Select All command, 153, 422

Select Font command, 155

Selective constraint evaluation, 220, 345

Semi-variance risk, 567, 570

Send To Back command, 276

SET, 623

SET command, 329, 831

Set-looping functions, 53–60, 395

Sets, 27–37, 45–80, 839

derived sets

defining, 46, 49–52, 837

dense, 553, 839

examples

blending models, 66–69, 542

financial models, 568

marketing models, 594

production models, 548, 553

exporting, 481

errors, 837

implicit, 839

importing, 206

names, 819

necessary, 268, 314

primitive set

defining, 46–48

examples, 46, 60–65, 66

exporting, 481

names, 821

sufficient, 268, 271, 314, 316

Sets section, 46–52, 424

Setup cost, 743, 762

Shack4Shades, 101

Shadow prices, 26, 320

Shipping problem, 27, 45, 556, 769

Shortest route problem, 560

SHOWNL command, 306

SIGN function, 385

Simplex method, 712

cold start, 231, 349

options, 211

parameters, 345

warm start, 231, 349

Simpson’s Rule, 384

SIN function, 385

SINH function, 385

Slack or Surplus, 26, 212, 333, 555

Slack variables, 272, 307, 543

Slope, 101, 719

Slow progress iteration limit, 218, 334

SLP directions, 221

SLP solver, 221

SMAX function, 385

882 INDEX

SMIN function, 385

Smooth expressions, 580, 719, 805

SMPI, 617

SMPI command, 312

SMPS, 617

SMPS command, 312

SOLU, 619

Solution report

command-line, 23, 316

exporting, 486

naming constraints, 40

tolerances, 212, 333, 348

width, 327

Windows, 162

Solutions

feasible, 212

infeasible, 26, 268, 269, 314, 494, 827

non-optimal, 827

optimal, 352, 494, 714

unbounded, 268, 314, 494, 826

undefined, 827

undetermined, 494

SOLVE, 599

Solve command, 7–17, 160, 276, 467

SOLVE Time-Limit box, 196

SOLVEL parameter, 345

Solver, 597, 711

branch-and-bound

constraint cuts

options, 224, 227

parameters, 337, 350, 358

definition, 82, 597, 711

direction, 347

heuristics, 223, 358

optimality tolerance, 232

solver, 222

strategy, 228

global, 354

interrupting, 863

linear, 210, 230, 597, 711

method, 345, 839

multistart, 351

nonlinear, 597, 711

quadratic, 220

Solver status window, 161

error messages, 863

field definitions, 16

model classification, 712, 713

options, 185, 341

Solver Status Window, 7

SONGS model, 807

Sorting, 808

SOS

variables

syntax, 106

SP Sample Size/Stage, 253

SP Solver, 252

SP Solver Method, 254

SP Solver Tab, 252

Spanning tree model, 767

Sparse derived set, 69–75, 75–80, 821

Sparse set, 49

SPBIGM parameter, 372

Spearman correlation, 666

Splash screen, 185, 341

SPLOADSCENE, 625

SPMAXS parameter, 370

SPMTHD parameter, 368

SPNUMSCENE, 625

SPPRBSCENE, 625

Spreadsheets

data section, 26

exporting

functions, 446–54

reports, 326

importing, 441–46

interfacing with, 150, 421, 423, 441–68

SPSCON parameter, 367

SPSEED parameter, 368

SPSMSZ parameter, 367

SPXVAL parameter, 368

SQL, 476

SQR function, 385

SQRT function, 385

STABAR parameter, 342

Stack space, 819

Staff scheduling, 60, 428, 432, 501–19, 740

DLL, 489–511, 492

State of the model, 826, 827

Statistics, 128, 271, 307, 713

STATS command, 307

Status bar, 3, 126, 184, 342

STATUS function, 410

Status Window command, 185, 276

STAWIN parameter, 341

Steady state, 587, 794

equations, 585

probability, 589, 754

queuing model, 585, 794

Steepest edge, 213, 221, 344, 346

STM2DWK function, 418

STM2HR, STM2MIN functions, 416

STM2YR, STM2MON functions, 416

STMNOW function, 417

INDEX 883

Stochastic Programming

Declaring Distributions, 663

Gas Buying Core Model, 670

Gas Buying Example, 670

Introduction, 653

Investing Under, 692

Investing Under Uncertainty Example, 691

Language Features, 661

Monte Carlo Sampling, 659

Multistage Decision Making, 653

Recourse Models, 655

Scenario Tree, 657

Setting up SP Models, 660

Stock Option Core Model, 682

Stock Option Example, 681

Stock options, 571

STOP, 613

Straight line relationships, 712

Strategies, 220

Strategies box, 247

Stratified sampling design, 801

STRLEN function, 411

Strong branch, 234, 348

STRONG parameter, 348

Student t distribution, 664

SUBMODEL, 597

SUBOUT parameter, 360

Successive linear programming, 221, 712

Sufficient set, 268, 271, 314, 316

SUM function, 54, 55, 90, 396

Sum of a set, 396

Sum of squared prediction, 804

Sweeney, D., 561

Symetric Stable distribution, 664

Syntax, 6, 7, 115

coloring, 155, 188, 351

T

t distribution, 737

TABLE function, 411

Table of Contents, iii

TAKE command, 294

command scripts, 431

Take Commands command, 130, 140–43, 431

TAN function, 385

TANH function, 385

Tanner, K., 769

TATSLV Paramater, 364

Technical support, 44

Terminal width parameter, 327, 829

TERSE command, 326

Terse output, 186

TERSEO parameter, 340

Text files, 26, 311, 421, 423, 439

TEXT function, 398

command scripts, 433

Tiered distribution, 769

Tile command, 277

TIM2RL parameter, 339

TIME command, 377

TIME function, 415

Time to relative tolerance, 232, 233, 339

Timesharing system, 583, 744

TIMLIM parameter, 335

TITLE command, 41

Tolerances, 212, 218, 229, 232

command-line, 285, 327, 329, 333–38

examples, 591

Tolerances box, 233, 247

Tool tips, 126, 342

Toolbar, 3, 125, 186, 275, 343, 461

TOOLBR parameter, 343

Traffic congestion, 772

Transfer method

command line, 453, 486

Transition probability, 589, 754

Transportation model, 815

datasources, 470

exporting, 451

importing, 444

linking, 149

sets, 27

Traveling salesman problem, 809

Tree field, 225

Triangular distribution, 664

Truncating, 82, 190, 313

Two-sided constraints, 819

U

Unary Minus Priority, 201

UNARYM Parameter, 362

Unbounded solution, 268, 314, 494, 826

Undefined arithmetic operation, 345, 825, 827

Undefined solution, 827

Undetermined solution, 494

Undo command, 147

Uniform distribution, 664

Unit normal linear loss, 387

Unity coefficients, 272, 307

Unix, 439

Update interval, 185, 341

Updating LINGO, 280

884 INDEX

Updating links, 159

Use RC Format Names, 198

USEPNM parameter, 344

User defined functions, 533–37

USER function, 420

User ID, 146, 328

User interrupt, 863

Utility functions, 593

V

Values transferred

command-line, 454

Variable domain functions, 825

Variable Upper Bound Box, 247

Variables

bounds, 359

guidelines for, 720

probing, 226

syntax, 105

decision variables

defining, 4

examples, 553, 557, 568

ranges, 319

defining, 5, 28

fixed variables, 712, 824

free variables, 100–105

initializing, 720

integer variables

binary

examples, 553

functions, 81

priority, 228, 348

syntax, 88–99

examples, 544

general, 81, 82–87

solutions, 721

variable domain functions, 81–100

limits, 43

names, 6

negative, 100–105

nonlinear, 1

production models, 542, 548

random, 387

scalar

examples, 27, 29, 553, 781

initializing, 116

slack, 272, 307, 543

SOS

syntax, 106

transportation models, 562

Variables Assumed Non-Negative, 198

Variance, 563, 570, 571

Vehicle routing problem, 812

VERBOSE command, 326

Verbose output, 186

Virtual memory, 337

Visual Basic, 490, 510–11

callback function, 529

macros in Excel, 454, 457

Visual Basic .NET, 490

Visual C++, 490, 501–10

callback function, 524

user defined function, 534

Volatility, 571

W

Warm start option, 230, 349

WARN function, 420, 591, 824, 834

Weibull distribution, 664

What If analysis, 117

WHILE, 611

WIDTH command, 327, 829

Williams, T., 561

Window menu, 128, 273–77

Windows commands

in brief, 126–28

in depth, 129–282

Winston, W., 100, 805

Wireless Widgets

examples, 27

importing, 424, 444

sets, 46, 69

WNLINE parameter, 342

WNTRIM parameter, 342

Wolsey, E., 226

Working memory, 822

Workstations, 551, 585, 588

Worst bound, 234, 339

WRAP function, 102

WRITE, 620

Write access, 832, 863

WRITE function, 413

WRITEFOR function, 413, 414

Writing to files, 427

X

XDETEQ command, 308

INDEX 885

Y YMD2STM function, 415

