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Reducing Solution Time of My Optimization Model

Motivation: We recently received  a nonlinear model that 
was taking forty+ hours to solve to optimality.

User: Can you reduce solution times?

Result: Applying a fairly automated technique called 
linearization, the model was converted to a linear integer 
model that could be solved in under fourteen minutes.



Q:What
 
is the best way to formulate a nonlinear model?

A:  Don’t. 
Formulate it as a Linear Program (perhaps larger & with integer variables).
Linear programs are an order of magnitude easier to solve
than general nonlinear programs of comparable size.

Let’s pursue this, . . .

Guidelines / Tricks for (Re)Formulating
 
Nonlinear Models



Reducing Solution Time of My Optimization Model

Basic Idea:
Reformulate your model, making it simpler, though perhaps 

somewhat larger, so it can be solved by a faster solver.

Model solve speed, from fastest to slowest:
1) LP,   For vectors a, x:                                     ax

 
≤

 
b;

2) QP, Quadratic –
 
convex,                LP, and  x’Q

 
x
 
≤

 
b;

3) Second order cone/Conic: QP, and  x’Q
 
x
 
-
 
u*v

 
≤

 
-b;

 
u,v

 
≥

 
0; 

where Q
 
is a positive definite matrix,

4) Semi-definite programs: Conic, and X
 
positive definite,

helpful when Q
 
is not positive definite,

5) Nonlinear –
 
convex,

6) Nonlinear –
 
nonconvex,  Need global solver.

For each of the above, adding integer variables
 
makes it an order of 

magnitude more difficult, especially if not LP.



1) Substitute out fixed variables,
2) Disregard extraneous variables and associated nonlinearities,
3) Exploit common expressions,
4) Linearization of piecewise linear functions such as 

ABS(x), and MAX( x, y),
5) Aggregation of interchangeable variables,
6) Use the Prayer Algorithm, i.e.,  speculatively 

disregard complicating constraints and pray they are satisfied.
7) Variable scaling and change of variable.
8) Transform convex polynomial programs to SOC/Conic.
9) Transform Geometric programs to (almost) linear programs.
10) Transformation to piecewise linear programs.
11) Disjunctive/Scenario formulations for integer programs.
12) Exploit Semi-Definite Program constraints,

e.g., to choose a correlation matrix.
13) Global optimization.

Model Simplifications, Summary of Useful Tools



Linearization: Eliminate Fixed Variables

If you have the set of constraints:
x1

 

= 2;
x2 /x1

 

= 3;                   ! These look . . .;
x2

 

*x3

 

+ x1

 

*x4  ≤
 
7; !               nonlinear;

We say that x1 and  x2 are fixed variables and can be substituted out 
before hand so the above is equivalent to the linear constraint:

6*x3

 

+ 2*x4  ≤
 
7;

Most optimization solvers will do such substitutions automatically.



MODEL: ! Markowitz Value-at-Risk Portfolio Model(PORTVAR);
SETS:
STOCKS:  X, RET;
COVMAT(STOCKS, STOCKS): VARIANCE;
ENDSETS
DATA:
STOCKS  =    ATT        GMC      USX;

!Covariance matrix and expected returns;
VARIANCE = .01080754 .01240721 .01307513    

.01240721 .05839170 .05542639    

.01307513 .05542639 .09422681 ;
RET = 1.0890833  1.213667  1.234583 ;

STARTW = 1.0; ! How much we start with;
RHO = .05; ! Choose a Risk tolerance, must be < .5;

ENDDATA
!----------------------------------------------------------;
! Get the s.d. corresponding to this risk threshold;

RHO = @PSN( Z); ! @PSN is Normal cdf, left tail probability;
@FREE( Z);

! Maximize value not at risk, e.g., the probability that
the portfolio value is < ARET + Z*SD is <= RHO;
Max = ARET + Z * SD;

!  Use exactly 100% of the starting budget;
@SUM( STOCKS:  X) = STARTW;

! The average return;
ARET = @SUM( STOCKS:  X * RET) ;

! Compute the standard deviation of the portfolio;
@SUM( COVMAT(I, J):  X(I) *  X(J) * VARIANCE(I, J)) -

 

SD^2 <= 0; ! Conic constraint;
END

Linearization: Eliminate Fixed Variables



LINGO returns with the message:

Model is a second-order cone.
Global optimal solution found.
Objective value:    0.9257590

Notice that the fixed variable, Z,  implied by 
RHO = @PSN( Z);  

was automatically substituted out, so the problem was recognized
 
as 

a second order cone type problem and efficiently solved by a second 
order cone algorithm.

Eliminate Fixed Variables, Identifying Conic Constraints



Linearization: Eliminate Extraneous Variables

Suppose you have the apparently nonlinear model:
Min = 20* x1

 

+ 30*x2 ;
x1 + x2

 

≤
 
4;

3*x1

 

+ 4*x2  ≤
 
14;

x3  = x1

 

*x1

 

;             ! These not only look nonlinear . . .;
x4  = x3 + x2

 

*x2

 

;      !        they are; 
x1

 

,  x2

 

≥
 
0;

We say that x3 and  x4 are extraneous or reporting variables.
The user may be interested in their values, however, the constraints 
that define them do not affect the optimal solution.  
These constraints can be removed (temporarily), 
leaving a linear program.  
Once we have a solution in x3 and x4

 

, the deleted constraints can be 
restored so we can compute and report the values for x3 and  x4 .
This is a variation of the prayer algorithm.



Linearization: Avoid Rationality

Sometimes it is natural to think in terms of ratios.
General rule: Don’t.   Usually it is good to multiply by denominator.

Example
 
1: We want a mix of x

 
and y

 
to have 10% protein.

We might have a constraint in natural form:
(.16*x

 
+ .07*y)/(x+y) = .10;

This is nonlinear.  It is better to write the linear constraint:
.16*x

 
+ .07*y = .10*(x+y) ;     ! LINDO Global will do this;

Example
 
2: More generally we may have a constraint:
r = y/x;

It is usually better to write it as
r*x = y;

This avoids possibilities of dividing by zero.  Computers have 
trouble representing ∞

 
but no trouble with 0.



Linearization: Don’t be Rational, off on a Tangent

Sometimes it is not so obvious we are introducing a potential  divide by 0.

Suppose one of our expression contains tan(x).  
Now tan(x) is undefined

 
for

 
x = π/2,  3*π/2, …

Recall that tan(x) = sin(x)/cos(x).
Thus, given

r
 
= tan(x) = sin(x)/cos(x),

It may be better to avoid the potential divide by zero by replacing this by:
r*cos(x) = sin(x);



Functions Operators Expressions
ABS(x) < x*y

 
(where at least one of x

 
and y

 
is a binary 0/1 variable)

MAX(x, y) ≤ u*v
 
= 0

MIN(x,y) < >
IF(b, x, y) =
b  AND  c <
b  OR  c ≥
NOT  b

Linearization Using Integer Variables

Replace a (piecewise linear) nonlinear function or expression by
linear constraints, and perhaps 
a collection of additional binary integer variables and such that 

the modified model is mathematically equivalent to the original. 

Some such transformations done automatically by the LINDO API 
(and LINGO and What’sBest!) include:



A            B              C             D

1

 

EOQ Inventory with Quantity Discount
2

 

All Units Case, C and M, Chapter 7
3   Parameters
4    120000

 

= D = demand/year
5          100

 

= K = setup cost
6           0.2

 

= i = interest charge
7               Discount schedule
8  Breakpoint

 

Cost/unit at or above this level
9 0           3

10        5000           2.96
11      10000           2.92
12      10000

 

= Q = amount to order
13 Total cost/year= $354,520.00

 

=(K*D/Q)+(i*Q/2+D)*IF(Q<A10,B9,IF(Q<A11,B10,B11))

The IF statement can be linearized so that a global optimum can be computed automatically
using What’sBest!.

Global Optimization with IF( , , ) Function

A small text book example:



IF( ,  , ) is convenient for representing quantity discount

price schedules,  using nested IF’s.

A  customer example:

7  discount levels,

13 suppliers,

361 SKU’s

Resulted in model with

4646 rows  and 7790 variables.

IF( , ,) Function and its Usefulness



=IF(D3<'Rebate Structure'!$A$3,0,IF('Rebate 
Calculation'!D3<'Rebate Structure'!$A$4,'Rebate 
Structure'!D3*'Rebate Calculation'!D3,IF('Rebate 
Calculation'!D3<'Rebate Structure'!$A$5,'Rebate 
Structure'!D4*'Rebate Calculation'!D3,IF('Rebate 
Calculation'!D3<'Rebate Structure'!$A$6,'Rebate 
Structure'!D5*'Rebate Calculation'!D3,IF('Rebate 
Calculation'!D3<'Rebate Structure'!$A$7,'Rebate 
Structure'!D6*'Rebate Calculation'!D3,IF(D3<'Rebate 
Structure'!$A$8,'Rebate Structure'!D7*'Rebate 
Calculation'!D3,IF('Rebate Calculation'!D3<'Rebate 
Structure'!$A$9,'Rebate Structure'!D8*'Rebate 
Calculation'!D3,IF('Rebate Calculation'!D3<'Rebate 
Structure'!$A$10,'Rebate Structure'!D9*'Rebate 
Calculation'!D3)))))))

The sheet as it came from the user….



Linearization,  Methodology, Max, Min, Abs

Some functions can be recognized and linearized exactly.

Let δ be a 0/1 variable.  M = a big number.

Given:

a)
 

r = max(x,y);

The Linearization is to replace r = max(x,y),  by:
x ≤

 
r ≤

 
x + δ M;

 
!
 
δ = 0 implies y

 
≤

 
x;

y ≤
 
r ≤

 
y + (1-

 
δ)M ;

 
!
 
δ = 1 implies x

 
≤

 
y;

b)
 
r = abs(

 
x)

 
= max(x,-x);

c)
 
r = min(x,y)

 
= -

 
max(-x,-y);



Linearization continued, Products and IF( ).

d) r = δ y;   !Replace by the following linear constraints;

y -
 
(1-

 
δ)

 
M  ≤

 
r ≤

 
y + (1-

 
δ)

 
M;

 
!
 
δ = 1 implies r = y;

r ≤
 

δ M;              !
 
δ = 0 implies r = 0;

e)
 

x y =
 
0;   (Complementarity)      !Replace by ;

-(1-
 
δ)

 
M  ≤

 
x ≤

 
(1-

 
δ)

 
M;      !

 
δ = 1 implies x = 0;

-
 
δ M  ≤

 
y ≤

 
δ M;             !

 
δ = 0 implies y = 0;

f) r = IF(δ , x, y);                                !Replace by ;

x -
 
(1-

 
δ)

 
M  ≤

 
r ≤

 
x + (1-

 
δ)

 
M;

 
!
 
δ = 1 implies r = x;

y       -
 

δ M  ≤
 

r ≤
 
y + δ M;        !

 
δ = 0 implies r = y;



Linearization continued (Product with General Integer).

g) r = x*y;  where,

x
 
= 0, 1, 2, . . ., U;  i.e., a general integer variable.

Introduce binary variables,
 
δ1

 

,
 
δ2

 

, . . ., and add constraints:

x
 
= δ1 + 2*δ2 + 4*δ3

 

+ 8*δ4

 

+ . . . ;

r
 
= ρ1 + 2*ρ2 + 4*ρ3

 

+ 8*ρ4

 

+ . . .
 
:

Apply the previous linearization of the products ρi

 

= δi

 

*y
 
, i.e.,

y -
 
(1-

 
δi

 

)
 
M  ≤ ρi

 

≤
 
y + (1-

 
δi

 

)
 
M;

 
!
 
δi

 

= 1 implies ρi

 

= y;

ρi

 

≤ δi

 

M;               !
 
δi

 

= 0 implies ρi

 

= 0.

E.g., δ1 = δ3

 

= 1, δ2

 

=δ4

 

= 0, corresponds to x
 
= 5, r = 5*y;



Linearization continued, Function of Integer Variable.

h) r = f(x),  where,

x
 
= 0, 1, 2, . . ., U;

Introduce binary variables,
 
δ0

 

, δ1

 

,
 
δ2

 

, . . .
 
δU

 

, and add constraints:

x
 
= δ1 + 2*δ2 + 3*δ3

 

+ 4*δ4

 

+ . . . + U*δU

 

;

r
 
= δ0 *f(0) + δ1 *f(1) + δ2

 

*f(2)
 
+ δ3

 

*f(3) +
 
δ4

 

*f(4) +. . . +
 
δU

 

*f(U) 

1 = δ0 + δ1 + δ2 + δ3

 

+ δ4

 

+ . . .+ δU

 

;



Linearization with a Single Complicating Variable

Some models have the feature that there is a
Single variable, e.g., a batch size or cycle length, 
such that if fixed, 

then the model is linear.  ( E.g., benchmarking with Data Envelopment Analysis)

Slightly more specifically, there is a variable s ( > 0), so model can be written:
Constraints for i

 
in set A:  s(ai0

 

+ ai1

 

x1

 

+ ai2

 

x2

 

+ . . .) = bi

 

;
Constraints for i

 
in set B:     ai1

 

x1

 

+ ai2

 

x2

 

+ . . . = bi

 

;

Linearization:
1) Multiply or scale the constraints in set B

 
by s, giving:

ai1

 

x1

 

s+ ai2

 

x2

 

s
 
+ . . . -

 
bi

 

s
 
= 0;

2) Do a change of variable, yj

 

= xj

 

s, giving the linear set:
A:   ai0

 

s
 
+  ai1

 

y1

 

+ ai2

 

y2

 

+ . . . = bi

 

;
B:   ai1

 

y1

 

+ ai2

 

y2

 

+ . . . –
 
bi

 

s
 
= 0;

3) Solve LP, then do (nonlinear) post processing to original variables with xj

 

=
 
yj

 

/s;



Linearization of Ratio or Fractional Objective, cont. 

The idea also works for fractions, e.g.
set A:  (ai0

 

+ ai1

 

x1

 

+ ai2

 

x2

 

+ . . .)/t
 
= bi

 

; (t
 
> 0) Define s

 
= 1/t.

Rescale all constraints by s
 
= 1/t;

Original Scale by s = 1/ t
 

Change of variable yj

 

= xj

 

s;

Min

 

(c1

 

x1

 

+ c2

 

x2

 

+ . . .) /t) ;     Min

 

c1

 

x1

 

s + c2

 

x2

 

s + . . . ;  Min

 

(c1

 

y1

 

+ c2

 

y2

 

+ . . .)  ;
s.t.                                           s.t. .                                            s.t.

a11

 

x1

 

+ a12

 

x2

 

+ . . ≥

 

b1

 

;

 

a11

 

x1

 

s + a12

 

x2

 

s

 

+ . . ≥

 

b1

 

s;

 

a11

 

y1

 

+ a12

 

y2

 

+ . . -

 

b1

 

s

 

≥

 

0;
etc.              etc.   etc.

t

 

+. . . ≥

 

d;                     ts

 

+ . . .

 

≥

 

ds;                              1 + . . . ≥

 

ds; 

Need last constraint                                        The above model 
to avoid divide by 0.                                      is linear.



Linearization of Multiple Ratios is Sometime Possible 

A firm wants to allocate personnel to several locations* to several 
different task types**.
xij

 

= people at location i
 
assigned task j;

Nonlinear complication: for administrative reasons we have the 
constraint for any two locations i

 
and k:  xij

 

/xij+1

 

= xkj

 

/xkj+1

 

;
Task type

Locn
 

1       2        3       4  
1

 
3  12   9   6

 
( = 30)

2
 

1   4   3   2 ( = 10)
3

 
2   8   6   4

 
( = 20)

This looks like a nonlinear constraint, however,  for a given location i, 
∑j

 

xij

 

= ti

 

,  where ti

 

is a given constant.  
* call center locations;

** call types, e.g., tech support, sales, etc.



Linearization of Multiple Ratios is Sometime Possible-II 

How to linearize. Define the variable :
fj

 

= fraction of staff allocated to task j
 
in every location;

Task type
Locn

 
1       2        3       4  

1
 

6   3  12   9 ( = 30)
2

 
2   1   4   3 ( = 10)

3
 

4   2   8   6 ( = 20)

Replace   xij

 

/xij+1

 

= xkj

 

/xkj+1

 

by the linear constraints:

xij

 

= fj

 

*
 
ki

 

;

∑j

 

fj

 

= 1;



Linearization in Quadratic Models 

Sometimes variable scaling can be used to convert an apparently 
nonlinear model to a quadratic model.  Consider the well known
Sharpe Ratio maximization model:

MODEL:
R0 = 1.05; ! The risk free rate;
! Maximize the Sharpe ratio;
MAX = RDIF/SD;
! Expected return of the portfolio;
RP = 1.089083*ATT + 1.213667*GMC + 1.234583*USX;
RDIF = RP -

 

R0;  ! Excess expected return;
! Variance of the portfolio;

SD*SD

 

>= 
.01080754 * ATT * ATT + .01240721 * ATT * GMC + .01307513

 

* ATT * USX
+ .01240721 * GMC * ATT + .05839170 * GMC * GMC

 

+ .05542639 * GMC * USX
+ .01307513 * USX * ATT + .05542639 * USX * GMC + .09422681 * USX * USX;

! Use exactly 100% of the starting budget;
[BUD]  ATT + GMC + USX = 1;
END

This is a quadratic(SOC/Conic) model except for the ratio in MAX = RDIF/SD;



Linearization in Quadratic Models,  II 

There is just one variable, 1/SD, that makes it general nonlinear…;
MODEL:
! Converting an apparently general nonlinear model with a 
ratio, to a quadratic model.  We want to MAX = RDIF/SD;

! Steps in the conversion:
1) Define:  SC = 1/SD, so SC*SD = 1.
2) Scale, i.e., multiply, various constraints by either SC or SC*SC.
3) Do a change of variable XSC = X*SC, giving the quadratic model;

R0 = 1.05; ! The risk free rate;
! Maximize the Sharpe ratio;
MAX = RDIFSC; ! = RDIF*SC; 
! Expected return of the portfolio;
RPSC = 1.089083*ATTSC + 1.213667*GMCSC + 1.234583*USXSC;
RDIFSC = RPSC -

 

R0*SC;  ! Excess expected return;
! Variance of the portfolio;
1 >=   !(SD*SC)*(SD*SC) >= …;
.01080754 * ATTSC * ATTSC

 

+ .01240721 * ATTSC * GMCSC + .01307513 * ATTSC * USXSC
+.01240721 * GMCSC * ATTSC + .05839170 * GMCSC * GMCSC

 

+ .05542639 * GMCSC * USXSC
+.01307513 * USXSC * ATTSC + .05542639 * USXSC * GMCSC + .09422681 * USXSC * 
USXSC;
! Use exactly 100% of the starting budget;
[BUD]  ATTSC + GMCSC + USXSC = 1*SC;
END



Linearization in Quadratic Models,  III 

Solution to first version  Solution to second version
Global optimal solution found.      Global optimal solution found.
Objective value:  0.6933179         Objective value:   0.6933179
Model Class:  NLP                   Model Class:  CONIC

Variable       Value                   Variable        Value 
RDIF       0.151793                   RDIFSC        0.693318 
SD       0.218937                       SC        4.567532
RP       1.201793                     RPSC        5.489226 

ATT       0.131855                    ATTSC        0.602254 
GMC       0.650475                    GMCSC        2.971065 
USX       0.217670                    USXSC        0.994212 

Post-processing the solution to the second version, notice that 
0.151793   =   0.693318/4.567532
0.218937   =          1/4.567532
1.201793   =   5.489226/4.567532
0.131855   =   0.602254/4.567532
0.650475   =   2.971065/4.567532
0.217670   =   0.994212/4.567532



Geometric Program/Logarithmic Transformations

Example:
! Box shape design Geometric Program in LINGO.
Ref: Boyd, Kim, Vandenberghe, and  Hassibi,
"A tutorial on Geometric Programming" ;

Max = h*w*d;   ! Maximize volume;
w*d <= 90;  ! Floor area limit;
.8 <= h/w; h/w

 
<= 1.1;

 
! Aesthetic limits;

1.1 <= d/w; d/w

 
<= 1.2;

2*(h*w + h*d) <=  150; ! Wall area not too great;

This is an NLP and it is not convex.
The objective and all constraints but the last are called monomials.
The last constraint is called a posynomial

(positively weighted sum of monomials). 



! In log transformation form, th

 

= log(h), etc.;
! Max = h*w*d;   ! Maximize volume;
Max = th

 

+ tw

 

+ td;

!    w*d <= 90;  ! Floor area limit;
tw

 

+ td <= @LOG(90);

! Aesthetic limits;
!     .8 <= h/w; !h/w

 

<= 1.1;
@LOG(.8) <= th

 

-

 

tw; th

 

-

 

tw

 

<= @LOG(1.1);

!    1.1 <= d/w; !d/w

 

<= 1.2;
@LOG(1.1) <= td -

 

tw; td -

 

tw

 

<= @LOG(1.2);

!   2*(h*w + h*d) <=  150; ! Wall area not too great;
@EXP(@LOG(2)+ th

 

+ tw) + @EXP(@LOG(2) + th

 

+ td) <= 150;

! With the understanding that
th

 

= @LOG( h) or; h = @EXP(th);
! tw

 

= @LOG( w) or; w = @EXP(tw);
! td = @LOG( d) or; d = @EXP(td);

The objective and first constraints are linear.
The last constraint is convex, so a local optimum is a global optimum.

Geometric Program/Logarithmic Transformations



! Chemical equilibrium problem of Peters, Hayes and 
! Hieftje. Calculate concentrations of various components
! of phosphoric acid, H3PO4, with a pH of 8 and total 
! phosphate concentration of .10. The equilibrium equations
! in obvious form have the following poorly scaled form:

!   H2P * H/ H3P = .0075;
!   HP*H/H2P = 6.2 * 10^-8);
!   H*P/HP = 4.8*10^-13;
!   H = 10 ^-8;
!

 

H3P + H2P + HP + P = .1;

! The very small numbers make this a difficult problem to solve with default tolerances.
Doing a log transformation helps the scaling, + makes it almost

 

linear;
LH2P + LH -

 

LH3P = @LOG( .0075);
LHP + LH -

 

LH2P = @LOG( 6.2 * 10^-8);
LH + LP -

 

LHP = @LOG( 4.8 * 10^-13);
LH = @LOG( 10 ^-8);

! Convert back to original variables to represent the last (posynomial) constraint;
H   = @EXP( LH);
P   = @EXP( LP);
HP  = @EXP( LHP);
H2P = @EXP( LH2P);
H3P = @EXP( LH3P);
H3P + H2P + HP + P = .1;

! Must unconstrain

 

log variables if original variable could be fractional, so log could be < 0;
@FREE( LH2P); @FREE( LH); @FREE( LH3P); 
@FREE( LHP); @FREE( LP);

! Solution should be: LH2P= -4.2767, LH= -18.4207,
LH3P= -17.8045, LHP= -2.4522, LP= -12.3965;

Logarithmic Transformation and Scaling



A Pure Geometric program, has the features,
Every constraint is either:

1) a monomial, or
2) a "<=" constraint with the LHS

a posynomial, i.e., a positive
weighted sum of monomials, and

The objective is either:
1) a monomial, or
2) Minimize a posynomial, i.e., a positive

weighted sum of monomials;

Geometric Program Summary



Piecewise Linear Functions of One Variable

In some situations a cost function has no elegant mathematical form.
Perhaps the most obvious example is the quantity discount schedule 
from a supplier.              How to represent it?

x =
 
volume

Basic idea:  wi

 

= weight on point i,  
x
 
= wi

 

xi

 

+ wi+1

 

xi+1

 

;                              Tricky part:
f (x) = wi

 

f (xi

 

)+ wi+1

 

f (xi+1

 

);             Must choose 2 adjacent
 
points.

1 =  wi

 

+ wi+1

 

;       wi

 

≥
 
0;

f (x)=
cost



Piecewise Linear,  Choosing 2 Adjacent Points, SOS2

A standard feature in Math Programming systems for enforcing 
the “choose 2 adjacent points”

 
condition is the SOS2 (Special 

Ordered Set, type 2) feature.

LINGO 12 and later versions have a “qualifier”, SOS2,
What’sBest! 10 and later have a “qualifier”

 
WBSOS2( ),

to specify SOS2 ordered sets.



MODEL:
! Demonstrates the SOS2 feature of LINGO for representing

arbitrary, piecewise-linear cost curves.
We have two suppliers. Each with his
own piecewise-linear cost curve. 
How much should we buy from each to
buy a given total amount? ;

SETS:
! Two suppliers with the price schedules;

POINT1: W1, VOLP1, COSTP1;
POINT2: W2, VOLP2, COSTP2;

ENDSETS

DATA:
! Supplier 1;
! Volume at each breakpoint;

VOLP1 =  0  5 12 20;
! Total cost at each breakpoint;
COSTP1 =  0  8 35 55;

! Supplier 2, ditto..;
VOLP2 =  0  4 12 19 24;
COSTP2 =  0 10 36 50 51;

ENDDATA

Piecewise Linear, SOS2 in LINGO



MIN

 

= COST1 + COST2;
! Volume we need;

X1 + X2 >= 18;

! Supplier 1..;! calculate weighted cost;
COST1 = @SUM( POINT1( i): COSTP1( i) * W1( i));

! Calculate weighted volume;
X1  = @SUM( POINT1( i): VOLP1( i) * W1( i));

! Weights must sum to 1;
1 = @SUM( POINT1( i): W1( i));

! Weights must satisfy SOS2 condition:
at most 2 weights > 0, must be adjacent; 

@FOR( POINT1( i): @SOS2( 'SOS2_1', W1( i)));

! Same for Supplier 2;
COST2 = @SUM( POINT2( i): COSTP2( i) * W2( i));

X2 = @SUM( POINT2( i): VOLP2( i) * W2( i));
1 = @SUM( POINT2( i): W2( i)) ;

@FOR( POINT2( i): @SOS2( 'SOS2_2', W2( i)));
END

Piecewise Linear with SOS2



Global optimal solution found.
Objective value:     46.00000

Variable           Value
COST1        8.000000
COST2       38.000000

X1        5.000000
X2       13.000000

W1( 1)        0.000000
W1( 2)        1.000000
W2( 3)        0.857143
W2( 4)        0.142857

Recall:
! Volume at each breakpoint;

VOLP1 =   0  5

 

12 20;
! Total cost at each breakpoint;
COSTP1 =  0  8

 

35 55;

! Supplier 2, ditto..;
VOLP2 =  0  4 12 19 24;
COSTP2 = 0 10 36 50 51;

Piecewise Linear with SOS2, Solution



MODEL:

 

! (PieceLinUbd);
! Demonstrates the SOS2 feature of LINGO for representing

arbitrary, piecewise-linear cost curves, where the 
final interval has no upper bound.
We have two suppliers. Each with his
own piecewise-linear cost curve. 
The highest segment for each supplier has unbounded range.
How much should we buy from each to
buy a given total amount? ;

SETS:
! Two suppliers with the price schedules;

POINT1: W1, VOLP1, COSTP1;
POINT2: W2, VOLP2, COSTP2;

ENDSETS

DATA:
! Supplier 1;

! Volume at each breakpoint, except at last point
it is the cost per additional unit for unlimited amounts;

VOLP1 =  0  5 12 20   1

 

;
! Total cost at each breakpoint;

COSTP1 =  0  8 35 55 2.10;

! Supplier 2, ditto..;

VOLP2 =  0  4 12 19 24  1;
COSTP2 =  0 10 36 50 51  2.20;

ENDDATA

Piecewise Linear, SOS2 with Unbounded Final Interval



! Get number of points + final ray for each supplier;
N1 = @SIZE(POINT1);
N2 = @SIZE(POINT2);

MIN

 

= COST1 + COST2;
! Volume we need;

X1 + X2 >= 40;

! Supplier 1..;! calculate weighted cost;
COST1 = @SUM( POINT1( i): COSTP1( i) * W1( i));

! Calculate weighted volume;
X1  = @SUM( POINT1( i): VOLP1( i) * W1( i));

! Weights must sum to 1, but final ray is not included;
1 = @SUM( POINT1( i) | i #LT# N1: W1( i));

! Weights must satisfy SOS2 condition:
at most 2 weights > 0, must be adjacent;

@FOR( POINT1( i): @SOS2( 'SOS2_1', W1( i)));

! Same for Supplier 2;
COST2 =

 

@SUM( POINT2( i): COSTP2( i) * W2( i));
X2 = @SUM( POINT2( i): VOLP2( i) * W2( i));
1 = @SUM( POINT2( i) | i #LT# N2: W2( i)) ;

@FOR( POINT2( i): @SOS2( 'SOS2_2', W2( i)));
END

Piecewise Linear, SOS2 with Unbounded Final Interval



Global optimal solution found.
Objective value:     83.20000

Variable           Value
COST1        8.000000
COST2        75.20000

X1        5.000000
X2        35.00000

W1( 2)        1.000000
W2( 5)        1.000000
W2( 6)        11.00000

Recall:
! Volume at each breakpoint;

VOLP1 =   0  5

 

12 20  1;
! Total cost at each breakpoint;
COSTP1 =  0  8

 

35 55 2.10;

! Supplier 2, ditto..;
VOLP2 =  0  4 12 19 24  1;
COSTP2 = 0 10 36 50 51 2.20;

Piecewise Linear, SOS2 with Unbounded Final Interval



Piecewise Linear Approximations to Multivariate Functions

Typical applications:
Hydro-electric power generation

Flow through a pipe,

Pooling problems in petroleum industry,

Tank models, saturation and flow rate in chemical industry,

Quantity discounts in purchasing.



Piecewise Linear Approximations to Multivariate Functions

Can we extend the piecewise linear interpolation method to functions of  2 
variables?  
Example:  power output from a hydro generator is a function of

 
two 

variables: 1) head or pressure, and 2) flow volume.



Piecewise Linear Approximations to Multivariate Functions

Suppose we have a function of two variables:
output = f (p,v),    e.g., pressure and volume for water through a hydro generator.

We can construct a  piecewise linear approximation to this function if we 
choose n points, (pbari

 

,vbari

 

) for i = 1, 2, …, n, e.g., corner points of the  8 triangles in the figure below,

 

and,
introduce the n  (3*3 = 9) nonnegative variables, wi

 

, and
add the constraints:

1 = Σi

 

wi

 

, 
output = Σi

 

wi

 

*f

 

(pbari

 

,vbari

 

), 
p = Σi

 

wi

 

*pbari

 

, 
v = Σi

 

wi

 

*vbari

 

,
If we are lucky, e.g., f (p,v) is convex in the appropriate way then:
a) at most three of the wi

 

will be nonzero, and 
b) the nonzero wi

 

will correspond to adjacent points, that is, corner points of a triangle containing no other points.

A Triangulation of p,v

 

Space

1                       2                           3

3

2

1

How can we enforce the single triangle requirement?
Define a 0/1 variable for each triangle.  Add constraints:

Must choose exactly one triangle:
ya

 

+ yb

 

+…+

 

yh

 

= 1;

If we put any weight on  wij

 

, we must choose one of its triangles:
w11

 

≤

 

ya

 

;
w12

 

≤

 

ya

 

+ yb

 

+

 

yc

 

+

 

yd ;
w13

 

≤

 

yd ;
w21

 

≤

 

ya

 

+ yb

 

+

 

yf

 

+

 

ye

 

;

etc.

ye

yb

yd

yh

yg

yc
ya

yf



Piecewise Linear Approximations to Multivariate Functions, Revisited…

Looks like we need one 0/1 variable for each triangle.  This could be a lot of 0/1 variables.
Can we do any better?

Yes,  can get by with approximately log2

 

(number of triangles)  0/1 variables..
Use a binary partition approach.  See figure below.  Define:

yH

 

= 1 if choose triangle above horizontal split (red line),
yV

 

= 1 if choose triangle to right of vertical split (green line),
yC

 

= 1 if choose triangle within center diamond (blue diamond), else 0;
Still require:  w11

 

+ w12

 

+ w13

 

+

 

w21

 

+

 

w22

 

+  w23

 

+ w31

 

+

 

w32

 

+  w33

 

= 1;              
If we put any weight on wij

 

, then the relevant partition variables must
take the correct 0 or 1 value:

A Triangulation of p,v

 

Space
w31

 

+

 

w32

 

+  w33

 

≤

 

yH ;         

w11

 

+ w21

 

+

 

w31 ≤

 

1-yV ;                 w13

 

+ w23

 

+

 

w33 ≤

 

yV ;
w22

 

≤

 

yC ;           
w11

 

+

 

w13

 

+ w31

 

+ w33 ≤

 

1-yC ;         

w11

 

+ w12

 

+ w13

 

≤

 

1-

 

yH ;

Summary: 0/1 vars:  8 → 3;  Constraints:     9 → 6;          

3

2

1
1                        2                          3



!Piecewise linear approximation of f(h,v);
SETS:
HSET;  ! The horizontal dimension;
VSET;  ! The vertical dimension;
HXV( VSET, HSET): HV, VV, FV, WGT;

ENDSETS
DATA:
HSET = 1..3;
VSET = 1..3;

! Matrix of Data points for head(pressure), volume
and power output(function

 

value) for a hydro-electric generator;
HV,  VV,  FV = 
195 1800  20  ! Row 1;
195 3500  52
195 5100  69
217 1900  26  ! Row 2;
217 3600  61
217 5200  80
240 2000  30  ! Row 3;
240 4100  78
240 5600  93  ;

ENDDATA

Piecewise Linear Bivariate
 
Functions, in LINGO



! Weights must form a convex combination;
[CNVX]    @SUM( HXV(i,j):          WGT(i,j)) = 1;

! Compute associated horizontal or X value;
[COMPX]   @SUM( HXV(i,j): HV(i,j)* WGT(i,j)) = HA;
! Compute associated vertical or Y value;
[COMPY]   @SUM( HXV(i,j): VV(i,j)* WGT(i,j)) = VA;

! Compute associated function value;
[COMPFV]  @SUM( HXV(i,j): FV(i,j)* WGT(i,j)) = FA;

! Choice must be binary, all or nothing; 
@BIN(YH); @BIN(YV); @BIN(YC);

! Implications of setting YV;
WGT(1,3) + WGT(2,3) + WGT(3,3) <= YV;
WGT(1,1) + WGT(2,1) + WGT(3,1) <= 1-YV;

! Implications of setting YH;
WGT(3,1) + WGT(3,2) + WGT(3,3) <= YH;
WGT(1,1) + WGT(1,2) + WGT(1,3) <= 1-YH;

! Implications of setting YC;
WGT(2,2) <= YC;
WGT(1,1) + WGT(3,1) + WGT(1,3) + WGT(3,3) <= 1-YC;

! Define an arbitrary optimization problem to illustrate the method;
! An arbitrary tradeoff cost between head and volume;
[ARBOBJ]  Min = VA + 15*HA;

!  We need this much power;
[ARB1]   FA >= 75;

! Arbitrarily put some constraints on Head;
[ARB2]   HA <= 229;
[ARB3]   HA >= 227;

Piecewise Linear Bivariate
 
Functions, in LINGO -

 
II



Global optimal solution found.
Objective value:          7727.906

Variable           Value
HA        229.000000
VA       4292.906000
FA         75.000000
YH          1.000000
YV          1.000000
YC          1.000000

WGT( 2, 2)          0.208238
WGT( 2, 3)          0.270023
WGT( 3, 2)          0.521739

Recall:
HV,  VV,  FV = 
195 1800  20  ! Row 1;
195 3500  52
195 5100  69
217 1900  26  ! Row 2;
217 3600  61
217 5200  80
240 2000  30  ! Row 3;
240 4100  78
240 5600  93

Piecewise Linear Bivariate
 
Functions, Solution

1                 2                 3

3

2

1



Piecewise Linear Bivariate
 
Functions Using SOS2

x

You might find it easier to use the SOS2 feature.
Basic idea: Given relation r = f(x,y), use linear 
approximation within each triangle.

A unique triangle can be
identified by choosing
2 adjacent vertical,                 y
2 adjacent horizontal, and
2 adjacent diagonal lines.

Why use triangles
rather than, say,
rectangles?



!Piecewise linear approximation of f(h,v);
SETS:
HSET;  ! The horizontal dimension;
VSET;  ! The vertical dimension;
DSET: WD;  ! The diagonal dimension;
HXV( VSET, HSET): HV, VV, FV, WGT;
ENDSETS
DATA:
HSET = 1..3;
VSET = 1..3;
DSET = 1..5; ! There are n*n -

 

1 diagonal lines;
! Matrix of Data points for head(pressure), volume

and power output(function

 

value) for a hydro-electric generator;
HV,  VV,  FV = 
195 1800  20  ! Row 1;
195 3500  52
195 5100  69
217 1900  26  ! Row 2;
217 3600  61
217 5200  80
240 2000  30  ! Row 3;
240 4100  78
240 5600  93  ;

ENDDATA

Piecewise Linear Bivariate
 
Functions Using SOS2 -

 
I



! Weights must form a convex combination;
! Horizontal;

@SUM( HSET(k): WH(k)) = 1;
! Vertical;

@SUM( VSET(k): WV(k)) = 1;
! Diagonal;

@SUM( DSET(k): WD(k)) = 1;
! Declare the grid weights to be SOS2 sets, i.e., at most

2 can be > 0 and they must be adjacent;
@FOR( HSET(k): @SOS2( 'SH2', WH(k)));
@FOR( VSET(k): @SOS2( 'SV2', WV(k)));
@FOR( DSET(k): @SOS2( 'SD2', WD(k)));

! Tie the grid line weights to the point weights;
@FOR( HSET(k): WH(k) = @SUM(VSET(j): WGT(k,j)));
@FOR( VSET(k): WV(k) = @SUM(HSET(i): WGT(i,k)));
@FOR( DSET(k): WD(k) = 

@SUM(HXV(i,j)| i+j-1 #EQ# k: WGT(i,j)));

Piecewise Linear Bivariate
 
Functions Using SOS2 -

 
II



! Compute associated horizontal or X value;
[COMPX]   @SUM( HXV(i,j): HV(i,j)* WGT(i,j)) = HA;

! Compute associated vertical or Y value;
[COMPY]   @SUM( HXV(i,j): VV(i,j)* WGT(i,j)) = VA;

! Compute associated function value;
[COMPFV]  @SUM( HXV(i,j): FV(i,j)* WGT(i,j)) = FA;   

! Define an arbitrary optimization problem to illustrate the method;
! An arbitrary tradeoff cost between head and volume;
[ARBOBJ]  Min

 

= VA + 15*HA;
!  We need this much power;
[ARB1]   FA >= 75;

! Arbitrarily put some constraints on Head;
[ARB2]   HA <= 229;
[ARB3]   HA >= 227;

Piecewise Linear Bivariate
 
Functions Using SOS2 -

 
III



Global

 

optimal solution found.

Objective value:          7727.906

Variable           Value
HA        229.000000
VA       4292.906000
FA         75.000000

WH( 2)          0.478261
WH( 3)          0.521739
WV( 2)          0.729977
WV( 3)          0.270023
WD( 3)          0.208238
WD( 4)          0.791762

WGT( 2, 2)          0.208238
WGT( 2, 3)          0.270023
WGT( 3, 2)          0.521739

Piecewise Linear Bivariate
 
Functions Using SOS2 -

 
IV



An alternative approach to representing a piecewise linear function of two variables,
output = f (p,v),

 
is to partition the (p, v) space into a grid of rectangles, and then use 

two SOS2 sets to choose an interval on the p
 
coordinate, and an interval on the v

 coordinate.  The formulation is:

1 = Σi

 

wpi

 

,     ! Must choose a value for p
 
coordinate;

1 = Σj

 

wvj

 

,      ! Must choose a value for v
 
coordinate;

p = Σi

 

wpi

 

*pbari

 

, 
v = Σj

 

wvj

 

*vbarj

 

, 
For each i:         ! Weights on points must be consistent with weights on lines;

wpi

 

= Σj

 

wpvij

 

, 
For each j;

wvj

 

= Σi

 

wpvij

 

,
output = Σij

 

wpvij

 

*f
 
(pbari

 

,vbari

 

), 

The weights
 
wpi

 

≥
 
0and

 
wvj

 

≥
 
0 must be SOS2 sets,

i.e., at most two weights nonzero and they must be adjacent.

Piecewise Linear Bivariate
 
Functions Using Two SOS2



The Advantages and Disadvantages of the “Double SOS2”
 
formulation are:

+ Exploits the SOS2 capability of most software, typically resulting
in good/smart branching in the search tree.

-
 

The number of implicit binary variables, effectively the wpi

 

and wvj

 

, 
increase with the square root of the number of piecewise linear sections, 
rather than with the log of the number of sections.

-
 
The representation of a point within a rectangle is not unique,

 
whereas the 

representation of a point within a triangle is unique.
E.g., the star can be represented as either a convex combination of 

A, B, D or of                                       A                B
B, C, D.  Thus, the function value or output value
is not uniquely defined.  The optimizer will 
choose the more favorable one.                                      C              D

Piecewise Linear Bivariate
 
Functions Using Two SOS2 -

 
II



Linear Approximations of Cross-Product, xi

 

*xj

 

Terms

Suppose our model contains the product:
x1

 

* x2 ,    ( This happens for example in petroleum pooling problems.)
An alternate representation is to add the linear constraints:

y1

 

= (x1

 

+ x2

 

)/2
y2

 

= (x1

 

−

 

x2

 

)/2.
Then, replace every instance of x1

 

* x2 by the term y1
2 −

 

y2
2. That is, the claim is:

x1

 

* x2 = y1
2 −

 

y2
2.

The justification is observed by noting:
y1

2 −

 

y2
2 =  (x1

2+ 2 * x1

 

* x2 + x2
2)/4

 

−

 

(x1
2

 

−

 

2 * x1

 

* x2 + x2
2)/4

= 4 * x1

 

* x2

 

/4 = x1

 

* x2

 

.

A standard SOS2 linear approximation can be applied to each of y1
2  and  y2

2 .
This example suggests that, any time you have a product of two variables, you 

can add two new variables to the model and replace the product term by a sum of two 
squared variables. If you have n

 

original variables, you could have up to n(n−1)/2 cross 
product terms. This suggests that you might need up to n(n−1) new variables to get rid of 
all cross product terms. In fact, sometimes

 

the above ideas can be generalized, using 
various factorization techniques such as Cholesky

 

and others, 
so only at most n

 

new variables are needed.



Linear Approximations of Cross-Product, xi

 

*xj

 

Terms

If we have:
a) the constraint x’Qx

 
≤

 
r, 

b) matrix Q
 
is positive definite, i.e., x’Qx

 
is a convex function,

c) a fast solver that handles convex quadratic constraints,
then life is good.

But suppose (b) does not hold.  In this case, you can easily find a 
nonnegative diagonal matrix d

 
such that the matrix (Q+d) is 

positive definite and so:
x’Qx

 
= x’(Q+d)x

 
–

 
x’dx

 
= x’(Q+d)x – r;

If we have a solver that can efficiently solve models with convex 
quadratic expression as well as integer variables, then we can 
approximate

 
r = ∑i xi

 

dii

 

xi

 

with at most n
 
SOS2 sets, if Q

 
is n

 
by n.



Example: Computing Quality of a Blend
We have two ingredients, 

one with a density of 0.7 g/cc and the other with a density

 

of 0.9 g/cc. 
If we mix together one gram of each, is the density 8 g/cc? 
Clearly, the mix has a weight of 2 grams. Its volume in cc’s is 1/0.7 + 1/0.9. 
Thus, its density is 2/(1/0.7 + 1/0.9) = 0.7875 g/cc.
This is less than the 0.8 we would predict if we took the arithmetic average.
If we define:

Xi

 

= units of feature i

 

in the mix,
t

 

= target lower limit on density desired.
Then, we can write the density constraint for our little example

 

as:
( X1

 

+ X2 )/(X1

 

/0.7 + X2 /0.9) ≥

 

t,
or as a linear constraint:

(X1

 

+ X2

 

)*(1/t

 

) ≥

 

X1

 

*(1/0.7 )+ X2

 

*(1/0.9),
(i.e., a harmonic mean constraint).

The constraint became linear by changing the measure from g/cc to cc/g.

Similar example occurs in computing average fleet miles/gallon to meet U.S. 
CAFE (Corporate Average Fuel Economy) standards.

Linearizing
 
by Changing Our Metric or Variables



One can generalize the idea just discussed by introducing a transformation f (q). The function f () “linearizes”

 

the 
quality. Many of the quality measures used in practice were chosen somewhat arbitrarily (e.g.,

 

why is the freezing 
point of water 32 degrees on the Fahrenheit scale?). So, even though a standardly

 

used quality measure does not “blend 
linearly”, perhaps we can find a transformation that does. Such linearizations

 

are common in industry. Some examples: 

1.

 

Rigby, Lasdon, and Waren

 

(1995) use this idea when calculating the Reid vapor pressure of a blended gasoline at 
Texaco. If ri

 

is the Reid vapor pressure of component i of the blend, they use the transformation:
f (ri

 

) = ri

 

1.25

For example, if component 1 has a vapor pressure of 80, component 2 has a vapor pressure of 100, ri

 

is the amount 
used of component i, and we want a blend with a vapor pressure of at least 90, the constraint could be written:

80 1.25

 

∗

 

x1

 

+ 100 1.25

 

∗

 

x2

 

≥

 

90 1.25

 

∗(x1

 

+ x2

 

), 
or
239.26 x1

 

+ 316.23 x2

 

≥

 

277.21 (x1

 

+ x2

 

).

2.

 

The flashpoint of a chemical is the lowest temperature at which it will catch fire. Typical jet fuel has a flashpoint of 
around 100 degrees F. Typical heating oil has a flashpoint of at

 

least 130 degrees F. The jet fuel used in the supersonic 
SR-71 jet aircraft had a flashpoint of several hundred degrees F. If pi

 

is the flashpoint of component i, then the 
transformation: 

f

 

(pi

 

) = 10 42 (pi

 

+ 460)-14.286

will approximately linearize the flashpoint. Notice that f (pi

 

) is a decreasing function of pi

 

, so a higher flashpoint means 
a lower f (pi

 

)  value.
For example, if component 1 has a flashpoint of 100, component 2

 

has a flashpoint of 140, xi

 

is the amount used of 
component i, and we want a blend with a flashpoint of at least 130, the constraint would be written:

10 42 (100 + 460)-14.286

 

∗x1

 

+ 10 42 (140+ 460)-14.286*x2

 

≤
10 42 (130+ 460)-14.286

 

∗

 

(x1

 

+ x2

 

),
or
548.76  x1

 

+ 204.8 x2

 

≤

 

260 (x1

 

+ x2

 

).

Linearization via Changing How We Measure Things



3.

 

The American Petroleum Institute likes to measure the lightness of a material in 
“API gravity”, see Dantzig

 

and Thapa

 

(1997). API gravity does not blend linearly. 
However, the specific gravity, defined by:

sg

 

= 141.5/(API gravity + 131.5)
does blend linearly. Note, the specific gravity of a material is

 

the weight in grams of 
one cubic centimeter of material. Water has an API gravity of 10.

4.

 

The viscosity of a liquid is a measure, in units of centistokes,

 

of the time it takes a 
standard volume of liquid, at 122 degrees Fahrenheit, to flow through a hole of a 
certain diameter. The higher the viscosity, the less easily the liquid flows. If vi

 

is the 
viscosity of component i, then the transformation:

f (vi

 

) = ln

 

(ln

 

(vi

 

+ .08))
will approximately linearize the viscosity.

For example, if component 1 has a viscosity of 5, component 2 has a viscosity of 
25, xi

 

is the amount used of component i, and we want a blend with a viscosity of at 
most 20, the constraint would be written:

ln

 

(ln

 

(5 + .08)) ∗

 

x1

 

+ ln

 

(ln

 

(25+ .08))∗x2

 

≤
ln

 

(ln

 

(20 + .08)) ∗

 

(x1

 

+ x2

 

),
or
.4857 x1

 

+ 1.17 x2

 

≤

 

1.0985(x1

 

+ x2

 

).

Linearizing
 
by Changing Metric-

 
II



5.

 

In the transmissivity

 

of light through a glass fiber of length xi

 

, or the financial growth 
of an investment over a period of length xi

 

, or in the probability of no failures in a number 
of trials xi

 

, one may have constraints of the form: a1
x1

 

a2
x2

 

…an
xn

 

≥

 

a0

 

. This can be 
linearized by taking logarithms (e.g., ln(a1

 

) * x1

 

+ ln(a2

 

) * x2

 

+…

 

+ ln(an

 

) * xn

 

≥

 

ln(a0

 

)).
For example, if we expect stocks to have a long term growth rate

 

of 10% per 
year, we expect less risky bonds to have a long term growth rate

 

of 6% per year, we want 
an overall growth of 40% over five years, and x1

 

and x2

 

are the number of years we invest 
in stocks and bonds respectively over a five year period, then we want the constraint:

(1.10) x1(1.06) x2≥

 

1.40.

Linearizing, this becomes:
ln(1.10) x1

 

+ ln(1.06)

 

x2 ≥

 

ln(1.40), or
.09531 x1

 

+ .05827 x2

 

≥

 

.3364,
x1

 

+ x2

 

= 5.

The preceding examples apply the transformation to each quality individually. One 
could extend the idea even further by allowing a “matrix”

 

transformation to several 
qualities together.

Linearizing
 
by Changing Metric-

 
-
 
III



Second Order Cone Constraints: Quadratics + more

The pair of constraints:

S1)   x1
2

 
+ x2

2

 
+…

 
xn

2

 
-
 
z2

 
≤

 
0;

S2)    z
 
≥

 
0;

describe a convex set  and 
is called a second order cone.

Note that constraint S1 by itself is not a convex set.  
A traditional “quadratic”

 
solver may refuse to solve a model that 

contains S1 with the message something like the model contains a
 nonconvex

 
constraint.

More recent Second Order Cone Program (SOCP) solvers will 
tolerate S1, S2, and in fact solve quickly.
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Second Order Cone Constraints, Graphically

If we drop the constraint z ≥
 
0, then the feasible region would consist of 

two cones, the second one a reflection of the first, below the first.
The feasible region would not be convex. 



Second Order Cone Constraints, Generality

SOC constraints are surprisingly general, if we are allowed to complement 
the SOC with appropriate linear constraints.  Some important
examples are:

Rotated SOC constraints:
The pair of constraints:

S1’)   x1
2

 

+ x2
2

 

+…
 
xn

2

 

–
 
y*z

 
≤

 
0;

S2’)    y,
 
z
 
≥

 
0;

can be shown to be equivalent to the original S1, S2.  Note, some low 
level solvers may require S1’

 
to be written:  x1

2

 

+ x2
2

 

+…
 
xn

2

 

–
 
2*y*z

 
≤

 
0;



Converting Models to SOC/Conic Form

Conic constraints are more general than perhaps is superficially obvious. Generally, 
any constraint of the form:

|x|p

 

≤

 

t;
for p rational and either p

 

≥

 

1, or p

 

≤

 

0, x ≥

 

0,  can be represented by conic constraints 
by appropriate transformations.

For example, in financial portfolio models where one wants to take into account 
transaction costs and the “market impact”

 

of a transaction, i.e., how the price of a 
commodity is affected by how much we buy or sell of that commodity, we may wish 
to represent constraints such as:

x1.5

 

≤

 

t;   x

 

≥

 

0;
This is enforced with the two conic constraints:

x2

 

≤

 

2st;
s2

 

≤

 

2xr; 
and the linear constraints:

r

 

= 1/8;
s

 

≥

 

0;
Notice that s

 

= (x0.5)/2 will satisfy the second constraint so the first constraint is 
x2

 

≤

 

2[(x0.5)/2] t;  or  x1.5

 

≤

 

t;



As another illustration of this generality, consider a constraint set of the form:
r ≥

 

(a + bx)/(c+dx); 
c+dx

 

≥

 

0; 
Expressions such as this arise for example in modeling traffic delay or congestion as a 
function of traffic volume through a congested facility or transportation link.  A constraint 
such as the above can be put into SOCP form if a –

 

bc/d

 

≥

 

0.

 

To do this define:
2y

 

=  c+dx, then x

 

= (2y-c)/d,  and r ≥

 

(a + bx)/(c+dx) = (a + bx)/(2y) = (a –

 

bc/d)/(2y) + 
b/d.  
Thus, the constraint is convex  if y

 

≥

 

0 and a –

 

bc/d

 

≥

 

0.
If we define u

 

= (r-b/d), then r -

 

b/d

 

≥

 

(a –

 

bc/d)/(2y)  is equivalent to the cone constraint:
2yu

 

≥

 

a-bc/d.
Summarizing, given a –

 

bc/d

 

≥

 

0, we can replace:
r ≥

 

(a + bx)/(c+dx);
c+dx ≥

 

0;
by the SOCP set of constraints:

2y =  c+dx;
r = u + b/d; 
2yu

 

≥

 

a-bc/d;
y ≥

 

0;

Converting Models to SOC Form -
 
II



Although perhaps not immediately obvious, a SOCP is at least as general as a 
quadratic program.  In a quadratic program one typically wants to either minimize a 
quadratic expression,  written as x’Qx, or constrain x’Qx

 

from above.  A related 
example is in Value-At-Risk analysis, where one may have models of the form:

Minimize  k*σ -

 

μ;
subject to
σ 2 ≥

 

x’Qx;
μ =  r’x;

If the Q

 

matrix is positive definite,  then x’Qx

 

is convex and SOCP can be applied as 
outlined below.  An easy way to a) check for positive definiteness, and b) put the 
model into a SOCP form is to compute a Cholesky

 

Decomposition or “square root”

 of the Q

 

matrix.  In matrix notation we can write:
σ 2 ≥

 

x Q x' = x LL' x'.
Here, L

 

is an lower triangular matrix which we can think of as the square root of Q.  
So the SOCP form is:

σ 2 ≥

 

yy‘;
y = xL;

Converting Models to SOC Form, Value at Risk Portfolios



SOC Constraints and IP, Numerical Illustration, Quadratic Plant Location

SUBMODEL SQFL:
! Simple plant location with quadratic shipping costs,

and min ship quantities;
! Parameters:

C(i) = fixed cost of opening facility i,
Q(i,j) = distance from i to customer j,
MU = minimum fraction of j's

 

demand that must satisfied
from i, if anything is shipped from i to j,

Variables:
X(i,j) = fraction of customer j's

 

demand 
received from facility i,

ZF(i) = 1 if facility i is opened, else 0,
Z(i,j) = 1 if anything shipped from i to j, else 0,

;



! The model, the simplest version;
MIN

 

= @SUM( FACILITY(i): C(i)*ZF(i)) 
+ @SUM( FXC(i,j): Q(i,j)*Y(i,j));

! Each customer j must be served;
@FOR( CUST(j):

@SUM( FACILITY(i): X(i,j)) = 1;
);

! If ship anything from i to j ...;
@FOR( FXC(i,j):

! must turn on shipment variable;
X(i,j) <= Z(i,j);

! must ship minimum amount;
X(i,j) >= MU*Z(i,j);

! i must be open;
Z(i,j) <= ZF(i);

! Force Y(i,j) >= cost of serving j from i;
X(i,j)*X(i,j) -

 

Y(i,j) <= 0;               ! <== QP;
! Optional, tighten above into an SOC constraint;
!

 

X(i,j)*X(i,j) -

 

Y(i,j)*Z(i,j) <= 0;

 

! <== SOC;
);

! Facility is either completely open or close;
@FOR( FACILITY(i) : @BIN( ZF(i)));
@FOR( FXC(i,j) : @BIN( Z(i,j)));

ENDSUBMODEL

A Quadratic Integer Program ==> SOC IP



Model       Continuous  IP Optimal    Seconds to
formulation

 

relaxation

 

objective

 

NLIP optimum

QP           162.9        317.1       >600

SOC           316.9        317.1         20

Computational Results for an Example



Aggregation of Variables

Basic Idea/Hope: 
Do not distinguish between variables, 
-

 

aggregate similar ones if you can still have a precise model.

Illustration from a Multi-Commodity Flow Network:
You want to model the shipping network for UPS, FedEx, or DHL,

 

etc.
Suppose 1000 cities in your network, each both an origin & destination.
You must keep track of each type

 

of shipment so it gets to correct destination.

Question:

 

Do we need 1000*1000

 

= 1,000,000 variables?

Key observation: Once a shipment enters the network, 
we only need to know its destination. We do not need to remember its origin.
Instead of needing variables:

xjkfd

 

= volume on link from j

 

to k

 

of goods from f

 

destined for d,  only need:
xjkd

 

= volume on link from j

 

to k

 

of goods destined for d.

If the network has, say 700 (j, k) links, this reduces the variables from
700,000,000 to 700,000.



Situation: We have to choose among two or more alternatives and we want to figure out which is best. If 
we disregard the alternatives, our variables are simply called  x1

 

,  x2

 

, …, xn.

 

We call the conditions that 
must hold if alternative s

 

is chosen, disjunction or scenario  s.  Without much loss of generality, assume 
all variables ≥

 

0.  The scenario/disjunctive approach to formulating a discrete

 

decision problem proceeds 
as follows:

For each scenario s:
1) Write all the constraints that must hold if scenario s

 

is chosen.
2) For all variables in these constraints add a subscript s,  to distinguish them from 

equivalent variables in other scenarios.  So xj

 

in scenario s

 

becomes xsj

 

.
3) Add a 0/1 variable, ys

 

, to the model with the interpretation that ys

 

= 1 if scenario
s is chosen,  else 0. 

4) Multiply the RHS constant term of each constraint in scenario s

 

by ys

 

.
5) For each variable xsj

 

that appears in any of the scenario s

 

constraints, 
add the constraint:

xsj

 

≤

 

M* ys

 

,  where M

 

is a suitably large positive constant.  The purpose of this 
step is to force all variables in scenario s

 

to be 0 if scenario s

 

is not chosen.

Finally,  we tie all the scenarios together with:
1 =∑s

 

ys

 

,   i.e.,  we must choose one scenario;
For each variable xj

 

, add the constraint:
xj

 

= ∑s

 

xsj

 

,  so xj

 

takes on the value appropriate to which scenario was chosen.

Disjunctive Approach for Formulating Integer Programs



Our vendor  gives us the following “all-units”

 

quantity discount schedule:
We pay $50 if we buy anything in a period,  plus

$2.00/unit if quantity < 100,
$1.90/unit if quantity ≥

 

100  but < 1000,
$1.80/unit if ≤1000 but ≤

 

5000. 

Let x

 

denote the amount we decide to purchase.  The possible scenarios are:
1) x

 

= 0;  2)  1 ≤

 

x ≤

 

99,   3) 100 ≤

 

x ≤

 

999,   4) 1000 ≤

 

x ≤

 

5000.

Applying the scenario or disjunctive formulation approach,
For segment/scenario 1, y1

 

= 1, is chosen, then
cost1

 

= 0;
x1

 

= 0;
If segment/scenario 2,

 

y2

 

= 1, is chosen, then
cost2

 

= 50*y2

 

+ 2.00*x2

 

,
x2

 

≥

 

1*y2

 

; 
x2

 

≤

 

99*y2

 

; 
If segment/scenario 3,

 

y3

 

= 1, is chosen, then
cost3

 

= 50*y3

 

+ 1.90*x3

 

,
x3

 

≥

 

100*y3

 

;
x3

 

≤

 

999*y3

 

; 
If segment/scenario 4,

 

y4

 

= 1, is chosen, then
cost4

 

= 50*y4

 

+ 2*x4

 

,
x4

 

≥

 

1*y4

 

;
x4

 

≤

 

99*y4

 

; 

Disjunctive Approach, Example



Disjunctive Approach, Example

Now tie the all the scenarios together:
y1

 

+ y2

 

+ y3 + y4 = 1;      ! Must choose 1;
x1

 

+ x2

 

+ x3

 

+ x4

 

= x;      ! The actual quantity;
cost1

 

+ cost2

 

+cost3

 

+ cost4

 

= cost; !
 
Actual cost; 

y1

 

, y2

 

, y3

 

, y4 = 0 or 1;



Global Solvers & Arbitrary Nonconvex
 
NLP’s

We have run out of tricks.

We are confronting an 
unavoidably nonlinear, possibly nonconvex

 
problem.

What to do?

Global solver technology is now well advanced.

Can get a guaranteed global optimal solution.



•
 

Real world models tend to be nonlinear\
 
nonconvex\

 nonsmooth\
 
noncontinuous, have integer variables.

•
 

New improvements shrink convex relaxation gap and 
locate good quality solutions fast

•
 

Industrial experience in solving large scale spreadsheet 
nonconvex

 
models with up to 10k variables:

•
 

-
 
Energy Production Scheduling

•
 

-
 
Chemical Process Design: Flowsheets

 
in Spreadsheets

-
 
Global Supply Chain Management of Chemicals

Real World Applications for Global Solvers



Basic ideas: convex relaxation, interval analysis constraint 
propagation, bound tightening, algebraic reformulation,.

Uses the “Prayer”
 
algorithm, based on two ideas

1)    For each( arbitrary) nonlinear function,  given current 
bounds on variables, automatically generate a convex relaxation 
of the function.  Solve the relaxed convexified

 
model.

2)  Solve relaxed problem and pray that solution is feasible to 
the original model,  else branch,  i.e., partition the feasible 
region into two subregions.  Calculate new implied bounds on 
the variables for each subproblem.  Go back to (1).

Relax and Branch Methodology



A Nonconvex Function: sin(x)+.5*abs(x-9.5) 
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Creating a Convex Relaxation/Bound
Example:   Min = sin(x) + .5*abs(x-9.5); 

s.t.       0 ≤
 
x
 
≤

 
12;



Global Bound on sin(x), 0 < x < 12
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Bounding a Nonconvex
 
Function

We replace sin( ) by its convex bound.  Solve, get  x = 9.5.



Bound on sin(x) with branch at x = 9.5
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Branching

We branch on  x ≤
 
9.5 vs. x ≥

 
9.5 and re-bound.

The branch  x ≥
 
9.5 is convex with feasible solution x = 10.47197. 

Bound discards
 
x ≤

 
9.5 case; Case ≥

 
9.5 is convex, we are done.



Global Solver Overview

LINDO API contains a global solver that finds a mathematically 
guaranteed global optimum

 
to an arbitrary optimization problem;

Global solver fully supports all common math functions:

Continuous and smooth:     
x+y, x-y, x*y, log(x), exp(x), sqrt(x), sin(x), cos(x), acos(x), asin(x)

Smooth, not quite continuous:                                   
tan(x),  x/y,  x^y,  floor(x),

 
mod(x,y),

 
sign(x), int(x),

Continuous, not quite smooth:                                   
abs(x),

 
max(x,y),

 
min(x,y),

Logical:                                                        
IF(x,y,z),  AND,  OR,  [where x

 
is a logical expression]

Statistical:                                                   
normsdist(u),  psl(z), [Normal distribution, linear loss]

Vector functions(for
 
speed):                                                        

sum(xi

 

),
 
sumif(xi

 

, y, zi

 

) , vlookup(x, yi

 

, zi

 

)



Global Solver Benefits

The real benefit of the Global Solver is that

on difficult problems

it finds better solutions faster.

A nice bonus is that if given enough time it will also prove
 
optimality.



Performance on Continuous NLP’s
 
Globallib



Math Programs with Equilibrium Constraints, MPECLIB

Optimization models for which a significant number of the 
constraints are of the form x*y = 0;
E.g., pricei

 

*surplusi

 

= 0; or opportunity_costi

 

*usagei

 

= 0;



Performance on NLP Integer Programs,MINLPLIB
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