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Introduction to Optimization in 
Spreadsheets 

 
1.1 Introduction 
Spreadsheets, combined with the optimization capability of the Excel add-in What’sBest!, can be used 

to conveniently solve a variety of optimization problems in business, industry, and government.   

 For most optimization problems, one can think of there being two important classes of objects. 

The first of these is limited resources, such as land, plant capacity, and sales force size. The second is 

activities, such as “produce low carbon steel,” “produce stainless steel,” and “produce high carbon 

steel.” Each activity consumes or possibly contributes additional amounts of the resources. The 

problem is to determine the best combination of activity levels that does not use more resources than 

are actually available.  

 In the following chapters we will illustrate how What’sBest! can be used to solve the typical kinds 

of optimization problems found in practice. Additional details about advanced usage of What’sBest! 

can be found in the What’sBest! users manual, see www.lindo.com. Some of the material used herein 

is based on the text, Optimization Modeling with LINGO.  That text is concerned with the use of the 

general purpose modeling language, LINGO, for formulating and solving optimization problems.  

1.2 Example Applications of Optimization 
Optimization has been applied in a wide range of industries.  Some important examples are listed 

below. 

 Petroleum Blending: 

Some of  the earliest applications of optimization occurred in the 1960’s in gasoline refining. Gasoline 

must satisfy several major quality requirements, mainly octane, but also volatility, and vapor pressure.  

Gasoline is actually a blend of ingredients. Which ingredients are available, and their prices, vary from 

month to month based on political events, etc. Additionally, the volatility and vapor pressure 

requirements vary by time of year. Higher volatility and vapor pressure is required in the winter time. 

Octane requirements vary by location (e.g., lower at higher altitudes.) Given the costs of various 

ingredients and quality requirements today, what is the lowest cost acceptable ingredient mix? 
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 Electrical Generator Unit Commitment: 

Many electricity generation companies use optimization to decide which generators to run which hours 

of the day. Given forecasted electricity demand over next 24 hours, week, etc.,  and cost structure of 

each generator,  which generators should be run in which intervals? 

 

 Financial Portfolios:   

How much to invest in which assets given expected returns,  interactions/correlations among 

investments, such as at a telecommunications company or a mutual fund firm. 

 

 Auction of Electricity Transmission Capacity in a U.S. state: 

Maximize the value of awards, subject to not selling more capacity than is available.  Interesting 

feature: a bidder may bid on a combination of lines,  e.g.,  if in series.  The prices, so-called dual 

prices, generated as part of the optimization are the clearing prices. 

 

 Plant Configuration Under Uncertainty at an Automobile Manufacturer: 

At one point in time when it was clear the auto manufacturer had too much capacity for the demand 

coming from a slow economy, optimization was used to decide which plants to close,  which to re-

focus,  given various demand scenarios and their probabilities. 

 

 Gas contract selection under uncertainty at a natural gas supply company:               

Which gas contracts to buy when,  how much gas to store,  when to draw it out,  in the face of 

uncertainty(represented by about a various scenarios of possible weather and spot prices). 

 

 Cutting stock in steel and paper industries:  

Cutting long cables to consumer lengths at a cable manufacturer,  paper rolls at a paper company. 

Metal bars in steel industry. Given length (width) of master or jumbo, and amount needed of the 

smaller f.g., lengths (widths), what cutting patterns should be used? 

 

 Supply Chain Redesign/DC Location at a Consumer Goods Manufacturer:   

After acquiring another company and merging in several new product lines and distribution centers, 

which DC’s should be closed? Which DC’s should serve which customers? 

 

 Production Scheduling at a Tire Manufacturer:   

Given daily demand schedule and which combinations of tires can be produced together in which 

heaters,  which tire combinations should be run in which heaters? 

 

 Gas Pipeline capacity auction (Midwestern U.S.) 

 Given pipeline capacity requested over what interval of days,  and amount bid, which bids should be 

awarded, so as to maximize sales revenue and not exceed daily pipeline capacity. 

 

 Quality Improvement via Matching of Components(electronics manufacturer).  

 Certain devices,  e.g., cell phone mikes,  blades in a jet engine turbine,  should be closely matched to 

improve performance/quality.  Solved a “matching” IP to increase yield to about 75% from 60%. 
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 Staffing and Rostering  of maintenance personnel at a cell phone company. 

Regular labor at metal fabrication firm,  crew scheduling at airlines,  telephone call center. 

 

 Multiperiod Production Planning and Blending at Food Processing Company: 

  Meet demands each month at locations around the country from sources around the country,  taking 

into account the required quality levels(mainly acidity) at the demand points, and available quality at 

each supply point. 

1.3 The ABC's of Optimization in What’sBest!  
We assume the reader is familiar with setting up a conventional, so-called “What If” spreadsheet 

models in Excel.  Converting a What-If model into an optimization model to be solved by What’sBest! 

consists of three steps: 

 

A) Identify the Adjustable cells, i.e., the decision variables. 

 

B) Specify a criterion for measuring a  Best solution, i.e., specify  a cell to minimize or maximize. 

 

C) Provide the Constraints,  

           i.e., the relationships limiting what values can be placed in the adjustable cells. 

 
The typical variables identified in step A are: How much do we buy, produce, ship, carry in inventory; 

- from a specific vendor of a specific product in a specific period. 

 

The typical objective in step B is either to Maximize wealth or minimize cost. 

 

Typical constraints in step C are: sources of a commodity ≤  uses of a commodity, 

where commodity could be cash, labor, capacity, product, etc.  

For ease of understanding, our initial examples will be small and simple, with perhaps a half dozen 

variables or constraints. Practical problems may have a hundred thousand variables and constraints. 

 

1.4 Example: A Product Mix Problem 
In a simple “product mix” problem, we want to decide upon what mix of products to produce, given 

our available resources. The Enginola Television Company produces two types of TV sets, the “Astro” 

and the “Cosmo”. There are two production lines, one for each set. The Astro production line has a 

capacity of 60 sets per day, whereas the capacity for the Cosmo production line is only 50 sets per day. 

The labor requirements for the Astro set is 1 person-hour, whereas the Cosmo requires a full 2 

person-hours of labor. Presently, there is a maximum of 120 man-hours of labor per day that can be 

assigned to production of the two types of sets. If the profit contributions are $20 and $30 for each 

Astro and Cosmo set, respectively, what should be the daily production? 
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A structured, but verbal, description of what we want to do is: 

     Maximize    Profit contribution; 

       Subject to: 

              Units of Astro production is less than or equal to  60 units; 

              Units of Cosmo production is less than or equal to 50 units; 

              Labor hour usage by Astro and Cosmo production is less than or equal to 120 hours; 

 Until there is a significant improvement in artificial intelligence/expert system software, we will 

need to be more precise if we wish to get some help in solving our problem. We can be more precise if 

we define: 

A = units of Astros to be produced per day, 

C = units of Cosmos to be produced per day. 

Further, we decide to measure: 

Profit contribution in dollars, 

Astro usage in units of Astros produced,  

Cosmo usage in units of Cosmos produced, and 

Labor in person-hours. 

Then, a precise statement of our problem is: 

Maximize 20A + 30C                    (Dollars) 

subject to     A                60        (Astro capacity) 

                C     50        (Cosmo capacity) 

     A   +  2C   120        (Labor in person-hours) 

 The first line, “Maximize 20A+30C”, is known as the objective function. The remaining three 

lines are known as constraints. Most optimization programs, sometimes called “solvers”, assume all 

variables are constrained to be nonnegative, so stating the constraints A  0 and C  0 is unnecessary.  

What’sBest! would by default assume A  0 and C  0. 

 Using the terminology of resources and activities, there are three resources: Astro capacity, 

Cosmo capacity, and labor capacity. The activities are Astro and Cosmo production. It is generally true 

that, with each constraint in an optimization model, one can associate some resource. For each decision 

variable, there is frequently a corresponding physical activity. 
 

1.5 What’sBest! Spreadsheet Optimizer 
Let us look at how we can solve optimization problems with What’sBest!.We can set up the 

Astro/Cosmo problem in “What-if”  form as in the figure below. 
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                         Figure 1.1 Enginola Problem in What-if Form 

 

 
 

 
 

Notice that the cursor is located in cell D7. In the formula bar, notice that the formula in cell D7 is 

=SUMPRODUCT(B$5:C5,B7:C7).  This is equivalent to D7 =B5*B7+C5*C7. Cells D8:D10 were 

filled with similar formulae by copying. The “$” sign in front of the 5 means that the 5 is not changed 

as the formula is copied.  Similarly, the formula in cell D10 is =SUMPRODUCT(B$5:C5,B10:C10).   

 

1.5.1 One-Click Formulation of What’sBest! Models 
The above spreadsheet is set up in “what if” form. For appropriately formulated Excel models, each of 

the  A, B, C, steps of  What’sBest! can be done with one click.  

 

Using the What’sBest! Tool bar in the upper left: 

    A)  Mark B5:D5 as “Adjustable”  (K→x)cells, 
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    B)  Mark D7 as the “Best” cell to be maximized, 

    C)  Constraints are added by highlighting cells E8:E10, and then clicking on “<= Less Than”. 

Optimize by clicking on the red bullseye. 

 

Figure 1.2 Applying the ABC’s to the Enginola Problem 
 

 
 
We see that the optimal solution is to produce 60 Astros and 30 Cosmos for a total profit contribution 

of  2100. 

1.6 Graphical Analysis for Small Problems 
An interesting exercise is to use our intuition to guess how much to produce of each of Astro and 

Cosmo. Some possibly useful observations are: Cosmo is more profitable per unit, however, Astro 

makes more $/hour of labor. 

 

What do you think is the value of an additional hour of labor? Is it $20,  $15, or  $0? 

The Astro/Cosmo problem is represented graphically in Figure 1.1. The feasible production 

combinations are the points in the lower left enclosed by the five solid lines. We want to find the point 

in the feasible region that gives the highest profit. 
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 To gain some idea of where the maximum profit point lies, let’s consider some possibilities. 

The point A = C = 0 is feasible, but it does not help us out much with respect to profits. If we spoke 

with the manager of the Cosmo line, the response might be: “The Cosmo is our more profitable 

product. Therefore, we should make as many of it as possible, namely 50, and be satisfied with the 

profit contribution of 30  50 = $1500.”  

Figure 1.3 Feasible Region for Enginola Figure  1.1  Feasible Region for Enginola
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 You might observe there are many combinations of A and C, other than just A = 0 and C = 50, 

that achieve $1500 of profit. Indeed, if you plot the line 20A + 30C = 1500 and add it to the graph, then 

you get Figure 1.2. Any point on the dotted line segment achieves a profit of $1500. Any line of 

constant profit such as that is called an iso-profit line (or iso-cost in the case of a cost minimization 

problem). 

 If we next talk with the manager of the Astro line, the response might be: “If you produce 50 

Cosmos, you still have enough labor to produce 20 Astros. This would give a profit of 

30  50 + 20  20 = $1900. That is certainly a respectable profit. Why don’t we call it a day and go 

home?” 
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Figure 1.4 Enginola With "Profit = 1500" 

Figure  1.2  Enginola with "Profit = 1500"
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 Our ever-alert reader might again observe that there are many ways of making $1900 of 

profit. If you plot the line 20A + 30C = 1900 and add it to the graph, then you get Figure 1.3. Any 

point on the higher rightmost dotted line segment achieves a profit of $1900. 

Figure 1.5 Enginola with "Profit = 1900" 
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 Now, our ever-perceptive reader makes a leap of insight. As we increase our profit 

aspirations, the dotted line representing all points that achieve a given profit simply shifts in a parallel 

fashion. Why not shift it as far as possible for as long as the line contains a feasible point? This last 

and best feasible point is A = 60, C = 30. It lies on the line 20A + 30C = 2100. This is illustrated in 

Figure 1.4. Notice, even though the profit contribution per unit is higher for Cosmo, we did not make 

as many (30) as we feasibly could have made (50). Intuitively, this is an optimal solution and, in fact, 
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it is. The graphical analysis of this small problem helps understand what is going on when we analyze 

larger problems. 

Figure 1.6 Enginola with "Profit = 2100" 
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1.6.1 Linearity 
We have now seen one example. We will return to it regularly. This is an example of a linear 

mathematical program, or LP for short. Solving linear programs tends to be substantially easier than 

solving more general nonlinear mathematical programs. Therefore, it is worthwhile to dwell for a bit 

on the linearity feature.  

 Linear programming applies directly only to situations in which the effects of the different 

activities in which we can engage are linear. For practical purposes, we can think of the linearity 

requirement as consisting of three features: 

1. Proportionality. The effects of a single variable or activity by itself are proportional 

(e.g., doubling the amount of steel purchased will double the dollar cost of steel 

purchased). 

2. Additivity. The interactions among variables must be additive (e.g., the dollar amount of 

sales is the sum of the steel dollar sales, the aluminum dollar sales, etc.; similarly, the 

amount of electricity used is the sum of that used to produce steel, aluminum, etc). 

3. Continuity. The variables must be continuous (i.e., fractional values for the decision 

variables, such as 6.38, must be allowed). If both 2 and 3 are feasible values for a 

variable, then so is 2.51. 

 A model that includes the two decision variables “price per unit sold” and “quantity of units 

sold” is probably not linear. The proportionality requirement is satisfied. However, the interaction 
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between the two decision variables is multiplicative rather than additive 

(i.e., dollar sales = price  quantity, not price + quantity). 

 If a supplier gives you quantity discounts on your purchases, then the cost of purchases will 

not satisfy the proportionality requirement (e.g., the total cost of the stainless steel purchased may be 

less than proportional to the amount purchased). 

 A model that includes the decision variable “number of floors to build” might satisfy the 

proportionality and additivity requirements, but violate the continuity conditions. The recommendation 

to build 6.38 floors might be difficult to implement unless one had a designer who was ingenious with 

split level designs. Nevertheless, the solution of an LP might recommend such fractional answers.  

 The possible formulations to which LP is applicable are substantially more general than that 

suggested by the example. The objective function may be minimized rather than maximized; the 

direction of the constraints may be  rather than , or even =; and any or all of the parameters (e.g., the 

20, 30, 60, 50, 120, 2, or 1) may be negative instead of positive. The principal restriction on the class 

of problems that can be analyzed results from the linearity restriction. 

 Fortunately, as we will see later in the chapters on integer programming and quadratic 

programming, there are other ways of accommodating these violations of linearity. 

 Figure 1.5 illustrates some nonlinear functions. For example, the expression X  Y satisfies 

the proportionality requirement, but the effects of X and Y are not additive. In the expression X
 2
 + Y

 2
, 

the effects of X and Y are additive, but the effects of each individual variable are not proportional. 

Figure 1.7: Nonlinear Relations 

 

1.7 Analysis of Solutions 
When you direct the What’sBest! to solve an optimization problem, the possible outcomes are 

indicated in Figure 1.8. 

 For a typical case, the leftmost path will be taken. The solution procedure will first attempt to 

find a feasible solution (i.e., a solution that simultaneously satisfies all constraints, but does not 
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necessarily maximize the objective function). The rightmost, “No Feasible Solution”, path will be 

taken if the formulator has been too demanding. That is, two or more constraints are specified that 

cannot be simultaneously satisfied. A simple example is the pair of constraints x  2 and x  3. The 

nonexistence of a feasible solution does not depend upon the objective function. It depends solely upon 

the constraints. In practice, the “No Feasible Solution” outcome might occur in a large complicated 

problem in which an upper limit was specified on the number of productive hours available and an 

unrealistically high demand was placed on the number of units to be produced. An alternative message 

to “No Feasible Solution” is “You Can’t Have Your Cake and Eat It Too”. 

Figure 1.8 Solution Outcomes 

 

 
 If a feasible solution has been found, then the procedure attempts to find an optimal solution. 

If the “Unbounded Solution” termination occurs, it implies the formulation admits the unrealistic result 

that an infinite amount of profit can be made. A more realistic conclusion is that an important 

constraint has been omitted or the formulation contains a critical typographical error. 

1.7.1 Sensitivity Analysis, Dual Prices, and Reduced Costs  
A user of a model should be concerned with how the recommendations of the model are altered by 

changes in the input data. Sensitivity analysis is the term applied to the process of answering this 

question. Fortunately, an optimization solution report can provide supplemental information that is 

useful in sensitivity analysis. This information falls under two headings, reduced costs and dual prices. 

 Sensitivity analysis can reveal which pieces of information should be estimated most 

carefully. For example, if it is blatantly obvious that a certain product is unprofitable, then little effort 

need be expended in accurately estimating its costs. The first law of modeling is "do not waste time 

accurately estimating a parameter if a modest error in the parameter has little effect on the 

recommended decision". 

1.7.2 Dual Prices 
Associated with each constraint is a quantity known as the dual price. The dual price of a constraint is 

the rate at which the objective function value will improve as the right-hand side or constant term of 

the constraint is increased a small amount. If the units of the objective function are dollars and the 
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units of the constraint in question are kilograms, then the units of the dual price are dollars per 

kilogram.  

 Different optimization programs may use different sign conventions with regard to the dual 

prices. What’sBest! uses the convention that a positive dual price means increasing the right-hand side 

constant term in question will improve the objective function value, whereas a negative dual price 

means an increase in the right-hand side constant term will cause the objective function value to 

worsen. A zero dual price means changing the right-hand side a small amount will have no effect on 

the solution value. 

 It follows that, under this convention,  constraints will have nonnegative dual prices, 

 constraints will have nonpositive dual prices, and = constraints can have dual prices of any sign. 

Why? 

 In order to illustrate dual prices, we have generalized the Enginola problem by adding a third 

product, Digital Recorders, or DR for short. A DR is a little more complicated than the other two 

products.  It requires one unit of A-line capacity, one unit of C-line capacity and three units of Labor. 

 

Figure 1.9 Solution with Dual Prices 

 
 

 Understanding Dual Prices. It is instructive to analyze the dual prices in the solution to the 

Enginola problem. The dual price on the constraint A  60 is $5/unit. At first, one might suspect this 

quantity should be $20/unit because, if one more Astro is produced, the simple profit contribution of 
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this unit is $20. An additional Astro unit will require sacrifices elsewhere, however. Since all of the 

labor supply is being used, producing more Astros would require the production of Cosmos to be 

reduced in order to free up labor. The labor tradeoff rate for Astros and Cosmos is ½.. That is, 

producing one more Astro implies reducing Cosmo production by ½ of a unit. The net increase in 

profits is $20  (1/2)* $30 = $5, because Cosmos have a profit contribution of $30 per unit. 

 Now, consider the dual price of $15/hour on the labor constraint. If we have 1 more hour of 

labor, it will be used solely to produce more Cosmos. One Cosmo has a profit contribution of $30/unit. 

Since 1 hour of labor is only sufficient for one half of a Cosmo, the value of the additional hour of 

labor is $15. 

 

1.7.3 Reduced Costs 
Associated with each variable in any solution is a quantity known as the reduced cost. If the units of 

the objective function are dollars and the units of the variable are gallons, then the units of the reduced 

cost are dollars per gallon. The reduced cost of a variable is the amount by which the profit 

contribution of the variable must be improved (e.g., by reducing its cost) before the variable in 

question would have a positive value in an optimal solution. Obviously, a variable that already appears 

in the optimal solution will have a zero reduced cost. 

 It follows that a second, correct interpretation of the reduced cost is that it is the rate at which 

the objective function value will deteriorate if a variable, currently at zero, is arbitrarily forced to 

increase a small amount. Suppose the reduced cost of x is $2/gallon. This means, if the profitability of 

x were increased by $2/gallon, then 1 unit of x (if 1 unit is a “small change”) could be brought into the 

solution without affecting the total profit. Clearly, the total profit would be reduced by $2 if x were 

increased by 1.0 without altering its original profit contribution. 

 

1.7.4 Unbounded Formulations 
If we forget to include the labor constraint and the constraint on the production of Cosmos, then an 

unlimited amount of profit is possible by producing a large number of Cosmos. This is illustrated here: 

Maximize 20 * A + 30 * C; 

A ≤ 60; 

This generates an error window with the message: 

UNBOUNDED SOLUTION 

 There is nothing to prevent C from being infinitely large. The feasible region is illustrated in 

Figure 1.7. In larger problems, there are typically several unbounded variables and it is not as easy to 

identify the manner in which the unboundedness arises. 



18   Chapter 1  Introduction to Optimization in Spreadsheets                    
 

 

Figure 1.10 Graph of Unbounded Formulation 
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1.7.5 Infeasible Formulations 
An example of an infeasible formulation is obtained if the right-hand side of the labor constraint is 

made 190 and its direction is inadvertently reversed. In this case, the most labor that can be used is to 

produce 60 Astros and 50 Cosmos for a total labor consumption of 60 + 2  50 = 160 hours. The 

formulation and attempted solution are: 

MAX = (20 * A) + (30 * C); 

A <= 60; 

C <= 50; 

A + 2 * C >= 190; 

If you solve it you may get a display as follows: 
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Notice that one of the constraints says “Not <=”. The displayed “solution” is feasible to the labor 

constraint but violates the A-line capacity constraint. Figure 1.8 illustrates the constraints for this 

formulation. 

Figure 1.11 Graph of Infeasible Formulation 
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1.8 Multiple Optimal Solutions and Degeneracy 
For a given formulation that has a bounded optimal solution, there will be a unique optimum objective 

function value. However, there may be several different combinations of decision variable values (and 

associated dual prices) that produce this unique optimal value. Such solutions are said to be degenerate 

in some sense. In the Enginola problem, for example, suppose the profit contribution of A happened to 

be $15 rather than $20. The problem is: 

MAX = 15 * A + 30 * C; 

A <= 60; 

C <= 50; 

A + 2 * C <= 120; 

 

Figure 1.12 Model with Alternative Optima 
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 The feasible region, as well as a “profit = 1500” line, are shown in Figure 1.9. Notice the lines 

A + 2C = 120 and 15A + 30C = 1500 are parallel. It should be apparent that any feasible point on the 

line A + 2C = 120 is optimal.   The maximum profit possible in this case is 1800. Thus, if you tradeoff 

Astros for Cosmos along the 15A + 30 C = 1800 line, you will not change the profit, even though you 

are changing the recommended solution.  Two such extreme points are: 1) A = 60, C = 30, and 2) A = 

20, C = 50.  Below is a solution you may get from What’sBest!.  
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If you want to discover the alternate optimum that favors Cosmo production, you can solve the 

problem:  
MAX = 15 * A + 30.0001 * C; 

A <= 60; 

C <= 50; 

A + 2 * C <= 120; 

If you solve it, you will see that the profit is still about $1800. However, the production of Cosmos has 

been increased to 50 from 30, whereas there has been an decrease in the production of Astros to 20 

from 60. 

1.8.1 The “Snake Eyes” Condition 
Alternate optima may exist only if at the reported optimum:  a) some constraint has both a slack of 0 

and a dual price of 0, or b) some variable has both a value of 0 and has a reduced cost of 0. Notice that 

in the above solution report, the A-Line constraint has both a slack of 0 and a dual price of 0. This 

“double 0” configuration is called “snake eyes” by some applied statisticians. Mathematicians, with no 

intent of moral judgment, refer to such solutions as degenerate. 

 If there are alternate optima, you may find your computer gives a different solution from that 

in the text. However, you should always get the same objective function value. 

 There are, in fact, two ways in which multiple optimal solutions can occur. For the example 

in Figure 1.12, the two optimal solution reports differ only in the values of the so-called primal 

variables (i.e., our original decision variables A, C) and the slack variables in the constraint. There can 

also be situations where there are multiple optimal solutions in which only the dual variables differ. 

Consider this variation of the Enginola problem in which the capacity of the Cosmo line has been 

reduced to 30.  
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 The formulation is: 

MAX = 20 * A + 30 * C; 

A <= 60; 

C <= 30; 

       A + 2 * C <= 120;  

The corresponding graph of this problem appears in Figure 1.10.  

 

 Again, notice the “snake eyes” in the solution (i.e., the pair of zeroes in a row of the solution 

report). This suggests the capacity of the Cosmo line (the RHS of row 3) could be changed without 

changing the objective value. Figure 1.13 illustrates the situation. Three constraints pass through the 

point A = 60, C = 30. Any two of the constraints determine the point. In fact, the constraint 

A + 2C  120 is mathematically redundant (i.e., it could be dropped without changing the feasible 

region). 
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Figure 1.13 Alternate Solutions in Dual Variables 
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If you decrease the RHS of row 3 very slightly, you will get essentially the following solution: 

Optimal solution found at step:         0 

Objective value:                 2100.000 

Variable             Value        Reduced Cost 

       A          60.00000           0.0000000 

       C          30.00000           0.0000000 

     Row      Slack or Surplus      Dual Price 

       1          2100.000            1.000000 

       2         0.0000000            5.000000 

       3         0.0000000           0.0000000 

       4         0.0000000            15.00000 

Notice this solution differs from the previous one only in the dual values. 

 We can now state the following rule: If a solution report has the “snake eyes” feature (i.e., a pair 

of zeroes in any row of the report), then there may be an alternate optimal solution that differs either in 

the primal variables, the dual variables, or in both.  

 If a solution report exhibits the “snake eyes” configuration, a natural question to ask is: can 

we determine from the solution report alone whether the alternate optima are in the primal variables or 

the dual variables? The answer is “no”, as the following two related problems illustrate. 

Problem D Problem P 
MAX = X +     Y; MAX = X + Y; 

      X +     Y + Z <= 1;       X + Y +     Z <= 1; 

      X + 2 * Y     <= 1;       X +     2 * Z <= 1; 
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 Both problems possess multiple optimal solutions. The ones that can be identified by the standard 

simplex solution methods are: 

Solution 1 

         Problem D                                          Problem P 
 OBJECTIVE VALUE               OBJECTIVE VALUE 

 1) 1.00000000   1) 1.00000000  

Variable  Value Reduced Cost Variable  Value Reduced Cost 

 X   1.000000     0 000000  X   1.000000     0.000000 

 Y   0.000000     0.000000  Y   0.000000     0.000000 

 Z   0.000000     1.000000  Z   0.000000     1.000000 

 

Row 

 

Slack or 

Surplus 

 

 Dual Prices 

 

Row 

 

Slack or 

Surplus 

 

 Dual Prices 

 2)   0.000000     1.000000  2)   0.000000     1.000000 

 3)   0.000000     0.000000  3)   0.000000     0.000000 

Solution 2 

            Problem D                                           Problem P 
 OBJECTIVE VALUE               OBJECTIVE VALUE 

 1) 1.00000000   1) 1.00000000  

Variable  Value Reduced Cost Variable  Value Reduced Cost 

 X   1.000000     0.000000  X   0.000000     0.000000 

 Y   0.000000     1.000000  Y   1.000000     0.000000 

 Z   0.000000     0.000000  Z   0.000000     1.000000 

 

 

Row 

 

Slack or 

Surplus 

 

 

Dual Prices 

 

 

Row 

 

Slack or 

Surplus 

 

 

Dual Prices 

 2)   0.000000     0.000000  2)   0.000000     1.000000 

 3)   0.000000     1.000000  3)   1.000000     0.000000 

Notice that: 

 Solution 1 is exactly the same for both problems; 

 Problem D has multiple optimal solutions in the dual variables (only); while 

 Problem P has multiple optimal solutions in the primal variables (only). 

 Thus, one cannot determine from the solution report alone the kind of alternate optima that 

might exist. You can generate Solution 1 by setting the RHS of row 3 and the coefficient of X in the 

objective to slightly larger than 1 (e.g., 1.001). Likewise, Solution 2 is generated by setting the RHS of 

row 3 and the coefficient of X in the objective to slightly less than 1 (e.g., 0.9999). 

 Some authors refer to a problem that has multiple solutions to the primal variables as dual 

degenerate and a problem with multiple solutions in the dual variables as primal degenerate. Other 

authors say a problem has multiple optima only if there are multiple optimal solutions for the primal 

variables. 
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1.8.2 Degeneracy and Redundant Constraints 

In small examples, degeneracy usually means there are redundant constraints. In general, however, 

especially in large problems, degeneracy does not imply there are redundant constraints. The constraint 

set below and the corresponding Figure 1.11 illustrate: 

2x  y  1 

2x  z  1 

2y  x  1 

2y  z  1 

2z  x  1 

2z  y  1 

Figure 1.14 Degeneracy but No Redundancy 

Y

X

Z

2Y - X 1

2 Z - X 1

 

 These constraints define a cone with apex or point at x = y = z = 1, having six sides. The point 

x = y = z = 1 is degenerate because it has more than three constraints passing through it. Nevertheless, 

none of the constraints are redundant. Notice the point x = 0.6, y = 0, z = 0.5 violates the first 

constraint, but satisfies all the others. Therefore, the first constraint is nonredundant. By trying all six 

permutations of 0.6, 0, 0.5, you can verify each of the six constraints are nonredundant. 
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1.9 Nonlinear Models and Global Optimization 
Throughout this text the emphasis is on formulating linear programs.  Historically nonlinear models 

were to be avoided,  if possible,  for two reasons:  a) they take much longer to solve,  and b) once 

“solved”  traditional solvers could only guarantee that you had a locally optimal solution.  A solution is 

a local optimum if there is no  better solution nearby,  although there might be a much better solution 

some distance away.  Traditional nonlinear solvers are like myopic mountain climbers,  they can get 

you to the top of the nearest peak,  but they may not see and get you to the highest peak in the 

mountain range.  For nonlinear models, What’sBest! has a global solver option, click on What’sBest!  |  

Options | Global Solver…  If you check the global solver option,  then you are guaranteed to get a 

global optimum,  if you let the solver run long enough.  To illustrate,  suppose our problem is: 

 

             Min = sin(x)+.5*abs(x-9.5);  

                        x<=12; 

 

The graph of the function appears in Figure 1.12. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1.12 A Nonconvex Function:         

sin(x)+.5*abs(x-9.5) 

-1

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

 x

s
in

(x
) 

+
 .
5
*a

b
s
(x

-9
.5

)



28   Chapter 1  Introduction to Optimization in Spreadsheets                    
 

 

If you apply a traditional nonlinear solver to this model you might get one of three solutions, 

corresponding to the three local minima, either x = 0,  or x = 5.235987, or x = 10.47197.  If you turn on 

the Global solver option in What’sBest!,  it will report the solution x = 10.47197 and label it as a 

global optimum.  Be forewarned that the global solver does not eliminate drawback (a),  namely,  

nonlinear models may take a long time to solve to guaranteed optimality.  Nevertheless,  the global 

solver may give a very good,  even optimal, solution very quickly but then take a long time to prove 

that there is no other better solution. 

 

1.9.1 Other Software for Optimization 
There are alternatives to What’sBest! for doing optimization. The most different approach is via 

modeling languages such as LINGO, see www.lindo.com.  A modeling language allows you to 

describe an optimization model in notation very close to standard mathematical notation. The 

major advantages of a modeling language such as LINGO are: 

   1) Scalability and flexibility.   It is very easy in LINGO to solve a  

         3 supplier, 5 customer, 2 period problem today, and a 

       10 supplier, 50 customer, 4 period problem tomorrow.   

        No tedious copying of formulae is needed. Only new data need be entered. 

   2) Auditability: It is very easy to see all the formulae in one place, typically one page. 

   3) More than two dimensions are not a problem, 

        e.g. 10 suppliers, 50 customers, as well as 12 periods, 60 products, and more dimensions.  

   4) Sparse sets are easily handled,  

       e.g., not all suppliers carry all products, do not serve all customers, etc. 

 

In contrast the advantages of modeling in a spreadsheet are: 

   1) Huge audience of users familiar with spreadsheets. 

   2) Excellent report formatting, graphing, etc. 

   3) Excellent for dense two dimensional problems, 

       e.g., suppliers and customers, where every supplier can supply every customer. 

 

There are alternative approaches to doing optimization in spreadsheets. Non-What’sBest! format 

spreadsheet optimization models can be converted to What’sBest! format by clicking on: 

     What’sBest!  |  Advanced  |  Convert Model Format 

 

 

1.10 Problems 
1. Your firm produces two products, Thyristors (T) and Lozenges (L), that compete for the scarce 

resources of your distribution system. For the next planning period, your distribution system has 

available 6,000 person-hours. Proper distribution of each T requires 3 hours and each L requires 

2 hours. The profit contributions per unit are 40 and 30 for T and L, respectively. Product line 

considerations dictate that at least 1 T must be sold for each 2 L’s. 

(a) Draw the feasible region and draw the profit line that passes through the optimum point. 

(b) By simple common sense arguments, what is the optimal solution? 

http://www.lindo.com/
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2. Graph the following LP problem: 

Minimize 4X + 6Y 

subject to 5X + 2Y  12 

                3X + 7Y  13 

                X  0, Y  0. 

In addition, plot the line 4X + 6Y = 18 and indicate the optimum point. 

3. The Volkswagen Company produces two products, the Bug and the SuperBug, which share 

production facilities. Raw materials costs are $600 per car for the Bug and $750 per car for the 

SuperBug. The Bug requires 4 hours in the foundry/forge area per car; whereas, the SuperBug, 

because it uses newer more advanced dies, requires only 2 hours in the foundry/forge. The Bug 

requires 2 hours per car in the assembly plant; whereas, the SuperBug, because it is a more 

complicated car, requires 3 hours per car in the assembly plant. The available daily capacities in 

the two areas are 160 hours in the foundry/forge and 180 hours in the assembly plant. Note, if 

there are multiple machines, the total hours available per day may be greater than 24. The selling 

price of the Bug at the factory door is $4800. It is $5250 for the SuperBug. It is safe to assume 

whatever number of cars are produced by this factory can be sold. 

(a) Write the linear program formulation of this problem. 

(b) The above description implies the capacities of the two departments (foundry/forge and 

assembly) are sunk costs. Reformulate the LP under the conditions that each hour of 

foundry/forge time cost $90; whereas, each hour of assembly time cost $60. The 

capacities remain as before. Unused capacity has no charge. 

4. The Keyesport Quarry has two different pits from which it obtains rock. The rock is run through a 

crusher to produce two products: concrete grade stone and road surface chat. Each ton of rock 

from the South pit converts into 0.75 tons of stone and 0.25 tons of chat when crushed. Rock from 

the North pit is of different quality. When it is crushed, it produces a “50-50” split of stone and 

chat. The Quarry has contracts for 60 tons of stone and 40 tons of chat this planning period. The 

cost per ton of extracting and crushing rock from the South pit is 1.6 times as costly as from the 

North pit. 

(a) What are the decision variables in the problem? 

(b) There are two constraints for this problem. State them in words. 

(c) Graph the feasible region for this problem. 

(d) Draw an appropriate objective function line on the graph and indicate graphically and 

numerically the optimal solution. 

(e) Suppose all the information given in the problem description is accurate. What additional 

information might you wish to know before having confidence in this model? 
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5. A problem faced by railroads is of assembling engine sets for particular trains. There are three 

important characteristics associated with each engine type, namely, operating cost per hour, 

horsepower, and tractive power. Associated with each train (e.g., the Super Chief run from 

Chicago to Los Angeles) is a required horsepower and a required tractive power. The horsepower 

required depends largely upon the speed required by the run; whereas, the tractive power required 

depends largely upon the weight of the train and the steepness of the grades encountered on the 

run. For a particular train, the problem is to find that combination of engines that satisfies the 

horsepower and tractive power requirements at lowest cost. 

 In particular, consider the Cimarron Special, the train that runs from Omaha to Santa Fe. This 

train requires 12,000 horsepower and 50,000 tractive power units. Two engine types, the GM-I 

and the GM-II, are available for pulling this train. The GM-I has 2,000 horsepower, 

10,000 tractive power units, and its variable operating costs are $150 per hour. The GM-II has 

3,000 horsepower, 10,000 tractive power units, and its variable operating costs are $180 per hour. 

The engine set may be mixed (e.g., use two GM-I's and three GM-II's). 

 Write the linear program formulation of this problem. 

6. Graph the constraint lines and the objective function line passing through the optimum point and 

indicate the feasible region for the Enginola problem when: 

(a) All parameters are as given except labor supply is 70 rather than 120. 

(b) All parameters are as given originally except the variable profit contribution of a Cosmo 

is $40 instead of $30. 

7. Consider the problem: 

Minimize        4x1 + 3x2 

Subject to       2x1 +  x2  10 

                    3x1 + 2x2  6 

                        x1 +   x2  6                     

                       x1  0, x2  0 

Solve the problem graphically. 
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8. The surgical unit of a small hospital is becoming more concerned about finances. The hospital 

cannot control or set many of the important factors that determine its financial health. For 

example, the length of stay in the hospital for a given type of surgery is determined in large part 

by government regulation. The amount that can be charged for a given type of surgical procedure 

is controlled largely by the combination of the market and government regulation. Most of the 

hospital’s surgical procedures are elective, so the hospital has considerable control over which 

patients and associated procedures are attracted and admitted to the hospital. The surgical unit has 

effectively two scarce resources, the hospital beds available to it (70 in a typical week), and the 

surgical suite hours available (165 hours in a typical week). Patients admitted to this surgical unit 

can be classified into the following three categories: 

 
Patient Type 

 
Days of 
Stay 

Surgical 
Suite 
Hours  

Needed 

 
Financial 
Contributi

on 

A 3 2 $240 

B 5 1.5 $225 

C 6 3 $425 

 For example, each type B patient admitted will use (i) 5 days of the 7  70 = 490 bed-days 

available each week, and (ii) 1.5 hours of the 165 surgical suite hours available each week. One 

doctor has argued that the surgical unit should try to admit more type A patients. Her argument is 

that, “in terms of $/days of stay, type A is clearly the best, while in terms of $/(surgical suite hour), 

it is not much worse than B and C.” 

 Suppose the surgical unit can in fact control the number of each type of patient admitted each 

week (i.e., they are decision variables). How many of each type should be admitted each week? 

 Can you formulate it as an LP? 
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2 
 

Network Applications 
 

2.1 What’s Special About Networks 
 

A subclass of models called network LPs warrants special attention for three reasons: 

      1. They can be completely described by simple, easily understood graphical figures. 

       2. Under typical conditions, solutions to network LP’s have naturally integer answers. 

      3.They are frequently easier to solve than general LPs with the same number of 

          constraints and variables. 

 Physical examples that come to mind are pipeline or electrical transmission line 

networks. Any enterprise producing a product at several locations and distributing it to many 

warehouses and/or customers may find a network LP a useful device for describing and 

analyzing shipment strategies. 

 Figure 2.1 illustrates the standard three level network representing the distribution 

system of a firm. Each plant produces just one or two products but in large amounts. Each 

customer needs small amounts of lots of different products. Intermediate warehouses or 

distribution centers (DC) are used to distribute a product. The firm in Figure 2.1 has two 

plants (denoted by A and B), three warehouses (denoted by X, Y, and Z), and four customer 

areas (denoted by 1, 2, 3, 4). The numbers adjacent to each node denote the availability of 

material at that node. Plant A, for example, has nine units available to be shipped. Customer 

3, on the other hand, has 4 units meaning it needs to receive a shipment of four units. 

 The number above each arc is the cost per unit shipped along that arc. For example, 

if five of plant A’s nine units are shipped to warehouse Y, then a cost of 5  2 = 10 will be 

incurred as a direct result. The problem is to determine the amount shipped along each arc, so 

total costs are minimized and every customer has his requirements satisfied. 
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Figure 2.1 Three-Level Distribution Network 
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   The essential condition on an LP for it to be a network problem is that it be representable as 

a network. There can be more than three levels of nodes, any number of arcs between any 

two nodes, and upper and lower limits on the amount shipped along a given arc. 

 With variables defined in an obvious way, the general LP describing this problem in 

algebraic (LINGO) form is: 

[COST] MIN = AX + 2 * AY + 3 * BX + BY + 2 * BZ + 5 * X1  

   + 7 * X2 + 9 * Y1 + 6 * Y2 + 7 * Y3 + 8 * Z2 + 7 * Z3  

   + 4 * Z4; 

[A] AX + AY <= 9; 

[B] BX + BY + BZ <= 8; 

[X] - AX - BX + X1 + X2 = 0; 

[Y] - AY - BY + Y1 + Y2 + Y3 = 0; 

[Z] - BZ + Z2 + Z3 + Z4 = 0; 

[C1] - X1 - Y1 = -3; 

[C2] - X2 - Y2 - Z2 = -5; 

[C3] - Y3 - Z3 = -4; 

[C4] - Z4 = -2;  

There is one constraint for each node that is of a “sources = uses” form. Constraint [Y], for 

example, is associated with warehouse Y and states that the amount shipped out minus the 

amount shipped in must equal 0. 
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   A different view of the structure of a network problem is possible by displaying just the coefficients 

of the above constraints arranged by column and row. In the picture below, note that the apostrophes 

are placed every third row and column just to help see the regular patterns: 

  A  A  B  B  B  X  X  Y  Y  Y  Z  Z  Z  

  X  Y  X  Y  Z  1  2  1  2  3  2  3  4  

COST:  1  2  3  1  2  5  7  9  6  7  8  7  4 MIN 

A:  1  1 '   '   '   '  =  9 

B: ' '  1  1  1 ' ' ' ' ' ' ' ' =  8 

X: 1  1    1  1  '   '  = 

Y:  1  1  '   1  1  1  '  = 

Z: ' ' ' ' 1 ' ' ' ' '  1  1  1 = 

C1:   '   1  1 '   '  = 3 
C2:   '   ' 1  1  1 '  = -5 

C3: ' ' ' ' ' ' ' ' ' 1 ' 1 ' = -4 

C4:   '   '   '   ' 1 = 2 

   Notice a key feature of the constraint matrix of a network problem: disregarding  any simple bound 

constraints on individual variables, each column has exactly two nonzeroes in the constraint matrix. 

One of these nonzeroes is a +1, whereas the other is a 1. According to the convention we have 

adopted, the +1 appears in the row of the node from which the arc takes material, whereas the row of 

the node to which the arc delivers material is a 1. On a problem of this size, you should be able to 

deduce the optimal solution manually simply from examining Figure 2.1. You may check it with the 

solution below: 

Variable           Value        Reduced Cost 

      AX        3.000000           0.000000 

      AY        3.000000           0.000000 

      BX        0.000000           3.000000 

      BY        6.000000           0.000000 

      BZ        2.000000           0.000000 

      X1        3.000000           0.000000 

      X2        0.000000           0.000000 

      Y1        0.000000           5.000000 

      Y2        5.000000           0.000000 

      Y3        4.000000           0.000000 

      Z2        0.000000           3.000000 

      Z3        0.000000           1.000000 

      Z4        2.000000           0.000000 

     Row    Slack or Surplus      Dual Price 

    COST      100.000000          -1.000000 

       A        3.000000           0.000000 

       B        0.000000           1.000000 

       X        0.000000           1.000000 

       Y        0.000000           2.000000 

       Z        0.000000           3.000000 

      C1        0.000000           6.000000 

      C2        0.000000           8.000000 

      C3        0.000000           9.000000 

      C4        0.000000           7.000000 
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This solution exhibits two pleasing features found in the solution to any network problem: 

1. If the right-hand side coefficients (the capacities and requirements) are integer, then the 

variables will also be integer. 

2. If the objective coefficients are integer, then the dual prices will also be integer. 

We can summarize network LPs as follows: 

1. Associated with each node is a number that specifies the amount of commodity available 

at that node (negative implies that commodity is required.) 

2. Associated with each arc are: 

a) a cost per unit shipped (which may be negative) over the arc, 

b) a lower bound on the amount shipped over the arc (typically zero), and 

c) an upper bound on the amount shipped over the arc (infinity in our example). 

 The problem is to determine the flows that minimize total cost subject to satisfying all the supply, 

demand, and flow constraints. 

2.1.1 Special Cases 
There are a number of common applications of LP models that are special cases of the standard 

network LP. The ones worthy of mention are: 

1. Transportation or distribution problems. A two-level network problem, where all the 

nodes at the first level are suppliers, all the nodes at the second level are users, and the 

only arcs are from suppliers to users, is called a transportation, or distribution model. 

2. Shortest and longest path problems. Suppose one is given the road network of the United 

States and wishes to find the shortest route from Bangor to San Diego. This is equivalent 

to a special case of a network or transshipment problem in which one unit of material is 

available at Bangor and one unit is required at San Diego. The cost of shipping over an 

arc is the length of the arc. Simple, fast procedures exist for solving this problem. An 

important first cousin of this problem, the longest route problem, arises in the analysis of 

PERT/CPM projects. 

3. The assignment problem. A transportation problem in which the number of suppliers 

equals the number of customers, each supplier has one unit available, and each customer 

requires one unit, is called an assignment problem. An efficient, specialized procedure 

exists for its solution. 

4. Maximal flow. Given a directed network with an upper bound on the flow on each arc, 

one wants to find the maximum that can be shipped through the network from some 

specified origin, or source node, to some other destination, or sink node. Applications 

might be to determine the rate at which a building can be evacuated or military material 

can be shipped to a distant trouble spot. 
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2.2 Assignment Problems 
The assignment problem is a simple LP problem frequently encountered as a major component in more 

complicated practical problems. There are a number of problems in routing and sequencing that are 

essentially assignment problems with complications. 

 

 The assignment problem is: 

Given a matrix of costs: 

cij = cost of assigning task or object i to person or facility j, 

and variables: 

xij = 1 if task or object i is assigned to person or facility j. 

Then, we want to: 

Minimize   ji cijxij 

subject to 

i xij = 1  for each object i, ( each object is assigned to exactly one person) 

j xij = 1  for each person i, ( each person is assigned exactly one object) 

xij > 0. 

This problem is easy to solve as an LP and the xij will be naturally integer.  Our description used a 

“minimize” objective. Alternatively, one might have situations where one wants a “maximize” 

objective with the same constraints.  It is still called an assignment problem. 

  

2.2.1 Example: Assigning In-bound to Out-bound Flights 
Some large airlines base their route structure around the hub concept. An airline will try to have a large 

number of flights arrive at the hub airport during a certain short interval of time (e.g., 9 A.M. to 10 

A.M.) and then have a large number of flights depart the hub shortly thereafter (e.g., 10 A.M. to 11 

A.M.). This allows customers of that airline to travel between a large combination of origin/destination 

cities with one stop and at most one change of planes. For example, United Airlines uses Chicago as a 

hub, Delta Airlines uses Atlanta, and American uses Dallas/Fort Worth. 

 A desirable goal in using a hub structure is to minimize the amount of changing of planes 

(and the resulting moving of baggage) at the hub. The following little example illustrates how the 

assignment model applies to this problem. 
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 A certain airline has six flights arriving at O’Hare airport between 9:00 and 9:30 A.M. The same 

six airplanes depart on different flights between 9:40 and 10:20 A.M. The average numbers of people 

transferring between incoming and leaving flights appear below: 

 L01 L02 L03 L04 L05 L06  

I01 20 15 16 5 4 7  

I02 17 15 33 12 8 6  

I03 9 12 18 16 30 13  

I04 12 8 11 27 19 14 Flight I05 arrives too late to 

I05 0 7 10 21 10 32 connect with L01. Similarly I06 is 

I06 0 0 0 6 11 13 too late for flights L01, L02, and L03. 

 All the planes are identical. A decision problem is assigning planes from incoming flights to 

which outgoing flights. For example, if incoming flight I02 is assigned to leaving flight L03, then 33 

people (and their baggage) will be able to remain on their plane at the stop at O’Hare. How should 

incoming flights be assigned to leaving flights, so a minimum number of people need to change planes 

at the O’Hare stop? This problem can be formulated as an assignment problem if we define: 

         xij = 1 if incoming flight(task) i is assigned to ougoing flight j, 0 if not. 

The objective is to maximize the number of people not having to change planes (alternatively, 

minimize the number having to change planes.) A formulation and solution is displayed in Figure 2.2. 
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Figure 2.2 Assigning In-bound Flights to Out-bound Flights 

 

Notice, we have used a -999 to make the connections that are impossible or prohibitively unattractive. 

The key formulae of the model are: 

The objective function:  B14=SUMPRODUCT(B7:G12,B17:G22) 

Each in-bound flight (task) must be assigned: I17=WB(H17,"=",1) 

Each out-bound flight (facility) must be assigned: B24=WB(B23,"=",1) 

The solution displayed is an optimal one. Notice that not every incoming flight is assigned to its most 

attractive outgoing flight, and not every outbound flight is assigned its most attractive inbound flight. 

The solution is naturally integer even though we did not declare any of the variables to be integer. 

Nevertheless, the number of people who must change planes is minimized. 

 

2.3 Representing Arbitrary Networks in What’sBest! 
 

A spreadsheet is fine for representing two dimensional  problems, such as small assignment and  

transportation problems, that have just the two dimensions: sources and destinations, but what if there 
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are more than two dimensions, e.g., not just plants and customers, but also multiple DC’s, multiple 

time periods, multiple products, and more? Arranging such multi-dimensional problems with 

thousands of nodes and arcs on a two dimensional spreadsheet appears challenging. What can we do?  

The next section describes an approach that can describe an arbitrarily large, sparse network in 

systematic form in a spreadsheet. For a practical problem we might have a dozen plants, two dozen 

DC’s, 2000 customers, and perhaps 500 products.  A further complication is “sparsity”. Each customer 

regularly buys only about 6 of our products, and each plant produces only a modest fraction of all the 

products.   

     We will describe a “flat table”  or list approach. Essentially, we will describe the network by way of 

two lists: 1) a list of all nodes, including the attributes of each, and 2) a list of all arcs, including the 

attributes of each.  This is so-called Normal form in database terminology.  The Node list fairly  

simple.  The What’sBest! version of it is displayed in Figure 2.3.  Each node has Name and a Supply 

amount.  A demand is entered as a negative supply.  Node names must be unique.  For the now, look at 

only columns  C and D. We will shortly explain what is going on in columns E, F, and G. 

 

 
 

Figure 2.3  Representing a Network: Node List 
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     The Arc list is also relatively simple and is displayed Figure 2.4 for our little three-level example. 

Each arc has a From node, a To node, Cost/unit flow, and Capacity. We have added two additional 

features for generality: 1) A capacity for each arc, labeled “Cap”, and 2) a “Guard” row at the end of 

the list. The purpose of the guard row is to avoid ambiguity when adding items to list. This ensures 

that any SUM’s that refer to a list are automatically expanded by Excel when an additional arc is 

inserted. There are constraints in column E that enforce the condition that the flow on an arc cannot 

exceed its capacity.  We set the capacities equal to a large nonbinding number for this particular 

example. Column F, the flow, is to be determined by the optimization.   

 
Figure 2.4  Representing a Network: Arc List 
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The problem is to determine the flow over each arc, so as to 

 

      Minimize total cost of the flow;  

         subject to 

      Flow on each arc <= capacity of the arc, 

      Flow into each node >= flow out of the arc,  

2.3.1 Representing a Network: Exploiting the SUMIF( ) Function 
The challenge is how do we compute columns E ( the flow into a node) and column G ( flow out of a 

node). The important function that is used is Excel’s SUMIF function. The general form of the SUMIF 

function is: 

                        SUMIF(Look_into_range, value_to_lookup, range_to_sum_over). 

 

On the Nodes tab, the formula in cell E9 is: 

          =SUMIF(Arcs!B$10:B$23,Nodes!$C9,Arcs!F$10:F$23)+D9 

This means that Excel looks into the range B10:B23 ( the “To” column of the arc list) on the Arcs tab, 

searching for a match for the node associated with Nodes!C9,  ( the node WhsY).  Where it finds a 

match, it adds in the corresponding contents in the range Arc!F10:F23.  Thus, this function sums up all 

flows into the node WhsY.  A similar formula for flows out appears in column G of the Nodes tab. 

 

When the model is solved, the solution found in the Arcs tab is found.  The total cost is 100.  

2.3.2  Model Flexibility 
When developing a model, one should keep in mind flexibility and generality.  How might someone 

wish to change or extend the model?  The approach just described for modeling a network is quite 

flexible in terms of adding nodes and arcs to the network. Expanding the size of this formulation is 

quite straightforward, specifically:    
   To add a Link/Arc:       

     1) Insert an additional row in the "Arcs" tab.  

     2) Copy an existing row into it, to get formulae into it.  

     3) Enter data in the From, To, Cost, and Cap columns  

 

   To add a Node:  

      1) Insert an additional row in the Node tab. 

      2) Copy an existing row into it, to get formulae into it.  

      3)  Enter data into:  Node-name and supply. 

2.4  PERT/CPM Networks and LP 
PERT and Critical Path Method (CPM) are two closely related techniques for monitoring the progress 

of a large project. A key part of PERT/CPM is calculating the critical path. That is, identifying the 

subset of the activities that must be performed exactly as planned in order for the project to finish on 

time.  Officially, PERT stands for Program Evaluation and Review Technique. PERT was given its 
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name by Admiral William F. Raborn,   who played a key role in managing the Polaris Fleet Ballistic 

Missile project around 1956-1958 on which PERT was first used.  Craven(2001) makes the interesting 

observation that at the time, Raborn had a new bride whose nickname was Pert. 

    We will show that the calculation of the critical path is a very simple network LP problem, 

specifically, a longest path problem. You do not need this fact to efficiently calculate the critical path, 

but it is an interesting observation that becomes useful if you wish to examine a multitude of 

“crashing” options for accelerating a tardy project. 

     In the table below, we list the activities involved in the simple, but nontrivial, project of building a 

house. An activity cannot be started until all of its predecessors are finished.  
    
  Activity Predecessors 

Activity Mnemonic Time (Mnemonic) 

Dig Basement DIG 3  

Pour Foundation FOUND 4 DIG 

Pour Basement Floor POURB 2 FOUND 

Install Floor Joists JOISTS 3 FOUND 

Install Walls WALLS 5 FOUND 

Install Rafters RAFTERS 3 WALLS, POURB 

Install Flooring FLOOR 4 JOISTS 

Rough Interior ROUGH 6 FLOOR 

Install Roof ROOF 7 RAFTERS 

Finish Interior FINISH 5 ROUGH, ROOF 

Landscape SCAPE 2 POURB, WALLS 

 

     In Figure 2.5, we show the so-called CPM (or activity-on-node) network for this project. We would 

like to calculate the minimum elapsed time to complete this project. Relative to this figure, the number 

of interest is simply the longest path from left to right in this figure. The project can be completed no 

sooner than the sum of the times of the successive activities on this path. Verify for yourself that the 

critical path consists of activities DIG, FOUND, WALLS, RAFTERS, ROOF, and FINISH and has 

length 27. 
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Figure 2.5  PERT/CPM Activity-on-Node Network for House Project 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

It is again convenient to use the node-list + arc-list style to represent this network in a spreadsheet. 

Figure 2.6 displays the spreadsheet tab containing the node list. Columns B and C contain the input 

data. Column D consists of a list of adjustable cells that will contain the finish time of each activity or 

task. Column E contains constraints that force the finish time of any task to be at least the task 

duration. For example, cell E13 contains the formula, =WB(C13,”<=”,E13). Column F contains 

constraints that force the Project time, in cell C25, to be greater than every finish time.   
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Figure 2.6  Node/Task List for PERT/CPM House Project 

 

 

 

For example, cell F21 contains the formula =WB(D21,”>=”,C425). The objective function is to 

minimize the project completion time in cell C25.  
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Figure 2.7  Arc/Precedence List for PERT/CPM House Project 

 

 

Figure 2.7 shows the Arcs or Precedence tab of the spreadsheet. The Predecessor/Successor pairs are 

entered as data in columns B and C.  Columns D, E, and F find the finish times of the 

Predecessor/Successor pairs and enforce the precedences. For example, cell D7 contains the formula: 

=SUMIF(Nodes!B$12:B$23,Arcs!B7,Nodes!$D$12:$D$23). 

 

Cell F8 contains the formula: 

       =SUMIF(Nodes!B$12:B$23,Arcs!C8,Nodes!$D$12:$D$23) 

        -SUMIF(Nodes!B$12:B$23,Arcs!C8,Nodes!$C$12:$C$23). 

The first SUMIF retrieves the finish time of the successor task in the precedence.  The second SUMIF 

subtracts off the duration of the successor task.  
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When solved, we see from the Nodes tab that the minimum amount of time in which the project can be 

done is 27. From columns D,E, and F of the Arcs tab, we can see that the precedences that are not 

binding are: (POURB, RAFTERS), (ROUGH, FINISH), and (POURB, SCAPE) 

2.4.1  Activity-on-Arc vs. Activity-on-Node Network Diagrams 
Two conventions are used in practice for displaying project networks: (1) Activity-on-Arc (AOA) and 

(2) Activity-on-Node (AON). The characteristics of the two are: 

AON 
 Each activity is represented by a node in the network. 

 A precedence relationship between two activities is represented by an arc or link between 

the two. 

 AON may be less error prone because it does not need dummy activities or arcs. 

AOA 
 Each activity is represented by an arc in the network. 

 If activity X must precede activity Y, there are X leads into arc Y. The nodes thus 

represent events or “milestones” (e.g., “finished activity X”). Dummy activities of zero 

length may be required to properly represent some precedence relationships. 

 AOA historically has been more popular, perhaps because of its similarity to Gantt charts 

used in scheduling. 

 

 Figure 2.8 Activity-on-Arc PERT/CPM Network 
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3 
 

Formulating and Solving 
Integer Programs 

 

“To be or not to be” is true. 

-G. Boole 

3.1 Introduction 
In many applications of optimization, one would really like the decision variables to be restricted to 

integer values. One is likely to tolerate a solution recommending GM produce 1,524,328.37 

Chevrolets. No one will mind if this recommendation is rounded up or down. If, however, a different 

study recommends the optimum number of aircraft carriers to build is 1.37, then a lot of people around 

the world will be very interested in how fraction 0.37 is rounded. It is clear the validity and value of 

many optimization models could be improved markedly if one could restrict selected decision 

variables to integer values. 

 Essentially all optimization modeling systems are augmented with a capability that allows the 

user to restrict certain decision variables to integer values. Many times, perhaps most of the time, one 

wants the possible values to be either 0 or 1.  Such a cell or variable is said to be a binary variable. In 

What’sBest! one can specify that a cell, or range of cells is to be restricted to integer values by: a) 

highlighting the range of cells with the cursor, and then b) click on either: 

       WB! | Integers | Integer-Binary | Binary or 

       WB! | Integers | Integer-Binary | General, 

depending whether a binary ( 0 or 1) or general integer ( 0, 1, 2, . . .) variable is desired.  You will also 

be prompted to give a name to the range of cells that are required to be integer.   

       We shall see later that, even though it is easy to specify the integer requirement, sometimes it may 

be difficult to solve problems with this restriction. The methods for formulating and solving problems 

with integrality requirements are called integer programming. The integrality enforcing capability is 

perhaps more powerful than the reader at first realizes. A frequent use of integer variables in a model 

is as a 0/1 variable to represent a go/no-go decision. It is probably true that the majority of real world 

integer programs are of the 0/1 variety, where the binary variables represent decisions to take or not 

take specific actions. You may think of them as “Hamlet” variables as in: “To buy or not to buy, that is 

the question”. 

3.2 Exploiting the IP Capability: Standard Applications 
You will frequently encounter problems that can be formulated as a linear program (LP) with the 

exception of just a few combinatorial complications. Many of these complications are fairly standard. 

The next sections describe many of the standard complications along with the methods for 
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incorporating them into an integer programming (IP) formulation. Most of these complications require 

only the 0/1 capability rather than the general integer capability. 

3.2.1 Fixed Charge Problems 
A commonly encountered type of cost function is the fixed plus linear cost illustrated in Figure 3.1: 

Figure 3.1 A Fixed Plus Linear Cost Curve Figure  11.1  A FIxed Plus Linear Cost Curve

Slope  c

x
U

K

0
0

Cost

 
 Let x be the volume of some activity, y be a binary (0 or 1) variable,  U a given upper bound on x, 

c a given cost per unit, and K be the fixed cost incurred if x > 0. Then, the following components 

should appear in the formulation: 

Minimize     K*y + c*x + . . . 

subject to 

      x  U*y 

          . 

          . 

                     .   
The constraint and the term Ky in the objective imply x cannot be greater than 0 unless a cost K is 

incurred. For computational efficiency, U should be as small as validly possible. 

            In Figure 3.2 is an example in What’sBest! based on the Astro-Cosmo product mix problem in 

which a fixed charge is incurred if any positive amount of a product is produced. The first 10 rows 

describe the simple Astro-Cosmo problem without fixed charges.  Rows 12:16 add the fixed charge 

features.  Specifically, if you produce any Astros, a fixed charge of 800 must be incurred, regardless of 

how much is produced. The analogous charge for Cosmos is 900.  The solution displayed is the 

optimal one, namely, produce 50 Cosmos, and no Astros for a net profit contribution of 600. 
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 Figure 3.2 Representing a Decision having a Fixed Charge 
 

 
 
 

The formulae underlying the model are displayed in Figure 3.3. Observe that the equivalents of the 

constraint,  x  U*y, appear in row 15.   An upper bound on Astro production is the 60 appearing in 

cell F8.  An upper bound on Cosmo production is the 50 in cell F9.    
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Figure 3.3  Fixed Charge Formulation Formulae 
 

 
 
 

3.2.2 Minimum Batch Size Constraints 
When there are substantial economies of scale in undertaking an activity, many decision makers will 

specify a minimum “batch” size for the activity. For example, a financial firm may require that if you 

buy any bonds from the firm, you must buy at least 100. A zero/one variable can enforce this 

restriction as follows. Let: 

x  = activity level to be determined (e.g., number of bonds purchased), 

y = a zero/one variable = 1, if and only if x > 0, 

B = minimum batch size for x (e.g., 100), and 

U = known upper limit on the value of x. 

The following two constraints enforce the minimum batch size condition: 

x  U*y 

B*y  x. 

 If y = 0, then the first constraint forces x = 0. While, if y = 1, the second constraint forces x to 

be at least B. Thus, y acts as a switch, which forces x to be either 0 or greater than B. The constant U 

should be chosen with care. For reasons of computational efficiency, it should be as small as validly 

possible. 

 

In Figure 3.4 is a version of the Astro-Cosmo problem in which minimum batch size, or production 

quantity, requirements are placed on the two products. The total profit contribution, to be maximized, 

is cell D7. 
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         Figure 3.4 Representing a Decision having a Minimum Batch Size 

 
 
Notice the min-batch size constraints appearing in rows 15 and 16 in Figure 3.5: 

 

Figure 3.5  Minimum Batch Size Formulation Formulae 
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3.2.2 Using Semi-Continuous Variables for Min Batch Size Constraints 
Minimum batch size constraints can be represented directly in What’sBest! by means of semi-

continuous variables. A variable x is semi-continuous if it is required to be either 0 or in the range 

B  x  U, for given parameters B and U. No binary variable need be explicitly introduced. In 

What’sBest! you can identify a semi-continuous variable by clicking on:   

       WB! | Integers | Integer-Binary | Semi-Continuous 

and then supplying: 1) the lower bound, 2) the upper bound, and 3) the cell to store the condition that 

the cell is semi-continuous.  Figure 3.6 gives the previous Astro-Cosmo problem, but using the Semi-

Continuous feature, in default presentation form: 

 

Figure 3.6 Using a Semi-Continuous Variable to Model Minimum Batch Size 

 

 
 
The form of the WBSEMIC function can be seen at the top of the screenshot in the formula bar. 

The statement =WBSEMIC(B13,F8,B5) enforces the condition that either the value of B5 is 0 or it 

falls in the range of the values stored in B13 and F8, namely the range [35, 60]. 

The solution displayed is in fact the optimal solution. 

3.2.3 Representing Logical Conditions 
Binary variables are sometimes also called Boolean variables in honor of the logician George Boole. 

He developed the rules of the special algebra, now known as Boolean algebra, for manipulating 

variables that can take on only two values. In Boole’s case, the values were “True” and “False”. 
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However, it is a minor conceptual leap to represent “True” by the value 1 and “False” by the value 0. 

The power of these methods developed by Boole is undoubtedly the genesis of the modern 

compliment: “Strong, like Boole.” For some applications, it may be convenient, perhaps even logical, 

to state requirements using logical expressions. A logical variable can take on only the values TRUE 

or FALSE. Likewise, a logical expression involving logical variables can take on only the values 

TRUE or FALSE. There are two major logical operators, #AND# and #OR#, that are useful in logical 

expressions. 

 The logical expression: 

A  #AND# B  

is TRUE if and only if both A and B are true. 

 The logical expression: 

A #OR# B  

is TRUE if and only if at least one of A and B is true. 

 It is sometimes useful also to have the logical operator implication () written as follows: 

A  B  

with the meaning that if A is true, then B must be true. 

 Logical variables are trivially representable by binary variables with: 

TRUE being represented by 1, and 

FALSE being represented by 0. 

 If A, B, and C are 0/1 variables, then the following constraint combinations can be used to 

represent the various fundamental logical expressions: 

Logical 
Expression 

Equivalent Mathematical 
Constraints 

C = A #AND#  B C  A 

C  B 

C  A + B  1 

C = A  #OR#  B C  A 

C  B 

C  A + B 

A  C A  C 
 

Example ( A implies B and C):  

    In doing the long range planning for an open pit mine, the vertical region that is a candidate for 

mining is typically partitioned into blocks.  Consider the following two dimensional simplification of 

the problem. 

 

    

            
 

1 2 3 

4 5 

6 



56     Chapter 3 Formulating and Solving Integer Programs 
 

 

 

 

It should be clear that we can mine block 4 only if we have also mined blocks 1 AND 2. More 

generally, define: 

     yi = 1 if we mine block i, else 0.   

We can represent these logical conditions for our little mine with the following constraints: 

      y4 ≤ y1 ;  y4 ≤ y2 ;    (Block 4 can be removed only if blocks 1 and 2 are also removed.)  

      y5 ≤ y2 ;  y5 ≤ y3 ;    (Block 5 can be removed only if blocks 2 and 3 are also removed.)  

      y6 ≤ y4 ;  y6 ≤ y5 ;    (Block 6 can be removed only if blocks 4 and 5 are also removed.) 

 

3.2.4 Start Up and Shut Down Costs  
In the scheduling of generators in electric power industry, it is very important to take into account the 

cost of starting up and shutting down a generator. On a hot summer day, the demand for electricity 

varies dramatically over the course of the day. It is extremely expensive to shut down or start up a 

nuclear powered generator.  It is not quite so expensive to start up and shut down a coal fired 

generator. It is relatively cheap to start up and shut down a natural gas fired generator.  Not 

surprisingly, once running, a nuclear powered generator generates electricity most cheaply per kilo-

watt-hour, whereas electricity from a gas fired generator is relatively more expensive per kilo-watt-

hour.  Schedule planning is usually  done for anywhere from a day in advance to a week or more, with 

time partitioned into one hour periods. There is also a cost of keeping a generator running even though 

it is generating essentially no output. Define the 0/1 variables for modeling a single generator: 

      xt = 1 if the generator is to be running in period t, else 0.  

      ut = 1 if the generator is to start running at the beginning of period t, else 0. 

      vt = 1 if the generator is to stop running at the beginning of period t, else 0. 

 

In terms of logic, we want ut = 1 if and only if xt = 1 and xt-1 = 0. We want vt = 1  if and only if xt = 0 

and xt-1 = 1. The start-up and shut-down relationship will be enforced by the following constraint for 

each period: 

ut - vt  =  xt – xt-1 ; 

 

For unusual cases you may also need the constraint: ut + vt ≤ 1. 

 

We illustrate the startup/shutdown feature in What’sBest! with a simple production planning problem 

where we have to pay a setup cost each time we start producing.  We also have to pay inventory costs, 

so we do not want to long production runs that build up large inventories.  We want to strike a happy 

compromise between starting up and shutting down a lot so as to closely track varying demand and 

keep inventory costs low, vs. having long production runs that keep setup costs low. The spreadsheet 

in standard form appears Figure 3.7. 

 



Chapter 3  Formulating and Solving Integer Programs    57 
 

 

Figure 3.7  A Model with Start-up and Shut-down Costs 

 

  
 
The same spreadsheet with formulae displayed appears in Figure 3.8. Notice the formulae in rows 

11:13 that force the startup and shutdown variables to take on the proper value. The production 

variables in row 7 are declared binary (0/1). 

 

Figure 3.8 Start-up and Shut-down Formulae 
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3.2.5 Knapsack Problems 
 
A simple but common type of constraint that appears in lots of situations is the knapsack constraint.  A 

binary knapsack constraint is a constraint of the form: 

      w1*y1+ w2*y2+. . .+ wn*yn ≤ b; 

 where the wj and b are given constants, and the yj are 0/1 variables.  Some example situations are: 

    The wj represent        b represents                 Situation                                         
      Pallet weights         Truck capacity            Deciding which pallets to load on a truck. 

 

      Material widths       Raw material width    Choosing a cutting pattern 

 

      Cost of a project      Annual budget             Deciding which projects get funded. 

 

An example of a knapsack problem is illustrated below. The decision variables are in column D.  The 

objective cell, to be maximized, is B16. An optimal solution is displayed. A simple heuristic for 

loading might be to start with the items with the higher value/weight and load the truck until it is full.  

Just for reference, in column G we calculated the value/weight of each item. Notice that this heuristic 

would be able to load only item 2 for a total value loaded of $24,000, vs. a value of  $27,250 for an 

optimal solution. The optimal solution displayed in fact chooses the three items that have the least 

value/weight.  It happens, however, that these three items fit together well within the very limited 

capacity of the truck. 
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Figure 3.9  A Knapsack/Truck Loading Problem 
 

 

 

3.2.6 Bin Packing and Line Balancing Problems 
A close cousin of the knapsack problem is the bin packing problem, a problem in which one has an 

unlimited number of knapsacks, or bins, available, each of a specified size,  and one wants to find the 

minimum number of bins required to contain a collection of items, each of a specified size.  A 

generalization of the bin packing problem is the line balancing problem. In a line balancing problem 

we want to set up a production line for high volume production of some item. A key feature of the line 

is that it must be partitioned into stations. A station is analogous to a knapsack or a bin. In the simplest 

form, one person works in each station and performs a specified set of tasks on each item that proceeds 

down the line. Only one task can be done at a time in each station and each task has a specified 

required time. It should be obvious that the production rate for the line is determined by the slowest 

station, that is, the station that has the most work assigned to it. A  further complication is that there 

are precedence constraints among the tasks. The standard example of a precedence constraint is that 

you cannot put on your right shoe before you put on your right sock, although you could put on your 
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right shoe (and sock) before you put on your left sock. As an example of precedence in assembling a 

mobile phone, you typically must insert the SIM card before inserting the battery, and the battery must 

be inserted before the cover is put in place. In some industries a mechanized production line is also 

known as a transfer line. 

    Perhaps the most well-known example of the production line approach to manufacturing is an 

automobile assembly line. Other products frequently produced on production lines are various kinds of 

appliances such as display monitors, printers, stoves, refrigerators, mobile phones, and lawn mowers. 

So we can summarize the simplest version of the line balancing problem in words as, we are given: 

     A set of tasks, each with a task time, 

     Precedence constraints among some of the tasks in the form of (predecessor, successor) pairs, 

     A limited number of stations (or bins), numbered 1, 2, … 

  Find: 

    An assignment of each task to a station so: 

    No task is assigned to an earlier station than any of its predecessors, 

    The maximum amount of work assigned to any station is minimized. 

 

Figure 3.10  The Tasks Portion of a Line Balancing Problem 
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For example, if the maximum amount of work in any station is 3 minutes, then the production rate is 

1/3 units per minute, or 60/3 = 20 units per hour. A formulation of a line balancing problem appears in 

Figures 3.10 and 3.11.  Precedences are naturally represented as a network, so we represent the 

precedences in this problem in the same way as earlier when we introduced network problems.  

The features of the tasks, or nodes, are described in a Nodes tab in the spreadsheet in Figure 3.10. The 

precedence constraints are described in the Arcs tab shown in Figure 3.11. We can summarize the 

ABC’s of the formulation as follows: 

  A) The Adjustable cells, or decision variables, are the 0/1 variables appearing in range  G15:J26 of   

         the Nodes tab.  A “1” means that the task in column B is assigned to the station in row 14. 

  B) The Best or Objective cell is F30 in the Nodes tab.  It is the total amount of work assigned to the  

       busiest station and it is to be minimized. 

  C) The constraints on the Nodes tab are: 1) Column L has constraints that force each task to be  

       assigned to exactly one station.  2) The constraints in row 30 force cell F30 to be at least as large  

       as the amount of work assigned to any station in row 28 of the Nodes tab. 

 

Column K of the Nodes tab sums up the number stations to which each task is assigned.  For example,  

K17=SUM(G17:J17). The fact that this sum must be 1 is enforced in column L. For example,          

L17 =WB(K17,"=",1). Further, G30 =WB(G28,"<=",$F$30). 

 

Figure 3.11  The Precedence Portion of a Line Balancing Problem 

      
 

The precedence constraints are enforced on the Arcs tab. Examples of the key cell formulae are: 

D15=SUMIF(Nodes!B$15:B$26,Arcs!B7,Nodes!$D$15:$D$26); 

F15=SUMIF(Nodes!B$15:B$26,Arcs!C15,Nodes!$D$15:$D$26); 
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E15 =WB(D15,"<=",F15). 

 

We see from Figure 3.10,  an optimal solution is: 

 
         Station:   1       2      3             4 

  Tasks assigned:   D       A      B, E, H, I    C, F, G, J, K  

            Work:  50      45     50            50 

 

The maximum time in any station is 50. If time is in seconds, this means the line can produce 1/50 

units per second, or 60/50 = 1.2 units per minute. 

3.2.7 Binary Representation of General Integer Variables 
A curious observation is that any general integer variable with a finite range can be represented by a 

small set of 0/1 variables. For example, suppose X is restricted to the set [0, 1, 2,...,15]. Introduce the 

four 0/1 variables: y1, y2, y3, and y4. Add the constraint:  X = y1 + 2  y2 + 4  y3 + 8 * y4, and 

declare the yj to be binary variables.  Notice that every possible integer in [0, 1, 2, ..., 15] can be 

represented by some setting of the values of y1, y2, y3, and y4. Verify that, if the maximum value X 

can take on is 31, you will need five 0/1 variables. If the maximum value is 63, you will need 6 0/1 

variables. In fact, if you use k 0/1 variables, the maximum value that can be represented is 2
k
-1. Taking 

logarithms, you can observe that the number of 0/1 variables required in this so-called binary 

expansion is approximately proportional to the log of the maximum value X can take on. 

 Although this substitution is valid, it should be avoided if possible. Most integer 

programming algorithms are less efficient when applied to models containing this substitution. There 

are certain situations, however, where the binary expansion is convenient. Suppose that X above 

represents the decision of how many floors to have in a certain building. You want to consider all 

possible values for X in [0, 1, 2, ..., 15], except to avoid bad luck you want to prohibit X = 13.  Notice 

that X = 13 corresponds to  y1 = y3 = y4= 1 and  y2  = 0. Verify that adding the constraint  (1- y1 ) + y2 

+ (1-y3 ) + (1- y4) ≥ 1, or, - y1 + y2 - y3 - y4) ≥ -2, will prohibit X = 13. 

 

3.2.8  Plant Location Problems 
The so-called capacitated plant location problem assumes that we have a number of customers, each 

with a known demand, a number of potential plant sites, each with an available capacity and a fixed 

cost of being open, and a shipment cost matrix that specifies the cost per unit of shipping from a given 

supply point to a customer demand point. The problems to a) decide which plants to open, and b) how 

much to ship from each open supply point to each demand point so as to minimize the total cost and 

not ship any more from a plant than its available capacity and shipping enough to each demand point 

to satisfy its demand. The problem formulation is: 

   Parameters: 

Dj  = volume or demand associated with customer j, 

Ki  = capacity of a plant located at i, 

fi  = fixed cost of having a plant at i, 

cij  = cost per unit of shipping from i to j, 

   Variables: 

             xij = amount shipped from plant i to customer j, 
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              yi  = 1 if plant i is open, else 0. 

 

The IP formulation is:       

 

     Minimize ∑i fi yi + ∑ i∑ j cij xij      ( Minimize fixed costs + shipping costs),      

       subject to         

                      ∑ j xij   ≤ Ki yi                    for i = 1 to n,   (Capacity constraints)  

                      ∑ i xij   = Dj                       for j = 1 to m,  (Demand constraints) 

                        yi = 0 or 1                   for i = 1 to n.   (Plant open or closed) 

 

 

Example: Capacitated Plant Location 
 The Zzyzx Company of Zzyzx, California currently has a warehouse in each of the following 

cities: Baltimore, Cheyenne, Salt Lake City, Memphis, and Wichita. These warehouses supply 

customer regions throughout the U.S. It is convenient to aggregate customer areas and consider the 

customers to be located in the following cities:  Atlanta, Boston, Chicago, Denver,  Omaha, and  

Portland, Oregon. There is some feeling that Zzyzx is “overwarehoused”. That is, it may be able to 

save substantial fixed costs by closing some warehouses without unduly increasing transportation and 

service costs. Relevant data have been collected and assembled on a “per month” basis and are 

displayed in a spreadsheet shown in Figure 3.12. 

Figure 3.12  Capacitated Plant Location Data 
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 For example, closing the warehouse at Baltimore would result in a monthly fixed cost saving of 

$7,650. If Omaha gets all of its monthly demand from Wichita, then the associated transportation cost 

for supplying Omaha is 7  311 = $2,177 per month. A customer need not get all of its supply from a 

single source. Such “multiple sourcing” may result from the limited capacity of each warehouse 

(e.g., Cheyenne can only process 24 tons per month. Should Zzyzx close any warehouses and, if so, 

which ones?) 

To construct an optimization model, we put the decision variables and constraints on a separate tab, 

“Models_Decisions” and displayed in Figure 3.13. 

Figure 3.13  Capacitated Plant Location Variables and Constraints 

 

 

The fixed costs incurred are computed in Cells J8:J12, e.g., J18 =H8*Data!H14. 

Cell H15 sums them up, H15=SUM(J8:J12) 

The shipping costs of supplying each demand city are computed in Cells B16:G16, e.g., 

B16=SUMPRODUCT(Data!B14:B18,B8:B12) 

Cell H16 sums them up, H16=SUM(B16:G16)  

The objective function, the total cost is in Cell H18, i.e.,  H18=H15+H16.  

 

The demand constraints are enforced in Cells B14:G14, e.g., 
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B14=WB(SUM(B8:B12),"=",Data!B9)    

The capacity constraints are enforced in Cells I8:I12, e.g., 

I8=WB(SUM(B8:G8),"<=",Data!I14*H8). 

3.3 Lotsizing Problems 

 

It is interesting that multiperiod production planning problems can be formulated in a fashion very 

similar to plant location problems. The single product dynamic lotsizing problem is described by the 

following parameters: 

n  = number of periods for which production is to be planned for a product; 

Dj  = predicted demand in period j, for j = 1, 2, . . . , n; 

fi  = fixed cost of making a production run in period i; 

hi  = cost per unit of product carried from period i to i + 1. 

This problem can be cast as a simple plant location problem if we define: 

ci j = Dj t i

j






1

ht. 

 That is, cij is the cost of supplying period j’s demand from period i production. Each period 

can be thought of as both a potential plant site (period for a production run) and a customer. 

 If, further, there is a finite production capacity, Ki, in period i, then this capacitated dynamic 

lotsizing problem is a special case of the capacitated plant location problem. 

3.2.8 Dual Prices and Reduced Costs in Integer Programs 
Dual prices and reduced costs in solution reports for integer programs have a restricted interpretation. 

For first time users of IP, it is best to simply disregard the reduced cost and dual price column in the 

solution report. For the more curious, the dual prices and reduced costs in a solution report are 

obtained from the linear program that remains after all integer variables have been fixed at their 

optimal values and removed from the model. Thus, for a pure integer program (i.e., all variables are 

required to be integer), you will generally find:  

 all dual prices are zero, and  

 the reduced cost of a variable is simply its objective function coefficient (with sign 

reversed if the objective is MAX). 

 For mixed integer programs, the dual prices may be of interest. For example, for a plant 

location problem where the location variables are required to be integer, but the quantity-shipped 

variables are continuous, the dual prices reported are those from the continuous problem where the 

locations of plants have been specified beforehand (at the optimal locations). 

3.4 Sequencing, Routing and the Assignment Problem 
Recall that the assignment problem is a simple LP problem of the form:  
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Minimize   ji cijxij 

subject to 

i xij = 1  for each object i, ( each object is assigned to exactly one person) 

j xij = 1  for each person i, ( each person is assigned exactly one object) 

xij > 0. 

Many problems related to sequencing are generalizations of the assignment problem. 

  

3.4.1 Sequencing Problems and the Traveling Salesperson Problem 
 

One of the more famous optimization problems is the traveling salesperson problem (TSP). In a TSP, 

one wants to visit each of a given set of cities exactly once, covering a minimum distance. Lawler et al. 

(1985) presents a tour-de-force on this fascinating problem. One example of a TSP occurs in the 

manufacture of electronic circuit boards. Danusaputro, Lee, and Martin-Vega (1990) discuss the 

problem of how to optimally sequence the drilling of holes in a circuit board, so the total time spent 

moving the drill head between holes is minimized. A similar TSP occurs in circuit board 

manufacturing in determining the sequence in which components should be inserted onto the board by 

an automatic insertion machine. Another example is the sequencing of cars on a production line for 

painting: each time there is a change in color, a setup cost and time is incurred.  

   The TSP is a variation of the assignment problem, but with some additional conditions that happen to 

make TSP much more difficult than the assignment problem. A TSP is described by the data: 

            cij = cost of traveling directly from city i to city j, e.g., the distance. 

 

A solution is described by the variables: 

            yij = 1 if we travel directly from i to j, else 0. 

 

There must be exactly one link going into each city and exactly one link out of each city.  These 

constraints correspond exactly to the Assignment problem. Not so obvious is that the links chosen 

must constitute a complete, connected tour of the cities.  Let us first consider the Assignment 

formulation to see why it is not quite complete. 

 
The Assignment Relaxation:    
The assignment problem is a starting point for all formulations of the TSP. It is:  

Minimize   ji cijyij 

subject to 

 

(1) We must enter each city j exactly once: 

  i j
n
 yij = 1        for j = 1 to n, 

(2) We must exit each city i  exactly once: 

                        j i
n
 yij = 1       for i = 1 to n,  

               (3)      yij    = 0 or 1,  for i = 1, 2, …, n,   j = 1, 2, …, n,   i j: 
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An example in a spreadsheet appears in Figure 3.14. 

 

Figure 3.14  Traveling Salesman Assignment Relaxation 
 

 
 

 
The Adjustable cells are C16:J23. 

The objective or Best cell is L26, containing the formula: =SUMPRODUCT(C16:J23,C5:J12). 

The crucial formulae for the constraints are illustrated as follows: 

1) We are forced to enter Denver by the formulae 

      In cell  D25:  =SUM(D16:D23)  and in cell D26: =WB(D25,”=”,1).  

2) We are forced to depart Fresno by the formulae: 

       In cell  L18:  =SUM(C18:J18)  and in cell M18: =WB(L18,”=”,1). 

 

 The spreadsheet displays an optimal solution to the assignment problem.  Unfortunately for the 

traveling salesman, notice that it contains subtours. Notice that from Chicago one goes to KC, and then 

from KC directly back to Chicago. We do not have a connected tour of all the cities. There are three 

other subtours, all with two cities: (Denver – Houston), (Fresno – Oakland) , and ( Phoenix – LA). 

 

We will describe following four formulations of the TSP that ensure connectedness/prevent subtours: 
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   1) Single commodity  formulation of Miller-Tucker-Zemlin (MTZ), 

   2) Subtour elimination cuts,  

   3) Multi-commodity formulation. 

   4) Time-space diagram, 

 

The single commodity formulation is the most compact and most convenient for problems of a dozen 

or so cities, however, it may be difficult to solve problems with a large number of stops in a trip.  The 

subtour elimination method, although complicated, is the most effective for large problems. The Time-

space diagram approach is a useful way of looking at “Full Truck Load (FTL)” routing problems that 

are similar to TSP. The Multi-Commodity formulation is interesting because, although it is a very big, 

with about n
3
 variables, it is simpler than the Subtour elimination approach, and in a certain theoretical 

sense, it is comparable to the Subtour elimination formulation. 

 

3.4.2 Single Commodity Formulation  
   In the single commodity formulation of the n city TSP,  think of a vehicle starting at city 1, picking 

up one unit of a certain commodity at each of the other cities. Define: uj = the sequence number of city 

j on the trip, with city 1 having sequence number 0.  Equivalently, uj = cumulative number of units 

picked up after the stop at j. In order to force each city to have exactly one unit of commodity picked 

up as part of a single connected tour, we add the following (n-1)
2
 constraints:  

   For j = 2, 3, 4,  . . ., n: 

       For  i =  2, . . .,n,   j  i: 

         uj > ui + (n-1)yij  - n + 2,    

       uj > 2 - y1j +(n-3) yj1, 

Notice that these constraints are consistent with the following observations: 

    if yij = 1, then uj ≥ ui  + 1,                  (it in fact holds as an =) 

    if yij = 0, then uj > ui  -  (n – 2), 

    if y1j = 1, then uj ≥ 1,                         (it in fact holds as an =) 

    if yj1 = 1, then uj ≥ n-1,                      (it in fact holds as an =) 

 

This method of prohibiting subtours is attributed  to Miller, Tucker, and Zemlin(1960).  Problems with 

more than a dozen or so cities may take a long time to solve using the MTZ formulation.  A 

spreadsheet illustrating the MTZ formulation appears in Figure 3.15. 
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Figure 3.15 Formulation of the Traveling Salesman Problem 
 

 
 
The constraints in D33:J40 implement the single commodity/MTZ subtour elimination constraints. 
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Additional Tightening Constraints 
   Even though a formulation for an integer program is logically correct, solve time can sometimes be 

reduced by including additional tightening constraints. Here we mention three such optional 

constraints for the MTZ formulation of the TSP. 

1)  In an integer feasible solution there will be one uj = 1, one uj = 2, etc.  Thus, the sum of the uj will 

equal (n-1)n/2 and we are justified to add the constraint: 

       ∑ j uj = (n-1)n/2;  

This constraint might be otherwise violated in a continuous relaxation of the model. 

 

2) Notice that if  yji = 1, then uj ≥ ui  - 1,  (it in fact holds as an =) 

     so we can replace the constraint:  

         uj > ui + (n-1)yij  - n + 2, 

 by the slightly tighter constraint: 
         uj > ui + (n-1)yij  + (n-3) yji - n + 2;   

3) If the distance matrix is symmetric, then a route can be traveled in reverse and still travel the same 

distance. Thus, we can restrict ourselves to a route in which the index of the first city visited after city 

1 is less than the last city visited just before returning to 1.  The following constraint is justified: 

    ∑j >1 jy1j  ≤ ∑i >1  i yi1 - 1; 

The additional optional tightening constraints are at the bottom of the spreadsheet formulation. 

3.4.3 Subtour Elimination Cut Approach to TSP: 
   
A large TSP may take a long time to solve with the MTZ formulation. The subtour cut approach has 

been successfully applied to rather larger TSP’s. It is an iterative approach that adds constraints or 

“cuts” as needed to prevent subtours.  Padberg and Rinaldi (1987) used essentially this iterative 

approach and were able to solve to optimality problems with over 2000 cities. The solution time was 

several hours on a large computer.  The key idea of this approach is as follows. Given a solution to the 

assignment relaxation of the TSP, let S be a set of cities that constitute a subtour with | S | being the 

number of cities in the subtour. Thus, there are | S | arcs used in the subtour.  We add the constraint: 

 

  i j S, 

 yij < |S|  1, 

       

The above formulation is usually attributed to Dantzig, Fulkerson, and Johnson(1954). A point of 

concern about the subtour elimination cut formulation is that if there are n cities, then there are 

approximately 2
n
 different subsets for which a cut could be added. It practice it appears that only a 

very small fraction of these possible cuts need be added. We will illustrate with our previous example.  

Recall that with just the assignment relaxation of the TSP, we got a solution with length 4150 but with 
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a subtour involving Chicago and LA. The spreadsheet Figure 3.16 shows how to add a cut that 

prevents a subtour involving Chicago and LA. 

Figure 3.16 TSP with Subtour Elimination Cuts 

 

 

Properly arranged, it is quite easy to add subtour cuts in a spreadsheet. The cities involved in the cut 

are marked with a 1 in C29:J29 an A31:A38.  The matrix in C31:J38 contains a 1 for every link 

between two cities in the subtour.  The constraint in I39 cuts of the subtour. The key formulae are: 
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  G35=$A35*G$29 

  I39=WB(SUMPRODUCT(C31:J38,C$16:J$23),"<=",SUM(A31:A38)-1) 

Notice that when this cut is added, the objective value increases to 4295 from 4150.  Subtours still 

remain, however.  Additional cuts can be added by simply copying down the range A28:J39 and 

marking the new subtour cities in the copied version of row 29. The half dozen additional cuts required 

are summarized below. 

Iteration      Objective         Subtour found 

    0                 4150              Chicago, KC 

    1                 4295              Fresno, Oakland        

    2                 4613              Denver, Phoenix 

    3                 4707              Fresno, LA, Oakland, Phoenix 

    4                 4856              Fresno, LA, Oakland 

    5                 5066              Chicago, Houston, KC 

    6                 5309                  -no subtours remaining-            

 

3.4.5 Multi-commodity Flow Formulation: 
 Similar to the MTZ formulation, imagine that each city needs one unit of some commodity, but in 

this case the commodity is distinct to the destination city.  Define:   

           xijk = units of commodity carried from i to j, destined for ultimate delivery to k. 

If we assume that we start at city 1 and there are n cities, then we add the following constraints to the 

assignment formulation: 

           For k = 1, 2, 3, …, n: 

                   j >1 x1jk = 1;   ( Each unit must be shipped out of the origin.)    

                   i k xikk = 1;    ( Each city k must get its unit.) 

           For j = 2, 3, …, n,  k =1, 2, 3, …, n,  j  k: 

                   i xijk = t j xjtk
 
 ( Units entering j, but not destined for j, must depart j to some city t.)  

           A unit cannot return to 1, except if its final destination is 1: 

                   i k > 1 xi1k   = 0, 

           For i = 1, 2, …, n,   j = 1, 2, …, n,  k = 1, 2,  …, n,  i j: 

                     xijk   yij     ( If anything shipped from i to j, then turn on yij.) 
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The drawback of this formulation is that it has approximately n
3 

constraints and variables.  A 

remarkable feature of the multicommodity flow formulation is that it is just as tight as the Subtour 

Elimination formulation.  The multi-commodity formulation is due to Claus(1984). 

3.4.6 Time-Space Formulation of the TSP 
For some routing problems where time is an important consideration a “space-time” diagram 

like that in Figure 3.17 may be helpful for visualizing the problem. 

 

Figure 3.17  Space-Time Diagram for a TSP 
 

                           stop1                 stop2                 stop3                  stop4                 stop5 

city1 

 

city2 

 

city3 

 

city4 

 

city5 

 

A path through this network is a traveling salesman tour if it makes a visit to every row of the network 

exactly once, except for the first row, where the path starts and ends. 

Define:   

           wijk = 1 if we leave city i at stop k-1 and arrive at city j at stop k, else 0. 

 

The formulation corresponding to the above graph is:  

Minimize   ∑ i ∑ j ∑ k cijwijk 

subject to 

 

 We must enter each city j exactly once: 

  
∑ i≠j ∑ k wijk = 1        for j = 1 to n, 

 We must exit each city i  exactly once: 

    
∑ j≠i ∑ k wijk = 1       for i = 1 to n,  
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 We must enter exactly one city at each step k: 

                         
∑ i ∑ j≠i ∑ k wijk = 1       for k = 1 to n,  

                     wijk    = 0 or 1,  for i = 1, 2, …, n,   j = 1, 2, …, n,  k = 1, 2, …, n,    i j; 

It is useful to kill some symmetry by requiring the tour start and end in city 1, so one can add the 

constraints:  

    
∑ j≠1 w1j1 = 1,  

 

                         ∑ i≠1 wi1n = 1.         

The space/time formulation is tighter than the MTZ formulation, but not as tight as the Multi-

commodity formulation. 

Heuristics 

   For practical problems, it may be important to get good, but not necessarily optimal, answers in just 

a few seconds or minutes rather than hours. The most commonly used heuristic for the TSP is due to 

Lin and Kernighan (1973). This heuristic tries to improve a given solution by clever re-orderings of 

cities in the tour. For practical problems (e.g., in operation sequencing on computer controlled 

machines), the heuristic seems always to find solutions no more than 2% more costly than the 

optimum. Bland and Shallcross (1989) describe problems with up to 14,464 “cities” arising from the 

sequencing of operations on a computer controlled machine. In no case was the Lin-Kernighan 

heuristic more than 1.7% from the optimal for these problems. 

3.5 Capacitated Multiple TSP/Vehicle Routing Problems 
An important practical problem is the routing of vehicles from a central depot. An example is the 

routing of delivery trucks for the home delivery portion of an overnight package delivery service such 

as UPS, or for a metropolitan newspaper. You can think of this as a multiple traveling salesperson 

problem with finite capacity for each salesperson. This problem is sometimes called the LTL(Less than 

TruckLoad) routing problem because a typical recipient receives less than a truck load of goods. A 

formulation is: 

 Given: 

V = capacity of a vehicle 

dj = demand of city or stop j 

Define the variables: 

            yij = 1 if a vehicle travels from city i to city j, else 0. 

A solution must satisfy not only the assignment-like constraints: 

   Each city, j, must be visited once for j > 1: 

j
 xij = 1 
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   Each city i > 1, must be exited once: 

i
 xij = 1 

but additionally, a) there must be no subtours excluding city 1 (the depot or hub), and b) the demand of 

the cities on any trip (or valid subtour) cannot exceed the vehicle capacity V. We give a compact 

formulation of this problem by generalizing the Miller-Tucker-Zemlin TSP formulation. Define: 

      Uj = cumulative deliveries made by the vehicle after stopping at city j. 

We have a complete formulation if we add the constraints: 

           Each city,  j > 1: 

                  dj ≤ Uj ≤ V; 

          For every combination i ≠ j, j > 1: 

                    Uj ≥ Ui + dj - V(1 - yij), 

           or equivalently: 

                   Uj - Ui – V*yij - dj + V ≥ 0, 

If yij =1, this constraint implies Uj  ≥ Ui + dj. 

If yij = 0, it implies the redundant constraint: Uj  ≥ Ui – V + dj.   

These constraints prohibit subtours that do not include the hub city 1 by the following reasoning.  

Suppose there is a subtour excluding 1. The constraint set implies that as one traces around the 

subtour, the Uj must be strictly increasing. (We assume dj > 0). This, however, leads to a contradiction. 

     This formulation can solve to optimality modest-sized problems of say, 25 cities. For larger or more 

complicated practical problems, the heuristic method of Clarke and Wright (1964) is a standard 

starting point for quickly finding good, but not necessarily optimal, solutions. In Figure 3.16  is a 

generic What’sBest! model for vehicle routing problems. The constraints that enforce truck capacity 

appear in Figure 3.18. One can make the constraint a little tighter by observing that if yji = 1, then Uj  - 

Ui = - di. Thus, one can extend the constraint to: 

                   Uj - Ui – V*yij - dj + V  - (V+di - dj)*yji ≥ 0; 
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Figure 3.18 Capacitated Vehicle Routing 

   

 

An optimal solution of distance 12838 is displayed in Figure 3.18. Starting with the row corresponding 

to Chicago, we can trace out the trips as: 

 1)  Chicago, Denver, Houston, Chicago. 

 2) Chicago, LA, Chicago. 

 3) Chicago, Oakland, Fresno, Anaheim, Phoenix, Chicago. 

 4) Chicago, Peoria, K City, Chicago. 
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Figure 3.19 Capacitated Vehicle Routing Constraints 
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3.6 Representing Piecewise Linear Functions 
There are many applications where the cost function is nonlinear but does not have a standard simple 

mathematical description. Piecewise linear functions may be useful in such cases. For example, if you 

ask a vendor to provide a quote for selling you some quantity of material,  the vendor will typically 

give you a discount if you buy a large quantity. Piecewise linear functions are found not only in 

purchasing but also are frequently used in the modeling of energy conversion processes such as the 

generation of electricity. The amount of electrical energy produced by a hydro-electric or fossil fuel 

burning generator may be a nonlinear function of the input volume of water or fuel. Flow through a 

pipe, in pipeline network, as a function of pressure, is sometimes represented by a piecewise linear 

function. Several different possible cost curves are shown below.    

 

Figure 3.20 An Arbitrary Continuous Piecewise Linear Cost  

 

 

Vendors typically offer two general forms: a) Incremental discounts, or b) All units discount. In “all 

units” the discount given if you order more than a specified threshold, say 1000, applies to all units 

purchased, whereas, with incremental units discount, the discount applies only to the units in excess of 

1000. This leads to two different cost curves. 
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Figure 3.21 An All-Units Discount Cost Curve 

 
                h1                  h2                                                          h3                                                                            h4  

                                                         quantity 
 

v2 

v1 

v3 

v4 
c4 

c3 

c2 
cost 
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Figure 3.22 An Incremental Units Discount Cost Curve 

 
                    h0                  h1                                                         h2                                              h3                                            h4  

                                                quantity 

 

There are several ways of representing a piecewise linear cost curve.  In the general case, some form of 

linear integer programming is required. The approach we will describe is based on the observation that 

any point on the curve can be represented as a weighted combination of the two breakpoints that 

bracket the point. 

 

Define the variables: 

        wi = nonnegative weight to be applied to point i, for i  = 0, 1, 2, 3, 4. 

        x = amount purchased,   

        cost = total cost of the purchase. 

 

   We can cause x and cost to almost be calculated correctly by writing the constraints: 

           x = w0h0 + w1h1 + w2h2 + w3h3 + w4h4; 

      cost = w0v0 + w1v1 + w2v2  + w3v3 + w4v4;  

          1 = w0     + w1     + w2      + w3      + w4v4; 

 

This method  is sometimes called the lambda method because the Greek symbol lambda was used 

sometimes to represent the weights. 

 

v1 

v0 

v2 

v3 
v4 

cost 
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Any point on the line segment connecting the two points (hi, vi) and (hi+1, vi+1) can be represented by 

choosing appropriate values for wi and wi+1 so that  wi + wi+1 = 1, and wi, wi+1 ≥ 0. To ensure that the 

point corresponding to a particular set of values for the wi lies on the curve, we need to require that if 

two or more of the wi are  > 0, they must be adjacent.  We said “almost” in the earlier sentence because 

there is nothing in the three constraints above that enforce this adjacency condition. There are two 

ways of enforcing this adjacency condition:  a) declare the wi to be members of an SOS2 set in 

What’sBest!, or b) add a number of binary variables to enforce the condition. If a set of variables have 

a constraint that at most two can be nonzero, and they must be adjacent, then the set is called a 

“Special Ordered Set” of type 2, or SOS2 for short. 

 

We will illustrate the SOS2 approach in What’sBest!. A vendor price schedule states that the first 

1,000 liters of the product can be purchased for $2 per liter. The price drops to $1.90 per liter 

for units beyond 1000, $1.80 for units above 3500, and $1.75 for units beyond 5000.  We 

would never purchase more than 7000 units. The vendor gives incremental, rather than all 

units discouts. The total cost schedule is easily seen to be: 
 

      Quantity    Total cost 

         0            0 

       1000         2000     (2.00*1000) 

       3500         6750     (2000 + 1.9*(3500-1000)) 

       5000         9450     (6750 + 1.8*(5000-3500)) 

       7000        12950     (9450 + 1.75*(7000-5000)        

 

  The associated equations are: 
            

           x = w0*0 + w1*1000 + w2*3500 + w3*5000 + w4* 7000; 

        cost = w0*0 + w1*2000 + w2*6750 + w3*9450 + w4*12950;  

           1 = w0   + w1      + w2      + w3      + w4; 

  
Suppose we have only the above constraints,  arbitrarily add the constraint, x = 4300, and minimize the 

cost. We get the solution: 
 

                  Variable           Value 

                         X         4300.00 

                      COST         7955.00 

                        W0        0.428571 

                        W1        0.000000 

                        W2        0.000000 

                        W3        0.000000 

                        W4        0.571429 

 

The cost is wrong.  It should be 6750 + 1.8*(4300-3500) = 8190. The problem is that the two nonzero 

weights, w0 and w4, are not adjacent.  If the SOS2 feature is turned on, we get the desired result: 
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                  Variable           Value 

                         X         4300.00 

                      COST         8190.00 

                        W0        0.000000 

                        W1        0.000000 

                        W2        0.466667 

                        W3        0.533333 

                        W4        0.000000 

 

If for some reason you do not want to use the SOS2 feature, you can introduce 4 binary variables: 

      yi = 1 if x is in the interval with endpoints hi-1 and hi, for i = 1, 2, 3, 4.  We would replace the SOS2 

declarations by the constraints: that the yi must be 0 or 1 and: 
            w0 <= y1; 

            w1 <= y1 + y2; 

            w2 <= y2 + y3; 

            w3 <= y3 + y4; 

            w4 <= y4; 

 
Piecewise Linear Cost Curve, Two Vendor Example 
  Now suppose a second vendor appears at our door and offers the following price schedule for the 

same product. Any quantity <  600 costs $1.96 per liter. Any quantity of 600 or more costs $1.79.  

Further, this is an “all units” discount, applying to all units purchased. One complication with the 

second vendor is that a $500 shipping and handling charge is applied to any order.  How much should 

be purchased from each vendor?  A spreadsheet answering this question is displayed in Figure 3.23. 
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Figure 3.23 Purchasing from Two Suppliers with Nonlinear Price Schedules 
 

 

 

3.6.1  Piecewise Linear Approximations to Multivariate Functions 
Can we extend the piecewise linear interpolation method to functions of  2 variables?  An example 

might be the  power output from a hydro generator as a function of the two variables: 1) head or 

pressure, and 2) flow volume. 
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Figure 3.24  Piecewise Linear Function of Two Variables 

 
 

It is an interesting challenge to figure out how to use the SOS2 constraint type to represent such a 

function. 
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3.7 Assignment Constraints & AllDifferent Constraints 

Many problems can be thought of as requiring the assignment of a unique integer to each of a set of 

tasks or objects, e.g., 

 

    Task    Label/Sequence/Position   

      1              4 

      2              1 

      3              3 

      4              5 

      5              2 

       

It is useful to think of this as an Assignment problem, where 

    yij = 1 if task i is assigned label/position j, else 0. 

    pi = ∑j j*yij = position number assigned to i. 

 

Constraint programming languages allow you to directly specify an “AllDiff” constraint on label 

numbers. 

3.7.1 Assignment Constraints, AllDifferent, Example 
A parent of a college student tells the student he will answer his latest request if the student can solve 

the following puzzle: 
     SEND 

   + MORE        Find values in [0, 9] for  S, E, N, D, M, O, R, Y 

    MONEY        so the addition on the left makes sense. 

 

Mathematically we want to satisfy the constraint: 

                         1000*S + 100*E + 10*N + D  

                      + 1000*M+ 100*O + 10* R + E 

   = 10000*M + 1000*O + 100*N + 10*E + Y; 

 

In words, we want the variables S, E, N, D, M, O, R, Y to be integers in [0, 9]. A not so easy constraint 

is that the values must all be different, e.g., S ≠ E, etc.  Also, the leading digits, S and M ≠ 0.) 

 

Remembering our old friend, or at least acquaintance, the Assignment problem, helps. 

3.7.2 AllDifferent  Formulated as Assignment Constraints 
Assignment formulation: 

     yij = 1 if letter i is assigned value j. 

 

The constraints are: 

    Each letter gets a value: 
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      yS0 + yS1 + yS2 + yS3 + yS4 + yS5 + yS6 + yS7 + yS8 + yS9 =1; 

      yE0 + yE1 + yE2 + yE3 + yE4 + yE5 + yE6 + yE7 + yE8 + yE9 =1;   etc. 

 

    Each value can be used at most once (the Alldifferent part): 

      yS0 + yE0 + yN0 + yD0 + yM0 + yO0 + yR0 + yY0  ≤ 1; 

      yS1 + yE1 + yN1 + yD1 + yM1 + yO1 + yR1 + yY1  ≤ 1;   etc. 

 

 Connect the Assignment view to the Position value view: 

     S = yS1 + 2yS2 + 3yS3 + 4yS4 + 5yS5 + 6yS6 + 7yS7 + 8yS8 + 9yS9 ; 

     E = yE1 + 2yE2 + 3yE3 + 4yE4 + 5yE5 + 6yE6 + 7yE7 + 8yE8 + 9yE9 ; 

    etc. 

 

The spreadsheet incarnation of this formulation appears in Figure 3.23. 

 

Figure 3.23 Puzzle Example of Assignment Form of AllDiff Constraints. 
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Test your understanding and skill with a slightly bigger puzzle: 

 

     PLUTO           Find values in [0, 9] for  

    SATURN        P, L, U, T, O, S, A, R, N, E 

    URANUS        so the addition on the left makes sense. 

 + NEPTUNE  

   PLANETS 

 

3.8 Outline of Integer Programming Methods 
The time a computer requires to solve an IP may depend dramatically on how you formulated it. It is, 

therefore, worthwhile to know a little about how IPs are solved. There are two general approaches for 

solving IPs: “cutting plane” methods and “branch-and-bound” (B & B) method. For a comprehensive 

introduction to integer programming solution methods, see Nemhauser and Wolsey (1988), and 

Wolsey (1998). Most commercial IP programs use the B & B method, but aided by some cutting plane 

features. Fortunately for the reader, the B & B method is the easier to describe. In most general terms, 

B & B is a form of intelligent enumeration. 

 More specifically, B & B first solves the problem as an LP. If the LP solution is integer 

valued in the integer variables, then no more work is required. Otherwise, B & B resorts to an 

intelligent search of all possible ways of rounding the fractional variables. 

 We shall illustrate the application of the branch-and-bound method with the following problem: 

 MAX= 75 * X1  + 6 * X2   + 3 * X3 + 33 * X4; 

     774 * X1 + 76 * X2  + 22 * X3 + 42 * X4 <= 875; 

      67 * X1 + 27 * X2 + 794 * X3 + 53 * X4 <= 875; 

     @BIN( X1); @BIN( X2); @BIN( X3); @BIN( X4); 

 The search process a computer might follow in finding an integer optimum is illustrated in 

Figure 3.5. First, the problem is solved as an LP with the constraints  Xj = 0 or 1 replaced by the 

relaxations 0 ≤ Xj ≤ 1. This solution is summarized in the box labeled 1. The solution has fractional 

values for X2 and X3 and is, therefore, unacceptable. At this point, X2 is arbitrarily selected and the 

following reasoning is applied. At the integer optimum, X2 must equal either 0 or 1. 
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Figure 3.5 Branch-and-Bound Search Tree 

 

 Therefore, replace the original problem by two new subproblems. One with X2 constrained to 

equal 1 (box or node 2) and the other with X2 constrained to equal 0 (node 8). If we solve both of these 

new IPs, then the better solution must be the best solution to the original problem. This reasoning is the 

motivation for using the term “branch”. Each subproblem created corresponds to a branch in an 

enumeration tree. 

 The numbers to the upper left of each node indicate the order in which the nodes (or equivalently, 

subproblems) are examined. The variable Z is the objective function value. When the subproblem with 

X2 constrained to 1 (node 2) is solved as an LP, we find X1 and X3 take fractional values. If we argue 

as before, but now with variable X1, two new subproblems are created:  

Node 7) one with X1 constrained to 0 , and  

Node 3) one with X1 constrained to 1. 

 This process is repeated with X4 and X3 until node 5. At this point, an integer solution with Z 

= 81 is found. We do not know this is the optimum integer solution, however, because we must still 

look at subproblems 6 through 10. Subproblem 6 need not be pursued further because there are no 

feasible solutions having all of X2, X1, and X4 equal to 1. Subproblem 7 need not be pursued further 

because it has a Z of 42, which is worse than an integer solution already in hand. 
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 At node 9, a new and better integer solution with Z = 108 is found when X3 is set to 0. Node 10 

illustrates the source for the “bound” part of “branch-and-bound”. The solution is fractional. However, 

it is not examined further because the Z-value of 86.72 is less than the 108 associated with an integer 

solution already in hand. The Z-value at any node is a bound on the Z-value at any offspring node. This 

is true because an offspring node or subproblem is obtained by appending a constraint to the parent 

problem. Appending a constraint can only hurt. Interpreted in another light, this means the Z-values 

cannot improve as one moves down the tree. The tree presented in the preceding figure was only one 

illustration of how the tree might be searched. Other trees could be developed for the same problem by 

playing with the following two degrees of freedom: 

(a) Choice of next node to examine, and 

(b) Choice of how the chosen node is split into two or more subnodes. 

 For example, if nodes 8 and then 9 were examined immediately after node 1, then the solution 

with Z = 108 would have been found quickly. Further, nodes 4, 5, and 6 could then have been skipped 

because the Z-value at node 3 (100.64) is worse than a known integer solution (108), and, therefore, no 

offspring of node 3 would need examination. 

 In the example tree, the first node is split by branching on the possible values for X2. One 

could have just as well chosen X3 or even X1 as the first branching variable. 

 The efficiency of the search is closely related to how wisely the choices are made in (a) and 

(b) above. Typically, in (b) the split is made by branching on a single variable. For example, if, in the 

continuous solution, x = 1.6, then the obvious split is to create two subproblems. One with the 

constraint x  1, and the other with the constraint x  2. The split need not be made on a single 

variable. It could be based on an arbitrary constraint. For example, the first subproblem might be based 

on the constraint x1 + x2 + x3  0, while the second is obtained by appending the constraint 

x1 + x2 + x3  1. Also, the split need not be binary. For example, if the model contains the constraint 

y1 + y2 + y3 = 1, then one could create three subproblems corresponding to either y1 = 1, or y2 = 1, or 

y3 = 1. 

 If the split is based on a single variable, then one wants to choose variables that are 

“decisive.” In general, the computer will make intelligent choices and the user need not be aware of 

the details of the search process. The user should, however, keep the general B & B process in mind 

when formulating a model. If the user has a priori knowledge that an integer variable x is decisive, 

then for the What’sBest! program it is useful to place x early in the formulation to indicate its 

importance. This general understanding should drive home the importance of a “tight” LP formulation. 

A tight LP formulation is one which, when solved, has an objective function value close to the IP 

optimum. The LP solutions at the subproblems are used as bounds to curtail the search. If the bounds 

are poor, many early nodes in the tree may be explicitly examined because their bounds look good 

even though, in fact, these nodes have no good offspring. 

3.8.1 Computational Difficulty of Integer Programs 
Integer programs can be very difficult to solve. This is in marked contrast to LP problems. The 

solution time for an LP is fairly predictable. For an LP, the time increases approximately 

proportionally with the number of variables and approximately with the square of the number of 

constraints. For a given IP problem, the time may in fact decrease as the number of constraints is 

increased. As the number of integer variables is increased, the solution time may increase dramatically. 

Some small IPs (e.g., 6 constraints, 60 variables) are extremely difficult to solve. 
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 Just as with LPs, there may be alternate IP formulations of a given problem. With IPs, 

however, the solution time generally depends critically upon the formulation. Producing a good IP 

formulation requires skill. For many of the problems in the remainder of this chapter, the difference 

between a good formulation and a poor formulation may be the difference between whether the 

problem is solvable or not. 

3.8.2 NP-Complete Problems 
Integer programs belong to a class of problems known as NP-hard. We may somewhat loosely think of 

NP as meaning "not polynomial". This means that there is no known algorithm of solving these 

problems such that the computational effort at worst increases as a polynomial in the problem size. For 

our purposes, we will say that the computational complexity of an algorithm is polynomial if there is a 

positive constant k, such that the time to solve a problem of size n is proportional to n
k
. For example, 

sorting a set of n numbers can easily be done in (polynomial) time proportional to n
2
,(n log(n) if one is 

careful), whereas solving an integer program in n zero/one variables may, in the worst case, take 

(exponential) time proportional to 2
n
. There may be a faster way, but no one has published an 

algorithm for integer programs that is guaranteed to take polynomial time on every problem presented 

to it. The terms NP-complete and P-complete apply to problems that can be stated as "yes/no" or 

feasibility problems. The yes/no variation of an optimization problem would be a problem of the form: 

Is there a feasible solution to this problem with cost less-than-or-equal-to 1250. In an optimization 

problem, we want a feasible solution with minimum cost. Khachian (1979) showed that the feasibility 

version of LP is solvable in polynomial time. So, we say LP is in P. Integer programming stated in 

feasibility form, and a wide range of similar problems, belong to a class of problems called 

NP-complete. These problems have the feature that it is possible to convert any one of these problems 

into any other NP-complete problem in time that is polynomial in the problem size. Thus, if we can 

convert problem A into problem B in polynomial time, then solve B in polynomial time, and then 

convert the solution to B to a valid solution to A in polynomial time, we then have a way of solving A 

in polynomial time.  

 The notable thing about NP-complete problems is that, if someone develops a guaranteed fast 

(e.g., polynomial worst case) time method for solving one of these problems, then that someone also 

has a polynomial time algorithm for every other NP-complete problem. An important point to 

remember is that the NP-completeness classification is defined in terms of worst case behavior, not 

average case behavior. For practical purposes, one is interested mainly in average case behavior. The 

current situation is that the average time to solve many important practical integer programming 

problems is quite short. The fact that someone may occasionally present us with an extremely difficult 

integer programming problem does not prevent us from profiting from the fact that a large number of 

practical integer programs can be solved rapidly. Perhaps the biggest open problem in modern 

mathematics is whether the problems in the NP-complete class are inherently difficult. This question is 

cryptically phrased as is: P = NP? Are these problems really difficult, or is it that we are just not smart 

enough to discover the universally fast algorithm? In fact, a “Millenium prize” of $1,000,000 is offered 

by the Clay Mathematics Institute, www.claymath.org, for an answer to this question. For a more 

comprehensive discussion of the NP-complete classification, see Martin (1999). 
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3.9 Problems 
1. The following problem is known as a segregated storage problem. A feed processor has various 

amounts of four different commodities, which must be stored in seven different silos. Each silo 

can contain at most one commodity. Associated with each commodity and silo combination is a 

loading cost. Each silo has a finite capacity, so some commodities may have to be split over 

several silos. For a similar problem arising in the loading of fuel tank trucks at Mobil Oil 

Company, see Brown, Ellis, Graves, and Ronen (1987). The following table contains the data for 

this problem. 

Loading Cost per Ton 

  
Silo 

Amount of 
Commodity 

 
Commodity 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

To Be Stored 

A $1 $2 $2 $3 $4 $5 $5 75 tons 

B 2 3 3 3 1 5 5 50 tons 

C 4 4 3 2 1 5 5 25 tons 

D 1 1 2 2 3 5 5 80 tons 

Silo Capacity in 

Tons 
 

25 
 

25 
 

40 
 

60 
 

80 
 

100 
 

100 
 

a) Present a formulation for solving this class of problems. 

b) Find the minimum cost solution for this particular example. 

c) How would your formulation change if additionally there was a fixed cost associated 

with each silo that is incurred if anything is stored in the silo? 

2. You are the scheduling coordinator for a small, growing airline. You must schedule exactly one 

flight out of Chicago to each of the following cities: Atlanta, Los Angeles, New York, and Peoria. 

The available departure slots are 8 A.M., 10 A.M., and 12 noon. Your airline has only two departure 

lounges, so at most two flights can be scheduled per slot. Demand data suggest the following 

expected profit contribution per flight as a function of departure time: 

Expected Profit Contribution in 
$1000’s 

 Time 

Destination 8 10 12 

Atlanta 10 9 8.5 

Los Angeles 11 10.5 9.5 

New York 17 16 15 

Peoria 6.4 2.5 1 
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Formulate a model for solving this problem. 

3. A problem faced by an electrical utility each day is that of deciding which generators to start up at 

which hour based on the forecast demand for electricity each hour. This problem is also known as 

the unit commitment problem. The utility in question has three generators with the following 

characteristics: 

 
 
Generat
or 

Fixed 
Startu
p Cost 

Fixed 
Cost per 
Period of 
Operation 

Cost per 
Period per 
Megawatt 

Used 

Maximum 
Capacity in 

Megawatts Each 
Period 

A 3000 700 5 2100 

B 2000 800 4 1800 

C 1000 900 7 3000 

 There are two periods in a day and the number of megawatts needed in the first period is 

2900. The second period requires 3900 megawatts. A generator started in the first period may be 

used in the second period without incurring an additional startup cost. All major generators 

(e.g., A, B, and C above) are turned off at the end of each day. 

a) First, assume fixed costs are zero and thus can be disregarded. What are the decision 

variables? 

b) Give the LP formulation for the case where fixed costs are zero. 

c) Now, take into account the fixed costs. What are the additional (zero/one) variables to 

define? 

d) What additional terms should be added to the objective function? What additional 

constraints should be added? 

4. Crude Integer Programming. Recently, the U.S. Government began to sell crude oil from its 

Naval Petroleum Reserve in sealed bid auctions. There are typically six commodities or products 

to be sold in the auction, corresponding to the crude oil at the six major production and shipping 

points. A “bid package” from a potential buyer consists of (a) a number indicating an upper limit 

on how many barrels (bbl.) the buyer is willing to buy overall in this auction and (b) any number 

of “product bids”. Each product bid consists of a product name and three numbers representing, 

respectively, the bid price per barrel of this product, the minimum acceptable quantity of this 

product at this price, and the maximum acceptable quantity of this product at this price. Not all 

product bids of a buyer need be successful. The government usually places an arbitrary upper limit 

(e.g., 20%) on the percentage of the total number of barrels over all six products one firm is 

allowed to purchase. 
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 To illustrate the principal ideas, let us simplify slightly and suppose there are only two supply 

sources/products, which are denoted by A and B. There are 17,000 bbls. available at A while B has 

13,000. Also, there are only two bidders, the Mobon and the Exxil companies. The government 

arbitrarily decides either one can purchase at most 65% of the total available crude. The two bid 

packages are as follows: 

Mobon:     
Maximum desired = 16,000 bbls. total.  

  
 

Product 

 
Bid per 
Barrel 

Minimum 
Barrels 

Accepted 

Maximum 
Barrels 
Wanted 

 A 43 9000 16,000 

 B 51 6000 12,000 

Exxil:     
Maximum desired = No limit.  

  
 

Product 

 
Bid per 
Barrel 

Minimum 
Barrels 

Accepted 

Maximum 
Barrels 
Wanted 

 A 47 5000 10,000 

 B 50 5000 10,000 

Formulate and solve an appropriate IP for the seller. 

5. A certain state allows a restricted form of branch banking. Specifically, a bank can do business in 

county i if the bank has a “principal place of business” in county i or in a county sharing a 

nonzero-length border with county i. Figure 11.10 is a map of the state in question: 

Figure 11.10 Districts in a State 
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 Formulate the problem of locating a minimum number of principal places of business in the 

state, so a bank can do business in every county in the state. If the problem is formulated as a 

covering problem, how many rows and columns will it have? What is an optimal solution? Which 

formulation is tighter: set covering or simple plant location? 

6. Data Set Allocation Problem. There are 10 datasets or files, each of which is to be allocated to 1 

of 3 identical disk storage devices. A disk storage device has 885 cylinders of capacity. Within a 

storage device, a dataset will be assigned to a contiguous set of cylinders. Dataset sizes and 

interactions between datasets are shown in the table below. Two datasets with high interaction 

rates should not be assigned to the same device. For example, if datasets C and E are assigned to 

the same disk, then an interaction cost of 46 is incurred. If they are assigned to different disks, 

there is no interaction cost between C and E. 

Dataset for Interaction (Seek Transition) Rates 
  

 
A 

 
 

B 

 
 

C 

 
 

D 

 
 

E 

 
 

F 

 
 

G 

 
 

H 

 
 
I 

 
 

J 

Dataset 
Size in 

Cylinders 

A           110 

B 43          238 

C 120 10         425 

D 57 111 188        338 

E 96 78 46 88       55 

F 83 58 421 60 63      391 

G 77 198 207 109 73 74     267 

H 31 50 43 47 51 21 88    105 

I 38 69 55 21 36 391 47 96   256 

J 212 91 84 53 71 40 37 35 221  64 

           2249 

 Find an assignment of datasets to disks, so total interaction cost is minimized and no disk 

capacity is exceeded. 
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7. The game or puzzle of mastermind pits two players, a “coder” and a “decoder”, against each other. 

The game is played with a pegboard and a large number of colored pegs. The pegboard has an 

array of 4  12 holes. For our purposes, we assume there are only six colors: red, blue, clear, 

purple, gold, and green. Each peg has only one color. The coder starts the game by selecting four 

pegs and arranging them in a fixed order, all out of sight of the decoder. This ordering remains 

fixed throughout the game and is appropriately called the code. At each play of the game, the 

decoder tries to match the coder’s ordering by placing four pegs in a row on the board. The coder 

then provides two pieces of information about how close the decoder’s latest guess is to the 

coder’s order: 

1) The number of pegs in the correct position (i.e., color matching the coder’s peg in that 

position), and 

2) The maximum number of pegs that would be in correct position if the decoder were 

allowed to permute the ordering of the decoder’s latest guess. 

 Call these two numbers m and n. The object of the decoder is to discover the code in a 

minimum number of plays. 

The decoder may find the following IP of interest. 

MAX  = XRED1; 

  XRED1 + XBLUE1 + XCLEAR1 + XPURP1 + XGOLD1 

      + XGREEN1 = 1; 

  XRED2 + XBLUE2 + XCLEAR2 + XPURP2 + XGOLD2 

      + XGREEN2 = 1; 

  XRED3 + XBLUE3 + XCLEAR3 + XPURP3 + XGOLD3 

      + XGREEN3 = 1; 

  XRED4 + XBLUE4 + XCLEAR4 + XPURP4 + XGOLD4 

      + XGREEN4 = 1; 

 XRED1 + XRED2  + XRED3 + XRED4 - RED = 0; 

 XBLUE1 + XBLUE2  + XBLUE3 + XBLUE4 - BLUE = 0;   

 XCLEAR1 + XCLEAR2 + XCLEAR3 + XCLEAR4 - CLEAR = 0; 

 XPURP1 + XPURP2 + XPURP3 + XPURP4 - PURP = 0; 

 XGOLD1 + XGOLD2 + XGOLD3 + XGOLD4 - GOLD = 0; 

 XGREEN1 + XGREEN2 + XGREEN3 + XGREEN4 - GREEN = 0; 

END 

 All variables are required to be integer. The interpretation of the variables is as follows. 

XRED1 = 1 if a red peg is in position 1, otherwise 0, etc.; XGREEN4 = 1 if a green peg is in 

position 4, otherwise 0. Rows 2 through 5 enforce the requirement that exactly one peg be placed 

in each position. Rows 6 through 11 are simply accounting constraints, which count the number of 

pegs of each color. For example, RED = the number of red pegs in any position 1 through 4. The 

objective is unimportant. All variables are (implicitly) required to be nonnegative. 

 At each play of the game, the decoder can add new constraints to this IP to record the 

information gained. Any feasible solution to the current formulation is a reasonable guess for the 

next play. An interesting question is what constraints can be added at each play. 
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 To illustrate, suppose the decoder guesses the solution 

XBLUE1 = XBLUE2 = XBLUE3 = XRED4 = 1, and the coder responds with the information that 

m = 1 and m  n = 1. That is, one peg is in the correct position and, if permutations were allowed, 

at most two pegs would be in the correct position. What constraints can be added to the IP to 

incorporate the new information? 

8. The Mathematical Football League (MFL) is composed of M teams (M is even). In a season of 

2(M  1) consecutive Sundays, each team will play (2M  1) games. Each team must play each 

other team twice, once at home and once at the other team’s home stadium. Each Sunday, k games 

from the MFL are televised. We are given a matrix {vij} where vij is the viewing audience on a 

given Sunday if a game between teams i and j playing at team j’s stadium is televised. 

a) Formulate a model for generating a schedule for the MFL that maximizes the viewing 

audience over the entire season. Assume viewing audiences are additive. 

b) Are some values of k easier to accommodate than others? How? 
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9. The typical automobile has close to two dozen electric motors. However, if you examine these 

motors, you will see that only about a half dozen distinct motor types are used. For inventory and 

maintenance reasons, the automobile manufacturer would like to use as few distinct types as 

possible. For cost, quality, and weight reasons, one would like to use as many distinct motor types 

as possible, so the most appropriate motor can be applied to each application. The table below 

describes the design possibilities for a certain automobile: 

24-Month Failure Probability 

 Number 
Require

d 

Motor type 

Applicati
on 

 A B C D E 

Head 

lamps 
2 0.002 0.01  0.01 0.007 

Radiator 

fan 
2  0.01 0.002  0.004 

Wipers 2    0.007  

Seat 4 0.003   0.006 0.008 

Mirrors 2   0.004 0.001  

Heater fan 1  0.006 0.001   

Sun roof 1 0.002   0.003 0.009 

Windows 4 0.004 0.008 0.005   

Antenna 1 0.003  0.003 0.002  

 Weight 2 3 1.5 1 4 

 Cost per 

Motor 
24 20 36 28 39 

 For example, two motors are required to operate the headlamps. If type D motors are used for 

headlamps, then the estimated probability of a headlamp motor failure in two years is about 0.01. 

If no entry appears for a particular combination of motor type and application, it means the motor 

type is inappropriate for that application (e.g., because of size). 

 Formulate a solvable linear integer program for deciding which motor type to use for each 

application, so at most 3 motor types are used, the total weight of the motors used is at most 36, 

total cost of motors used is at most 585, and probability of any failure in two years is 

approximately minimized. 
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10. We have a rectangular three-dimensional container that is 30  50  50. We want to pack in it 

rectangular three-dimensional boxes of the three different sizes: (a) 5  5  10, (b) 5  10  10, 

and (c) 5  15  25. 

 A particular packing of boxes into the container is undominated if there is no other packing 

that contains at least as many of each of the three box types and strictly more of one of the box 

types. 

Show there are no more than 3101 undominated packings. 

11. Given the following: 

Checkerboard and domino 

               
              
              
              
              
              
              
              

 If two opposite corners of the checkerboard are made unavailable, prove there is no way of 

exactly covering the remaining grid with 31 dominoes. 

12. Which of the following requirements could be represented exactly with linear constraints? (You 

are allowed to use transformations if you wish.) 

(a)  (3  x + 4  y)/(2  x + 3  y)  12; 

(b) MAX (x, y) < 8; 

(c) 3  x + 4  y  y  11;     where y is 0 or 1; 

(d) ABS (10  x)  7 (Note ABS means absolute value); 

(e) MIN (x, y) < 12. 

13. A common way of controlling access in many systems, such as information systems or the 

military, is with priority levels. Each user i is assigned a clearance level Ui. Each object j is 

assigned a security level Lj. A user i does not have access to object j if the security level of j is 

higher than the clearance level of i. Given a set of users; and, for each user, a list of objects to 

which that user does not to have access; and a list of objects to which the user should have access, 

can we assign Ui’s and Lj’s, so these access rights and denials are satisfied? Formulate as an 

integer program. 
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14. One of the big consumption items in the U.S. is automotive fuel. Any petroleum distributor who 

can deliver this fuel reliably and efficiently to the hundreds of filling stations in a typical 

distribution region has a competitive advantage. This distribution problem is complicated by the 

fact that a typical customer (i.e., filling station) requires three major products: premium gasoline, 

an intermediate octane grade (e.g., “Silver”), and regular gasoline. A typical situation is described 

below. A delivery tank truck has four compartments with capacities in liters of 13,600, 11,200, 

10,800, and 4400. We would like to load the truck according to the following limits:  

 Liters of 

 Premium Intermediate Regular 

At least: 8,800 12,000 12,800 

At most: 13,200 17,200 16,400 

 Only one gasoline type can be stored per compartment in the delivery vehicle. Subject to the 

previous considerations, we would like to maximize the amount of fuel loaded on the truck. 

(a) Define the decision variables you would use in formulating this problem as an IP. 

(b) Give a formulation of this problem. 

(c) What allocation do you recommend? 

15. Most lotteries are of the form:  

Choose n numbers (e.g., n = 6) from the set of numbers {1, 2, ..., m} (e.g., m = 54). 

 You win the grand prize if you buy a ticket and choose a set of n numbers identical to the n 

numbers eventually chosen by lottery management. Smaller prizes are awarded to people who 

match k of the n numbers. For n = 6, typical values for k are 4 and 5. Consider a modest little 

lottery with m = 7, n = 3, and k = 2. How many tickets would you have to buy to guarantee 

winning a prize? Can you set this up as a grouping/covering problem? 
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16. A recent marketing phenomenon is the apparent oxymoron, “mass customization”. The basic idea 

is to allow each customer to design his/her own product, and yet do it on an efficient, high-volume 

scale. A crucial component of the process is to automate the final design step involving the 

customer. As an example, IBM and Blockbuster recently announced a plan to offer “on-demand” 

production of customized music products at retail stores. Each store would carry an electronic 

“master” for every music piece a customer might want. The physical copy for the customer would 

then be produced for the customer while they wait. This opens up all manners of opportunities for 

highly customized musical products. Each customer might provide a list of songs to be placed on 

an audiocassette. A design issue when placing songs on a two-sided medium such as a cassette is 

how to allocate songs to sides. A reasonable rule is to distribute the songs, so the playing times on 

the two sides are as close to equal as possible. For an automatic tape player, this will minimize the 

“dead time” when switching from one side to another. As an example, we mention that Willie 

Nelson has recorded the following ten songs in duets with other performers: 

Song Time 
(min:secs) 

Other 
Performer 

1) Pancho and Lefty 4:45 Merle Haggard 

2) Slow Movin Outlaw  3:35 Lacy J. Dalton 

3) Are There any More 

Real Cowboys 
3:03 Neil Young 

4) I Told a Lie to My 

Heart 
2:52 Hank Williams 

5) Texas on a Saturday 

Night 
2:42 Mel Tillis 

6) Seven Spanish Angels 3:50 Ray Charles 

7) To All the Girls I’ve 

Loved Before 
3:30 Julio Iglesias 

8) They All Went to 

Mexico 
4:45 Carlos Santana 

9) Honky Tonk Women 3:30 Leon Russell 

10) Half a Man 3:02 George Jones 

You want to collect these songs on a two-sided tape cassette album to be called “Half Nelson.”  

(a) Formulate and solve an integer program for minimizing the dead time on the shorter side.  

(b) What are some of the marketing issues of allowing the customer to decide which song 

goes on which side? 
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17. Bill Bolt is hosting a party for his daughter Lydia on the occasion of her becoming of college age. 

He has reserved a banquet room with 18 tables at the Racquet Club on Saturday night. Each table 

can accommodate at most 8 people. A total of 140 young people are coming, 76 young men and 

64 young ladies. Lydia and her mother, Jane, would like to have the sexes as evenly distributed as 

possible at the tables. They want to have at least 4 men and at least 3 women at each table. 

(a) Is it possible to have an allocation satisfying the above as well as the restriction there be 

at most 4 men at each table? 

(b) Provide a good allocation of the sexes to the tables. 

18. The game or puzzle of Clue is played with a deck of 21 cards. At the beginning of a game, three of 

the cards are randomly selected and placed face down in the center of the table. The remaining 

cards are distributed face down as evenly as possible to the players. Each player may look at his or 

her own cards. The object of the game is to correctly guess the three cards in the center. At each 

player’s turn, the player is allowed to either guess the identity of the three cards in the center or 

ask any other player a question of the form: “Do you have any of the following three cards?” (The 

asking player then publicly lists the three cards.) If the asked player has one of the three identified 

cards, then the asked player must show one of the cards to the asking player (and only to the 

asking player). Otherwise, the asked player simply responds “No”. If a player correctly guesses 

the three cards in the center, then that player wins. If a player incorrectly guesses the three cards in 

the center, the player is out of the game.  

Deductions about the identity of various cards can be made if we define: 

X (i, j) = 1 if player i has card j, else 0. 

 Arbitrarily define the three cards in the center as player 1. Thus, we can initially start with the 

constraints: 

X j
j

( , )1
1

21


  = 3. 

For each card, j = 1, 2, …, 21: 

X i j
i

( , )  = 1. 

(a) Suppose player 3 is asked: “Do you have either card 4, 8, or 17?” and player 3 responds 

“No.” What constraint can be added? 

(b) Suppose in response to your question in (a), player 3 shows you card 17. What constraint 

can be added? 

(c) What LP would you solve in order to determine whether card 4 must be one of the cards 

in the center? 

 Note, in the “implementation” of the game marketed in North America, the 21 cards are 

actually divided into three types: (i) six suspect cards with names like “Miss Scarlet,” (ii) six 

weapons cards with names like “Revolver,” and (c) nine room cards with names like “Kitchen.” 

This has essentially no effect on our analysis above. 
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Portfolio Optimization  
4.1 Introduction 
Financial portfolio models are concerned with investments where there are typically two criteria: 

expected return and risk. The investor wants the former to be high and the latter to be low. There are a 

variety of measures of risk. The most popular measure of risk has been variance in return. Even though 

there are some problems with it, we will first look at it very closely. 

4.2 The Markowitz Mean/Variance Portfolio Model 
The portfolio model introduced by Markowitz (1959) (see also Roy (1952)), assumes an investor has 

two considerations when constructing an investment portfolio: expected return and variance in return 

(i.e., risk). Variance measures the variability in realized return around the expected return, giving equal 

weight to realizations below the expected and above the expected return. The Markowitz model might 

be mildly criticized in this regard because the typical investor is probably concerned only with 

variability below the expected return, so-called downside risk.  

The Markowitz model requires two major kinds of information: (1) the estimated expected return for 

each candidate investment and (2) the covariance matrix of returns. The covariance matrix 

characterizes not only the individual variability of the return on each investment, but also how each 

investment’s return tends to move with other investments. We assume the reader is somewhat familiar 

with the concepts of variance and covariance as described in most intermediate statistics texts. 
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4.2.1 Example 
We will use some publicly available data from Markowitz (1959).  The following table shows the 

increase in price, including dividends, for three stocks over a twelve-year period: 

 Growth in 

Year S&P500 ATT GMC USX 
43 1.259 1.300 1.225 1.149 

44 1.198 1.103 1.290 1.260 

45 1.364 1.216 1.216 1.419 

46 0.919 0.954 0.728 0.922 

47 1.057 0.929 1.144 1.169 

48 1.055 1.056 1.107 0.965 

49 1.188 1.038 1.321 1.133 

50 1.317 1.089 1.305 1.732 

51 1.240 1.090 1.195 1.021 

52 1.184 1.083 1.390 1.131 

53 0.990 1.035 0.928 1.006 

54 1.526 1.176 1.715 1.908 

For reference later, we have also included the change each year in the Standard and Poor’s/S&P 500 

stock index. To illustrate, in the first year, ATT appreciated in value by 30%. In the second year, GMC 

appreciated in value by 29%.  

Computing Covariances, Variances and Standard Deviations in Excel 

Excel has the function COVAR() for computing covariances, VAR() for computing variances, 

STDEV() for computing standard deviations, and CORREL() for computing correlations.  For reasons 

of numerical accuracy, we suggest that VAR() and STDEV() not be used. Below we discuss the usage 

of these functions.  Given n observations on two random variables {Xi} and {Yi}, the population means 

are defined as the expectations: 

X =E[Xi],   and  Y = E[Yi]. 

The sample means are defined as the averages: 

xbar =i Xi /n,   and  ybar =i Yi /n. 

The population covariance between X and Y is defined as the expectation: 

 
2
XY = E[(Xi -X)(Yi - Y)]. 

With some effort it can be shown that this is algebraically equivalent to:  

 
2
XY = E[Xi Yi ] - X Y. 

When X and Y are the same random variable, 2
XX  is called the population variance. 

The population standard deviation of X is defined as the square root of  
2

XX, i.e.:  

X  =  ( 
2
XX)

0.5
. 
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 The population correlation between X and Y is defined as  

XY = ( 
2

XY)/( XY). 

The sample covariance between X and Y is defined as the average: 

s
2
XY = i [(Xi - xbar)(Yi - ybar)]/n.           (1) 

With some effort it can be shown that this is algebraically equivalent to:  

s
2
XY = i [Xi Yi]/n – xbar* ybar.  (2) 

If in fact X and Y are the same random variable, s
2
XX  is called the sample variance.  

The sample standard deviation of X is defined as the square root of s
2
XX,  i.e.:  

sX  = (s
2

XX)
0.5

. 

 The sample correlation between X and Y is defined as  

rXY  = (s 
2

XY)/( sX sY). 

Given weights wX and wY, and the definition that Z = wX X + wY Y, it can be shown that the variance of 

Z is: 

 
2
ZZ =  wX

2  
2

XX + wX wY  
2

XY + wY wX  
2

YX + wY
2  

2
YY    

  =  wX
2  

2
XX + 2wX wY 

2
XY  + wY

2  
2

YY. 

Although formulae (1) and (2) are algebraically equivalent, they are not numerically equivalent on a 

computer because of round-off error.  Formula (1) is more accurate.  In Excel, the functions VAR() 

and STDEV()  are based on formula (2),  whereas COVAR() and CORREL() are based on (1).  In 

Excel, you can expect COVAR() and CORREL() to be accurate to at least six decimal places,  whereas 

VAR() and STDEV() may have essentially no accuracy if xbar is large relative to sX.  To illustrate, 

suppose n = 2 with {X1, X2} = {123456789, 123456787}.  If you use VAR()to compute the sample 

variance, or STDEV() to compute the sample standard deviation, they will both give an answer of 0.0,  

whereas it is easy to see that the sample variance should be [(1)
2
+(-1)

2
]/2 = 1. 

One should also be interested in whether s
2
XY  is a good estimator of the unknown parameter  

2
XY.  

With a bit more algebra it can be shown that the expected value, E(s
2
XY) =  2

XY (n-1)/n. That is, s
2
XY 

underestimates  
2

XY, especially when n is small. Thus, one typically applies a n/(n-1) adjustment 

factor to s
2
XY.  VAR() and STDEV() include the adjustment factor, but COVAR() does not.  Because 

CORREL() is ratio of two estimators, the adjustment does not matter. 

So, based on the twelve years of data, we use the COVAR() function in Excel to calculate the sample 

covariances for three stocks: ATT, GMC, and USX.  Multiplying the results by 12/11 gives the 

following covariance matrix. 

 ATT GMC USX 

ATT 0.01080754 0.01240721 0.01307513 

GMC 0.01240721 0.05839170 0.05542639 

USX 0.01307513 0.05542639 0.09422681 
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From the same data, we estimate the expected return per year, including dividends, for ATT, GMC, and 

USX as 0.0890833, 0.213667, and 0.234583, respectively. 

The correlation matrix makes it more obvious how two random variables move together. The 

correlation between two random variables equals the covariance between the two variables, divided by 

the product of the standard deviations of the two random variables. For our three investments, the 

sample correlation matrix is: 

 ATT GMC USX 

ATT 1.0   

GMC 0.493895589 1.0  

USX 0.409727718 0.747229121 1.0 

The correlation can be between 1 and +1 with +1 being a high correlation between the two. Notice 

GMC and USX are highly correlated. ATT tends to move with GMC and USX, but not nearly so much 

as GMC moves with USX. 

Let the symbols ATT, GMC, and USX represent the fraction of the portfolio devoted to each of the 

three stocks. Suppose, we desire a 15% yearly return.  For the objective, we want to minimize the 

variance in the portfolio value after one year.  In algebraic notation, what we want to do is: 

Minimize  

   0.01080754*ATT*ATT + 0.01240721*ATT*GMC + 

0.01307513*ATT*USX + 0.01240721*GMC*ATT + 

0.05839170*GMC*GMC + 0.05542639*GMC*USX + 

0.01307513*USX*ATT + 0.05542639*USX*GMC + 

0.09422681*USX*USX; 

Use exactly 100% of the starting budget: 

ATT + GMC + USX = 1; 

Required wealth at end of period: 

1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX  1.15; 

Note the two constraints are effectively in the same units. The first constraint is effectively a 

“beginning inventory” constraint, while the second constraint is an “ending inventory” constraint. 

Alternatively, we could have stated the expected return constraint just as easily as: 

.0890833 * ATT + .213667 * GMC + .234583 * USX  .15 

Although perfectly correct, this latter style does not measure end-of-period state in quite the same way 

as start-of-period state. Fans of consistency may prefer the former style. 
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In preparation for writing the model in a spreadsheet, note that we can also write the objective as:  

   ATT*(.01080754 * ATT +.01240721 * GMC +.01307513 * USX) 

 + GMC*(.01240721 * ATT +.05839170 * GMC +.05542639 * USX) 

 + USX*(.01307513 * ATT +.05542639 * GMC +.09422681 * USX); 

 

 

In the spreadsheet, portfolio_basic, we calculate the expressions in parentheses in column B using the 

SUMPRODUCT() function, e.g., B8=SUMPRODUCT(E$5:G$5,E8:G8) in.  We calculate the variance 

with cell B7=WBINNERPRODUCT(B8:B11,E5:G5). The WBINNERPRODUCT() function is similar 

to SUMPRODUCT(), except that it allows you to multiply a row vector by column vector. 

WBINNERPRODUCT expects one range to be a row range and the other a column range.  

The “ABC’s of Optimization” for this spreadsheet are: 

 A) Adjustable Cells or Decision Variables, specifying how much to invest in each asset appear in  

             row 5,  cells E5:G5; 

 B) The Best or objective cell, the portfolio variance to be minimized is cell B7.  The most 

complicated computation for this model is the computation of the variance of the portfolio.  If  xi is the 

amount invested in asset i, and  
2

ij  is the covariance  between one unit of i and one unit of j, then the 

portfolio variance = ij xi *xj * 
2
ij. This can be rewritten: 
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  variance = i xi j xj * 
2

ij.   

In the spreadsheet,  Column B computes the inner summation, j xj * 
2
ij.  For example, cell B8 

contains the formula =SUMPRODUCT(E8:G8,E$5:G$5). The “$5” holds row 5 constant when the 

formula is copied down to cells B9:B10.  The final summation,  i xi j: xj * 
2
ij,  is done in cell B7.  

 C) Constraints:   There are two constraints in this model.  Cell C5, which contains 

=WB(B5,”=”,D5), says the amount invested(computed in B5) must equal the target amount to invest 

given as input in D5. Cell C6, which contains =WB(B6,”>=”,D6), says the expected return(computed 

in B6) must be greater than or equal to the target return specified in D6. 

The solution recommends about 53% of the portfolio be put in ATT, about 36% in GMC and just over 

11% in USX. The expected return is 15%, with a variance of 0.02241381 or, equivalently, a standard 

deviation of about 0.1497123. 

Using a Correlation Matrix 
We based the previous model simply on straightforward statistical data based on yearly returns. In 

practice, it may be more typical to use monthly rather than yearly data as a basis for calculating 

covariances. Also, rather than use historical data for estimating the expected return of an asset, a 

decision maker might base the expected return estimate on more current, proprietary information about 

expected future performance of the asset. One may also wish to use considerable care in estimating the 

covariances and the expected returns. For example, one could use quite recent data to estimate the standard 

deviations. A larger set of data extending further back in time might be used to estimate the correlation 

matrix. Then, using the relationship between the correlation matrix and the covariance matrix, one could 

derive a covariance matrix. The version portfolio_correl, illustrates two alternative approaches to this 

problem:  a) using the correlation matrix instead of the covariance matrix to describe how investments tend 

to move together,  and b) and stating the desired return as a growth factor, 1.15,  rather than a fraction 

return,  0.15. 

 



Chapter 4  Portfolio Optimization                                                                 109 
 

 

 

The most significant difference between this formulation and the previous one is in the computation of 

the portfolio variance.  Here we exploit the fact that the variance can be written in terms of the 

correlations and the standard deviations as: 

      variance = ij xi *xj *i*j*ij. = i xi *i j xj *j*ij. 

In row 8 we compute the term, xj *j , e.g., with formulae such as: E8=E5*E7.  In column B we 

compute the inner sum, j xj *j*ij,  with formulae such as B10=SUMPRODUCT(E10:G10,E$8:G$8).  

The outer summation is computed in cell B9 with the formula: 

B9=WBINNERPRODUCT(B10:B13,E8:H18).  Observe that the same solution is obtained.   

4.3 Dualing Objectives: Efficient Frontier and Parametric Analysis  
There is no obvious way for an investor to determine the “correct” tradeoff between risk and return. 

Thus, one is frequently interested in looking at the tradeoff between the two. If an investor wants a 

higher expected return, she generally has to “pay for it” with higher risk. In finance terminology, we 

would like to trace out the efficient frontier of return and risk. If we solve for the minimum variance 

portfolio over a range of values for the expected return, ranging from 0.0890833 to 0.234583, we get 

the following plot or tradeoff curve for our little three-asset example: 
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Figure 2.1 Efficient Frontier 
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Notice the “knee” in the curve as the required expected return increases past 1.21894. This is the point 

where ATT drops out of the portfolio. 
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4.3.1 Portfolios with a Risk-Free Asset 
When one of the investments available is risk free, then the optimal portfolio composition has a 

particularly simple form. Suppose the opportunity to invest money risk free (e.g., in government 

treasury bills) at 5% per year has just become available. Working with our previous example, we now 

have a fourth investment instrument that has zero variance and zero covariance. There is no limit on 

how much can be invested at 5%. We ask the question: How does the portfolio composition change as 

the desired rate of return changes from 15% to 5%? 

 

 

Notice that more than 34% of the portfolio was invested in the risk-free investment, the T-bill, even 

though its return rate, 5%, is less than the target of 15%. Further, the variance has dropped to about 

0.0208 from about 0.0224. 

What happens as we decrease the target return towards 5%? Clearly, at 5%, we would put zero in ATT, 

GMC, and USX. A simple form of solution would be to keep the same proportions in ATT, GMC, and 

USX, but just change the allocation between the risk-free asset and the risky ones. Let us check an 

intermediate point. When we decrease the required return to 10%, we get the following solution:  
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This solution supports our conjecture:  

As we change our required return, the relative proportions devoted to risky 

investments do not change. Only the allocation between the risk-free asset and the 

risky asset change.  

From the above solution, we observe that, except for round-off error, the amount invested in ATT, 

GMC, and USX is allocated in the same way for both solutions. Thus, two investors with different risk 

preferences would nevertheless both carry the same mix of risky stocks in their portfolio. Their 

portfolios would differ only in the proportion devoted to the risk-free asset. Our observation from the 

above example in fact holds in general. Thus, the decision of how to allocate funds among stocks, 

given the amount to be invested, can be separated from the questions of risk preference. Tobin 

received the Nobel Prize in 1981, largely for noticing the above feature, the so-called Separation 

Theorem. So, if you noticed it, you must be Nobel Prize caliber.  

4.3.2 The Sharpe Ratio 
For some portfolio p, of risky assets, excluding the risk-free asset, let: 

Rp = its expected return, 
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sp = its standard deviation in return, and 

r0 = the return of the risk-free asset. 

A plausible single measure (as opposed to the two measures, risk and return) of attractiveness of 

portfolio p is the Sharpe ratio: 

(Rp - r0) /sp . 

In words, it measures how much additional return we achieved for the additional risk we took on, 

relative to putting all our money in the risk-free asset. 

It happens the portfolio that maximizes this ratio has a certain well-defined appeal. Suppose: 

  t = our desired target return, 

wp = fraction of our wealth we place in portfolio p  

(the rest placed in the risk-free asset). 

To meet our return target, we must have: 

( 1 - wp ) * r0 + wp * Rp = t. 

The standard deviation of our total investment is: 

wp * sp. 

Solving for wp in the return constraint, we get: 

wp = ( t – r0) /( Rp – r0). 

Thus, the standard deviation of the portfolio is: 

wp * sp = [( t – r0) /( Rp – r0)] * sp. 

Minimizing the portfolio standard deviation means: 

Min [( t – r0) /( Rp – r0)] * sp 

   or 

Min [( t – r0) * sp /( Rp – r0)]. 

This is equivalent to: 

Max ( Rp – r0) /sp. 

So, regardless of our risk/return preference, the money we invest in risky assets should be invested in 

the risky portfolio that maximizes the Sharpe ratio. 

Algebraically, if the risk free rate is 5%, then what we would like to do is: 

! Maximize the Sharpe ratio; 

 MAX =  

(1.089083*ATT + 1.213667*GMC + 1.234583*USX - 1.05)/ 

 ((.01080754*ATT*ATT + .01240721*ATT*GMC + .01307513*ATT*USX 

 + .01240721*GMC*ATT + .05839170*GMC*GMC + .05542639*GMC*USX 

 + .01307513*USX*ATT + .05542639*USX*GMC + .09422681*USX*USX)^.5); 

 

! Use exactly 100% of the starting budget; 

  ATT + GMC + USX = 1; 

 

The spreadsheet portfolio_sharpe illustrates.  The crucial differences from the previous models are: a) 

There is no target return constraint,  and b) the Sharpe ratio is computed with: B5=(B9-B3)/(B10^0.5). 
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Notice the relative proportions of ATT, GMC, and USX are the same as in the previous model where 

we explicitly included a risk free asset with a return of 5%. E.g., except for round-off error: 

0.131865963/0.6504669543 = 0.086873118/0.42852693. 

 
The formulae in the spreadsheet Portfolio_Sharpe are essentially the same as in the previous except for 

the objective function in cell B5.  It is B5=(B9-B3)/(B10^0.5),  that is,  

(expected_return – risk_free_rate)/(square_root_of_portfolio_variance). 

4.4 Important Variations of the Portfolio Model 
There are several issues that may concern you when you think about applying the Markowitz model in 

its simple form: 

 a) As we increase the number of assets to consider, the size of the covariance matrix becomes 

overwhelming. For example, 1000 assets implies 1,000,000 covariance terms, or at least 500,000 if 

symmetry is exploited. 

 b) If the model were applied every time new data become available (e.g., weekly), we would 

“rebalance” the portfolio frequently, making small, possibly unimportant adjustments in the portfolio. 
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 c) There are no upper bounds on how much can be held of each asset. In practice, there might be 

legal or regulatory reasons for restricting the amount of any one asset to no more than, say, 5% of the 

total portfolio. Some portfolio managers may set the upper limit on a stock to one day’s trading 

volume for the stock. The reasoning being, if the manager wants to “unload” the stock quickly, the 

market price would be affected significantly by selling so much. 

Two approaches for simplifying the covariance structure have been proposed: the scenario approach 

and the factor approach. For the issue of portfolio “nervousness”, the incorporation of transaction costs 

is useful. 

4.4.1 Portfolios with Transaction Costs 
The models above do not tell us much about how frequently to adjust our portfolio as new information 

becomes available, e.g., new estimates of expected return and new estimates of variance. If we applied 

the above models every time new information became available, we would be constantly adjusting our 

portfolio. This might make our broker happy because of all the commission fees, but that should be a 

secondary objective at best. The important observation is that there are costs associated with buying 

and selling. There are the obvious commission costs, and the not so obvious bid-ask spread. The bid-

ask spread is effectively a transaction cost for buying and selling. 

The method we will describe assumes transaction costs are paid at the beginning of the period. It is a 

straightforward exercise to modify the model to handle the case of transaction costs paid at the end of 

the period. The major modifications to the basic portfolio model are: 

 a) We must introduce two additional variables for each asset, an “amount bought” variable  

                  and an “amount sold” variable. 

 b) The budget constraint must be modified to include money spent on commissions. 

 c) An additional constraint must be included for each asset to enforce the requirement:  

amount invested in asset i = (initial holding of i) +  

    (amount bought of i)  (amount sold of i). 

4.4.2 Example 
Suppose we have to pay a 1% transaction fee on the amount bought or sold of any stock and our 

current portfolio is 50% ATT, 35% GMC, and 15% USX. This is pretty close to the optimal mix. 

Should we incur the cost of adjusting? The following is the relevant model: 

 

 MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC +.01307513 * ATT 

* USX +.01240721 * GMC * ATT +.05839170 * GMC * GMC +.05542639 * 

GMC * USX +.01307513 * USX * ATT +.05542639 * USX * GMC +.09422681 

* USX * USX; 

 ATT + GMC + USX + .01 * ( BA + BG + BU + SA + SG + SU) = 1; 

 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX >= 1.15; 

 ATT = .50 + BA - SA; 

 GMC = .35 + BG - SG; 

 USX = .15 + BU – SU; 
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The first constraint says the total uses of funds must equal 1. Another way of interpreting this 

constraint is to subtract each of the next three constraints from it. We then get: 

.01 * (BA + BG + BU + SA + SG + SU) + BA + BG + BU=SA + SG + SU; 

It says any purchases plus transaction fees must be funded by selling. The spreadsheet model is: 

 

The solution recommends buying a little bit more ATT, neither buy nor sell any GMC, and sell a little 

USX. 

The ABC’s of this spreadsheet are: 

 A) The Adjustable cells are the Buy variables in row 5, and the Sell variables in row 6. 

 B) The “Best” or objective cell is cell B10=WBINNERPRODUCT(B11:B13,E8:G8),  

              i.e., the variance in the end of period portfolio value. 

 C) There are two constraints:   

C8 contains =WB(B8,”=”,D9), and C9 contains =WB(B8,”>=”,D9). 

The crucial formulae are: 

Row 8 computes the amount held of each asset after transactions, e.g., 
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E8=E4+E5-E6. 

Column B computes the first half of the variance calculation, e.g., 

B11=SUMPRODUCT(E11:G11,E$8:G$8). 

Cell B10 completes the variance calculation with  

B10=WBINNERPRODUCT(B11:B13,E8:G8), 

Cell B5 computes total transaction expenses from both buying and selling: 

B5=B4*SUM(E5:G6); 

Cell B8 computes the total uses of funds, i.e., transactions expense + amount in assets after 

transactions: 

B8=B5+SUM(E8:G8); 

Cell B9 computes the expected portfolio value at the end of the period: 

B9=SUMPRODUCT(E9:G9,E$8:G$8); 

4.4.3 Portfolios with Taxes 
Taxes are an unpleasant complication of investment analysis that should be considered. The effect of 

taxes on a portfolio is illustrated by the following results during one year for two similar 

“growth-and-income” portfolios from the Vanguard company. Portfolio S was managed without (Sans) 

regard to taxes. Portfolio T was managed with after-tax performance in mind: 

 Distributions Initial 

Portfolio Income Gain-from-sales Share-price Return 

S $0.41 $2.31 $19.85 33.65% 
T $0.28 $0.00 $13.44 34.68% 

The tax managed portfolio, probably just by chance, in fact had a higher before tax return. It looks 

even more attractive after taxes. If the tax rate for both dividend income and capital gains is 30%, then 

the tax paid at year end per dollar invested in portfolio S is .3  (.41 + 2.31) /19.85 = 4.1 cents; 

whereas, the tax per dollar invested in portfolio S is .3  .28/13.44 = 0.6 of a cent. 

Below is a generalization of the Markowitz model to take into account taxes. As input, it requires in 

particular:  

a) number of shares held of each kind of asset,  

b) price per share paid for each asset held, and  

c) estimated dividends per share for each kind of asset. 

The results from this model will differ from a model that does not consider taxes in that this model, 

when considering equally attractive assets, will tend to:  

 i. purchase the asset that does not pay dividends, so as to avoid the immediate tax on dividends,  

 ii. sell the asset that pays dividends, and  
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 iii. sell the asset whose purchase cost was higher, so as to avoid more tax on capital gains.  

This is all given that two assets are otherwise identical (presuming rates of return are computed 

including dividends). For completeness, this model also includes transaction costs. 

 

Notice that the solution recommends selling 2.08548 shares of USX at $26/share.  Because these 

shares were bought at 21,  this generates a capital gain of 10.4274.  This gain, however, is exactly 

cancelled out by selling 10.4274 shares of GMC at $88/share.  These shares were bought at $87, so 

this generates a capital loss of 10.4274, so the portfolio does not have to pay any capital gains tax.  

There are no constraints in the model to prevent both selling and buying a given stock or instrument.  

In fact, in some instances the model may recommend doing this so as to recognize or claim a capital 

loss.  This is called a “wash sale” and U.S. tax rules  prevent you from claiming the capital loss.  The 

general rule is that if you sell a security and also buy the same security within the 30 days before, the 

same day,  or the 30 days after the sale, then you cannot claim a capital loss from the sale.  To the 

extent that wash sales are recommended by the model, it does not accurately model U.S. tax rules.   

The ABC’s of this spreadsheet are: 

 A) The Adjustable cells are the Buy variables E11:H11, and the Sell variables in row E12:H12. 
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 B) The “Best” or objective cell is B20=WBINNERPRODUCT(B21:B24,E$13:H$13),  

  i.e., the variance in the end of period portfolio value. 

 C) The constraints are:  

C16=WB(B16,”>=”,D16) 

C19=WB(B19,”>=”,D19),  

       Cannot sell short, i.e., hold negative quantities of an asset,  cells E16:H16. 

E16=WB(12,”>=”,0), 

 The crucial formulae are: 

A10=A4*MAX(0,SUM(E14:H14), 

A12=A6*SUMPRODUCT(E12:H14) 

B16=SUMPRODUCT(E11:H11,E6:H6), 

          B19 computes the expected portfolio value at the end of the period: 

B19=SUMPRODUCT(E8:H8,E13:H13),  

          Column B computes the first half of the variance calculation, e.g., 

B21=SUMPRODUCT(E21:H21,E$13:H$13),  

         Cell B20 completes the variance calculation with  

B20=WBINNERPRODUCT(B21:B24,E13:G13), 

D16=SUMPRODUCT(E10:H10,E5:H5)+A1, 

D19=A8*SUMPRODUCT(E6:H6,E9:H9) 

          Row 12 computes the amount held of each asset after transactions, e.g., 

E12=E9+E10-E11, 

E13=E12*E6, 

E14=(E6-E4)*E11,  

4.4.4 Factors Model for Simplifying the Covariance Structure 
Sharpe (1963) introduced a substantial simplification to the modeling of the random behavior of stock 

market prices. He proposed that there is a “market factor” that has a significant effect on the movement 

of a stock. The market factor might be the Dow-Jones Industrial average, the S&P 500 average, or the 

Nikkei index. If we define: 

M  =  the market factor, 

m0  =  E(M), 

s0
2  

=  var(M), 

ei   =  random movement specific to stock i, 

si
2
  =  var(ei). 

Sharpe’s approximation assumes (where E( ) denotes expected value): 

E(ei) = 0 

E(ei ej) = 0      for i  j, 
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E(ei M) = 0. 

Then, according to the Sharpe single factor model, the return of one dollar invested in stock or asset i 

is: 

ui + bi M + ei. 

The parameters ui and bi are obtained by regression (e.g., least squares, of the return of asset i on the 

market factor). The parameter bi is known as the “beta” of the asset. Let: 

Xi = amount invested in asset i and  

define the variance in return of the portfolio as: 

var[ Xi(ui + bi M + ei)] 

 = var( Xi bi M) + var( Xi ei) 

 = ( Xi bi)
2
 so

2
 +  Xi

2
si

2
. 

Thus, our problem can be written: 

Minimize    Z
 2
 so

2
 +  Xi

2 
si

2
 

subject to 

Z   Xi bi = 0 

 Xi = 1 

 Xi ( ui + bi mo)  r. 

So, at the expense of adding one constraint and one variable, we have reduced a dense covariance 

matrix to a diagonal covariance matrix. 

In practice, perhaps a half dozen factors might be used to represent the “systematic risk”. That is, the 

return of an asset is assumed to be correlated with a number of indices or factors. Typical factors might 

be a market index such as the S&P 500, interest rates, inflation, defense spending, energy prices, gross 

national product, correlation with the business cycle, various industry indices, etc. For example, bond 

prices are very affected by interest rate movements. 

4.4.5 Example of the Factor Model 
The Factor Model represents the variance in return of an asset as the sum of the variances due to the 

asset’s movement with one or more factors, plus a factor-independent variance.  

To illustrate the factor model, we used multiple regression to regress the returns of ATT, GMC, and 

USX on the S&P 500 index for the same period.  The stocks were regressed on the factor, SP500, 

based on the formula:  Return(i) = Alpha(i) + Beta(i) * SP500 + error(i).  The results were: 

   ASSET =    ATT        GMC      USX; 

   ALPHA = .563976   -.263502  -.580959; 

   BETA  = .4407264  1.23980   1.52384; 

   SIGMA = .075817    .125070   .173930; 
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Notice the portfolio makeup is slightly different. However, the estimated variance of the portfolio is 

very close to our original portfolio. 
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The important formulae are: 

      B4=SUMPRODUCT(G5:I5,G6:I6)+F5*F7, 

      B5=SUM(G5:I5), 

      C4=WB(B4,”>=”,D4), 

      C5=(B5,”=”,D5), 

      F5=SUMPRODUCT(G5:I5,G7:I7), 

      F10=(F8*F5)^2, 

      B10=SUM(F10:I10). 

4.4.6 Scenario Model for Representing Uncertainty 
The scenario approach to modeling uncertainty assumes the possible future situations can be 

represented by a small number of “scenarios”. The smallest number used is typically three 

(e.g., “optimistic,” “most likely,” and “pessimistic”). Some of the original ideas underlying the 

scenario approach come from the approach known as stochastic programming; see Madansky (1962), 

for example. For a discussion of the scenario approach for large portfolios, see Markowitz and Perold 

(1981) and Perold (1984). For a thorough discussion of the general approach of stochastic 

programming, see Infanger (1992). Eppen, Martin, and Schrage (1988) use the scenario approach for 

capacity planning in the automobile industry. 

Let: 

 Ps  = Probability scenario s occurs, 

 uis  = return of asset i if the scenario is s, 

 Xi  = investment in asset i, 

 Ys  = deviation of actual return from the mean if the scenario is s; 

      = i Xi( uis  q Pq uiq ). 

Our problem in algebraic form is: 

 Minimize s Ps Ys
2
 

 subject to 

  Ys  i Xi(ui s  q Pq uiq) = 0 (deviation from mean of each scenario, s) 

  i Xi = 1 (budget constraint) 

  i Xi s Ps uis  r (desired return). 

If asset i has an inherent variability vi
2
, the objective generalizes to: 

Min i Xi
2 
vi

2
 + s PsYs

2
 

The key feature is that, even though this formulation has a few more constraints, the covariance matrix 

is diagonal and, thus, very sparse. 

You will generally also want to put upper limits on what fraction of the portfolio is invested in each 

asset. Otherwise, if there are no upper bounds or inherent variabilities specified, the optimization will 

tend to invest in only as many assets as there are scenarios. 
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4.4.7 Example: Scenario Model for Representing Uncertainty 
We will use the original data from Markowitz once again. We simply treat each of the 12 years as 

being a separate scenario, independent of the other 11 years. 

 

The solution should be familiar. The alert reader may have noticed the solution suggests the same 

portfolio (except for round-off error) as our original model based on the covariance matrix (based on 

the same 12 years of data as in the above scenario model). This, in fact, is a general result. In other 

words, if the covariance matrix and expected returns are calculated directly from the original data by 

the traditional statistical formulae, then the covariance model and the scenario model, based on the 

same data, will recommend exactly the same portfolio. 

The careful reader will have noticed the objective function from the scenario model (0.02056) is 

slightly less than that of the covariance model (.02241). The exceptionally perceptive reader may have 

noticed 12  0.02054597/11 is, except for round-off error, equal to 0.002241. The difference in 

objective value is a result simply of the fact that standard statistics packages tend to divide by N  1 

rather than N when computing variances and covariances, where N is the number of observations. 

Thus, a slightly more general statement is, if the covariance matrix is computed using a divisor of N 

rather than N  1, then the covariance model and the scenario model will give the same solution, 

including objective value. 
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The crucial formulae are: 

B4=D22, 

B5=SUM(E5:G5), 

B6=(SUMPRODUCT(B9:B20,B9:B20)+SUMPRODUCT(C9:C20,C9:C20))/B3, 

B9=C9-D9+$D$22, 

D9=SUMPRODUCT(E9:G9,E$5:G$5), 

D22=AVERAGE(D9:D20). 

4.5 Measures of Risk other than Variance 
The most common measure of risk is variance (or its square root, the standard deviation). This is a 

reasonable measure of risk for assets that have a symmetric distribution and are traded in a so-called 

“efficient” market. If these two features do not hold, however, variance has some drawbacks. Consider 

the four possible growth distributions in Figure 4.2. 

Investments A, B, and C are equivalent according to the variance measure because each has an 

expected growth of 1.10 (an expected return of 10%) and a variance of 0.04 (standard deviation around 

the mean of 0.20). Risk-averse investors would, however, probably not be indifferent among the three. 

Under distribution (A), you would never lose any of your original investment, and there is a 0.2 

probability of the investment growing by a factor of 1.5 (i.e., a 50% return). Distribution (C), on the 

other hand, has a 0.2 probability of an investment decreasing to 0.7 of its original value (i.e., a negative 

30% return). Risk-averse investors would tend to prefer (A) most and to prefer (C) least. This 

illustrates variance need not be a good measure of risk if the distribution of returns is not symmetric: 

Figure 4.2 Possible Growth Factor Distributions 
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Investment (D) is an inefficient investment. It is dominated by (A). Suppose the only investments 

available are (A) and (D) and our goal is to have an expected return of at least 5% (i.e., a growth factor 

of 1.05) and the lowest possible variance. The solution is to put 50% of our investment in each of (A) 

and (D). The resulting variance is 0.01 (standard deviation = 0.1). If we invested 100% in (A), the 

standard deviation would be 0.20. Nevertheless, we would prefer to invest 100% in (A). It is true the 

return is more random. However, our profits are always at least as high under every outcome. (If the 

randomness in profits is an issue, we can always give profits to a worthy educational institution when 

our profits are high to reduce the variance.) Thus, the variance objective may cause us to choose 

inefficient investments. 

In active and efficient markets such as major stock markets, you will tend not to find investments such 

as (D) because investors will realize (A) dominates (D). Thus, the market price of (D) will drop until 

its return approaches competing investments. In investment decisions regarding new physical facilities, 

however, there are no strong market forces making all investment candidates “efficient”, so the 

variance risk measure may be less appropriate in such situations. 

4.5.1 Utility Functions 
A variety of utility functions have been proposed for measuring expected risk.  If w is our wealth at the 

end of the period then the utility function U(w) measures the utility of that wealth.  Sensible utility 

functions have two features: a) they are increasing in w, or at least non-decreasing(more wealth cannot 

hurt),  and b) they are concave(each additional $ of wealth is no more valuable than the previous one, 

maybe less).  Some commonly proposed utility functions are: 

     1) Downside risk: U(w) = w – max(w-t, 0), where t is the threshold,  

     2) Log: U(w) = Log(w), sometimes called the Kelly criterion, 

     3) Quadratic: U(w) = a*w - b*w
2
,  

     4) Exponential: U(w)= -exp(-a*w), 

     5) Power: U(w) = w
(1-r)

/(1-r), 

     6) Hyperbolic: U(w) = [(1-)/]*[a*w/(1- )+b)]
 
.   

          The Hyperbolic includes the quadratic, exponential, and power utilities as special cases. 

In the next section we set what kind of anomalous situations can arise if we do not use a “sensible” 

utility function in the above sense. 

4.5.2 Maximizing the Minimum Return 
A very conservative investor might react to risk by maximizing the minimum return over scenarios. 

There are some curious implications from this. Suppose the only investments available are A and C 

above and the two scenarios are: 

Scenario Probability Payoff from A Payoff from C 

1 0.8 1.0 1.2 

2 0.2 1.5 0.7 
If we wish to maximize the minimum possible wealth, the probability of a scenario does not matter, as 

long as the probability is positive. Thus, the following LP is appropriate: 

  MAX = WMIN; 

!  Initial budget constraint; 
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               A +       C = 1; 

!  Wealth under scenario 1; 

        WMIN   <=       A + 1.2 * C > 0; 

!  Wealth under scenario 2; 

        WMIN  <= 1.5 * A + 0.7 * C > 0; 

It is not difficult to deduce that the solution is: 

Variable           Value   

    WMIN        1.100000   

       A       0.5000000   

       C       0.5000000   

Given that both investments have an expected return of 10%, it is not surprising the expected growth 

factor is 1.10. That is, a return of 10%. The possibly surprising thing is there is no risk. Regardless of 

which scenario occurs, the $1 initial investment will grow to $1.10 if 50 cents is placed in each of A 

and C. 

Now, suppose an extremely reliable friend provides us with the interesting news that, “if scenario 1 

occurs, then investment C will payoff 1.3 rather than 1.2”. This is certainly good news. The expected 

return for C has just gone up, and its downside risk has certainly not gotten worse. How should we 

react to it? We make the obvious modification in our model: 

  MAX = WMIN; 

!  Initial budget constraint; 

                       A       + C = 1; 

!  Wealth under scenario 1; 

        WMIN  <=       A + 1.3 * C ; 

!  Wealth under scenario 2; 

        WMIN  <= 1.5 * A + 0.7 * C ; 

 

and re-solve it to find: 

Variable           Value    

    WMIN        1.136364    

       A       0.5454545    

       C       0.4545455    

This is a bit curious. We have decreased our investment in C. This is as if our friend had continued on: 

“I have this very favorable news regarding stock C. Let’s sell it before the market has a chance to 

react”. Why the anomaly? The problem is we are basing our measure of goodness on a single point 

among the possible payoffs. In this case, it is the worst possible. For a further discussion of these 

issues, see Clyman (1995). 

4.5.2 Value at Risk 
In 1994, J.P. Morgan popularized the "Value at Risk" (VaR) concept with the introduction of their 

RiskMetrics™ system. To use VaR, you must specify two numbers: 1) an interval of time (e.g., one 

day) over which you are concerned about losing money, and 2) a probability threshold (e.g., 5%) 

beyond which you care about harmful outcomes. VaR is then defined as that amount of loss in one day 

that has at most a 5% probability of being exceeded. A comprehensive survey of VaR is Jorion (2001). 

Example 
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Suppose that one day from now we think that our portfolio will have appreciated in value by $12,000. 

The actual value, however, has a Normal distribution with a standard deviation of $10,000. From a 

Normal table, we can determine that a left tail probability of 5% corresponds to an outcome that is 

1.644853 standard deviations below the mean. Now: 

12000 -1.644853 * 10000 = -4448.50. 

So, we would say that the value at risk is $4448.50. 
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4.5.3 Example of VaR 
Let us apply the VAR approach to our standard example, the ATT/GMC/USC model. Suppose that our 

time interval of interest is one year and our risk tolerance is 5% and we want to minimize the value at 

risk of our portfolio. This is equivalent to maximizing that threshold, so the probability our wealth is 

below this threshold is at most .05. 

Analysis: 
A left tail probability of 5% corresponds to the probability threshold. We want to consider the point 

that is 1.64485 standard deviations below the mean. Minimizing the value at risk corresponds to 

choosing the mean and standard deviation of the portfolio, so the ( mean – 1.64485 * (standard 

deviation)) is maximized. The following model will do this: 

 

Note that, if we invested solely in ATT, the portfolio variance would be .01080754. So, the standard 

deviation would be .103959, and the VAR would be 1 - (1.089083 - 1.644853 * .103959) = .0818. 

The portfolio is efficient because it is maximizing a weighted combination of the expected return and 

(a negatively weighted) standard deviation. Thus, if there is a portfolio that has both higher expected 

return and lower standard deviation, then the above solution would not maximize the objective 

function above. 
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Note, if you use: PROB = .1988, you get essentially the original portfolio considered for the 

ATT/GMC/USX problem. 

The crucial formulae are: 

 B3==NORMSINV(B2), 

 B5=SUM(E5:G5), 

 B7=B6+B3*B8^0.5, 

 B9=SUMPRODUCT(E9:G9,E$5:G$5) 

 C5=WB(B5,"=",D5). 

4.6 Scenario Model and Minimizing Downside Risk 
Minimizing the variance in return is appropriate if either:  

 1) the actual return is Normal-distributed or  

 2) the portfolio owner has a quadratic utility function.  

In practice, it is difficult to show either condition holds. Thus, it may be of interest to use a more 

intuitive measure of risk. One such measure is the downside risk, which intuitively is the expected 

amount by which the return is less than a specified target return. The approach can be described if we 

define: 

T = user specified target threshold. When risk is disregarded, this is typically less than the 

maximum expected return and greater than the return under the worst scenario. 

 Ys = amount by which the return under scenario s falls short of target. 

        = max{0, T   Xi uis} 

The model in algebraic form is then: 

 Min  Ps Ys                             ! Minimize expected downside risk 

 subject to 

  (compute deviation below target of each scenario, s): 

  Ys  T +  Xi  uis  0 

   Xi = 1                            !  (budget constraint) 

   Xi  Ps  uis  r               !  (desired return). 

 

Notice this is just a linear program. 



130   Chapter 4  Portfolio Optimization 
 

 

4.6.1 Semi-variance and Downside Risk 
The most common alternative suggested to variance as a measure of risk is some form of downside 

risk. One such measure is semi-variance. It is essentially variance, except only deviations below the 

mean are counted as risk. The scenario model is well suited to such measures. The previous scenario 

model needs only a slight modification to convert it to a semi-variance model.  

 

 

Notice the objective value is less than half that of the variance model. We would expect it to be at most 

half, because it considers only the down (not the up) deviations. The most noticeable change in the 

portfolio is substantial funds have been moved to USX from GMC. This is not surprising if you look at 

the original data. In the years in which ATT performs poorly, USX tends to perform better than GMC. 

The formulae and constraints are essentially as with the model Portfolio_scene, except for the 

objective cell. 

The crucial formulae are: 

 B4=D22, 

 B5=SUM(E5:G5), 
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 B6=SUMPRODUCT(B9:B20,B9:B20)/B3, 

 B9=C9-D9+$D$22, 

 D9=SUMPRODUCT(E9:G9,E$5:G$5), 

 D22=AVERAGE(D9:D20). 
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4.6.2 Downside Risk and MAD 
If the threshold for determining downside risk is the mean return, then minimizing the downside risk is 

equivalent to minimizing the mean absolute deviation (MAD) about the mean. This follows easily 

because the sum of deviations (not absolute) about the mean must be zero. Thus, the sum of deviations 

above the mean equals the sum of deviations below the mean. Therefore, the sum of absolute 

deviations is always twice the sum of the deviations below the mean. Thus, minimizing the downside 

risk below the mean gives exactly the same recommendation as minimizing the sum of absolute 

deviations below the mean. Konno and Yamazaki (1991) use the MAD measure to construct portfolios 

from stocks on the Tokyo stock exchange.  

4.6.3 Scenarios Based Directly Upon a Covariance Matrix 
If only a covariance matrix is available, rather than original data, then, not surprisingly, it is 

nevertheless possible to construct scenarios that match the covariance matrix. The following example 

uses just four scenarios to represent the possible returns from the three assets: ATT, GMC, and USX. 

These scenarios have been constructed, using the methods of section 2.8.2, so they mimic behavior 

consistent with the original covariance matrix: 
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Notice the objective function value and the allocation of funds over ATT, GMC, and USX are 

essentially identical to our original portfolio example. 

The crucial formulae are: 

B4=D14 

C4=WB(B4,">=",D4) 

B5=SUM(E5:G5) 

C5=WB(B5,"=",D5) 

B6=(SUMPRODUCT(B9:B12,B9:B12)+SUMPRODUCT(C9:C12,C9:C12))/B3 

B9=C9-D9+$D$14 

D9=SUMPRODUCT(E9:G9,E$5:G$5) 

D14=AVERAGE(D9:D12) 

4.7 Hedging, Matching and Program Trading 

4.7.1 Portfolio Hedging 
Given a “benchmark” portfolio B, we say we hedge B if we construct another portfolio C such that, 

taken together, B and C have essentially the same return as B, but lower risk than B. Typically, our 

portfolio B contains certain components that cannot be removed. Thus, we want to buy some 

components negatively correlated with the existing ones. Examples are:  

a) An airline knows it will have to purchase a lot of fuel in the next three months. It would like 

to be insulated from unexpected fuel price increases.  

b) A farmer is confident his fields will yield $200,000 worth of corn in the next two months. He 

is happy with the current price for corn. Thus, would like to “lock in” the current price. 

4.7.2 Portfolio Matching, Tracking, and Program Trading 
Given a benchmark portfolio B, we say we construct a matching or tracking portfolio if we construct a 

new portfolio C that has stochastic behavior very similar to B, but excludes certain instruments in B. 

Example situations are:  

a) A portfolio manager does not wish to look bad relative to some well-known index of 

performance such as the S&P 500, but for various reasons cannot purchase certain 

instruments in the index.  

b) An arbitrageur with the ability to make fast, low-cost trades wants to exploit market 

inefficiencies (i.e., instruments mispriced by the market). If he can construct a portfolio that 

perfectly matches the future behavior of the well-defined portfolio, but costs less today, then 

he has an arbitrage profit opportunity (if he can act before this “mispricing” disappears).  

c) A retired person is concerned mainly about inflation risk. In this case, a portfolio that tracks 

inflation is desired.  

As an example of (a), a certain so-called “green” mutual fund will not include in its portfolio 

companies that derive more than 2% of their gross revenues from the sale of military weapons, own 

directly or operate nuclear power plants, or participate in business related to the nuclear fuel cycle. 

The following table, for example, compares the performance of six Vanguard portfolios with the 

indices the portfolios were designed to track; see Vanguard (1995): 



134   Chapter 4  Portfolio Optimization 
 

 

Total Return Six Months Ended June 30, 1995 

Vanguard Portfolio Comparative Index 
Portfolio Name Growth Growth Index Name 

500 Portfolio +20.1% +20.2% S&P500 

Growth Portfolio +21.1 +21.2 S&P500/BARRA 

Growth 

Value Portfolio +19.1 +19.2 S&P500/BARRA 

Value 

Extended Market Portfolio +17.1% +16.8% Wilshire 4500 Index 

SmallCap Portfolio +14.5 +14.4 Russell 2000 Index  

Total Stock Market Portfolio +19.2% +19.2% Wilshire 5000 Index  

Notice, even though there is substantial difference in the performance of the portfolios, each matches 

its benchmark index quite well. 

4.8 Methods for Constructing Benchmark Portfolios 
A variety of approaches has been used for constructing hedging and matching portfolios. For matching 

portfolios, an intuitive approach has been to generalize the Markowitz model, so the objective is to 

minimize the variance in the difference in return between the target portfolio and the tracking 

portfolio.  

A useful way to think about hedging or matching of a benchmark is to think of it as our being forced to 

include the benchmark or its negative in our portfolio. Suppose the benchmark is a simple index such 

as the S&P500. If our measure of risk is variance, then proceed as follows: 

1. Include the benchmark in the covariance matrix just like any other instrument, except do 

not include it in the budget constraint. We presume we have a budget of $1 to invest in 

the controllable, non-benchmark portion of our portfolio. 

2. To get a “matching” portfolio (e.g., one that mimics the S&P 500), set the value of the 

benchmark factor to 1. The essential effect is the off diagonal covariance terms are 

negated in the row/column of the benchmark factor. Effectively, we have shorted the 

factor. If we can get the total variance to zero, we have perfectly matched the randomness 

of the benchmark. 

3. To get a “hedging” portfolio (e.g., one as negatively correlated with the S&P 500 as 

possible), set the value of the benchmark factor to +1. Thus, we will compose the rest of 

the portfolio to counteract the effect of the factor we are stuck with having in the 

portfolio. 

One might even want to drop the budget constraint. The solution will then tell you how much to invest 

in the controllable portfolio to get the best possible hedge or match per $ of the benchmark.   
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The following model illustrates the extension of the Markowitz approach to the hedging case where we 

want to “cancel out” some benchmark. In the case of GMC, it could be that our decision maker works 

for GMC and thus has his fortunes unavoidably tied to those of GMC. He might wish to find a 

portfolio negatively correlated with GMC: 

 

Thus, our investor puts more of the portfolio in ATT than in USX (whose fortunes are more closely tied 

to those of GMC). 

     The crucial formulae are: 

B5=SUM(E5:G5), 

C5=WB(B5,"=",D5), 

B6=SUMPRODUCT(E6:G6,E5:G5), 

B7=WBINNERPRODUCT(B8:B10,E5:G5), 

B8=SUMPRODUCT(E9:G9,E$5:G$5) 

The following model illustrates the extension of the Markowitz approach to the matching case where 

we want to construct a portfolio that mimics or matches a benchmark portfolio. In this case, we want to 

match the S&P500, but limit ourselves to investing in only ATT, GMC, and USX. 
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The formulae in the matching model are the same as in the hedging model.  The only difference is in 

the data entered. 
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4.8.1 Scenario Approach to Benchmark Portfolios 
The scenario approach can be used for constructing hedging and matching portfolios in much the same 

way as the classical Markowitz model was used.  The following model tries to construct a hedge 

relative to GMC from ATT and USX. 

 

The crucial formulae are: 

B4=D22, 

C4=wb(B4,">=",D4), 

B5=SUM(E5:G5), 

C5=wb(B5,"=",D5), 

B6=(B22+C22)/B3, 

B9=C9-D9+$D$22, 

D9=SUMPRODUCT(E9:G9,E$5:G$5), 

B22=SUMPRODUCT(B9:B20,B9:B20), 

C22=SUMPRODUCT(C9:C20,C9:C20), 

D22=AVERAGE(D9:D20), 

E22=AVERAGE(E9:E20). 



138   Chapter 4  Portfolio Optimization 
 

 

The following is a scenario model for constructing a portfolio matching the S&P500: 

 

Notice that we get the same portfolio as with the Markowitz model. 

The two scenario models both used variance for the measure of risk relative to the benchmark. It is 

easy to modify them, so more asymmetric risk measures, such as downside risk, could be used. 

The formulae in this model are the same as in the previous. 
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4.8.2 Efficient Benchmark Portfolios 
We say a portfolio is on the efficient frontier if there is no other portfolio that has both higher expected 

return and lower risk. 

 Let: 

  ri  = expected return on asset i, 

  t   = an arbitrary target return for the portfolio. 

A portfolio, with weight mi on asset i, is efficient if there exists some target t for which the portfolio is 

a solution to the problem: 

Minimize risk 

subject to 

 i

n




0

mi = 1       (budget constraint) 

 
i

m




0
ri mi  t     (return target constraint). 

Portfolio managers are frequently evaluated on their performance relative to some benchmark 

portfolio. Let bi = the weight on asset i in the benchmark portfolio. If the benchmark portfolio is not on 

the efficient frontier, then an interesting question is: What are the weights of the portfolio on the 

efficient frontier that is closest to the benchmark portfolio in the sense that the risk of the efficient 

portfolio relative to the benchmark is minimized? 

There is a particularly simple answer when the measure of risk is portfolio variance, there is a risk-free 

asset, borrowing is allowed at the risk-free rate, and short sales are permitted. Let m0 = the weight on 

the risk-free asset. An elegant result, in this case, is that there is a so-called “market” portfolio with 

weights mi on asset i, such that effectively only m0 varies as the return target varies. Specifically, there 

are constants mi, for i = 1, 2, . . . , n, such that the weight on asset i is simply (1  m0)  mi. Define: 

q = 1  m0 = weight to put on the market portfolio, 

Ri = random return on asset i. 

Then the variance of any efficient portfolio relative to the benchmark portfolio can be written as: 

var( 
i

n




1
Ri[q*mi  bi]) 

=       
i

n




1

 (q*mi  bi)
2
 var (Ri) + 2 

 j 


i

 (q*mi  bi)(q*m j  bj) Cov(Ri,R j). 

Setting the derivative of this expression with respect to q equal to zero gives the result: 

q =  
i

n




1

mi *bi var (Ri) + 
 j 


i
 (mi*bj*mj*bi) Cov (Ri, R j) 

____________________________________________________________________________________________________________________________ 

i

n




1

mi
2
 var (Ri) + 2

 
 j 


i
mi mj Cov (Ri, Rj) 
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For example, if the benchmark portfolio is on the efficient frontier with weight b0 on the risk-free 

asset, then bi = (1  b0)mi and therefore q = 1  b0. Thus, a manager who is told to outperform the 

benchmark portfolio {b0, b1, . . ., bn} should perhaps, in fact, be compensated according to his 

performance relative to the efficient portfolio given by q above. 

4.9  Project Portfolios 
Some organizations use a yearly budgeting process to select which projects to pursue in the coming 

year.  Examples of projects might be: which crude oil fields to develop for a petroleum exploration 

firm,  which drugs to develop for a pharmaceutical firm, and which types of markets and technologies 

to pursue for a telecommunications firm.  Many of the ideas underlying the portfolio models 

considered thus far also apply to the project selection portfolio problem.  For example, an overall 

budget may be set at the beginning of the planning exercise for how much can be invested in new 

projects this year. The major differences distinguishing the project portfolio problem are:  a) the 

investment variables are 0/1, “go/no go” decision variables, b) it is much less obvious how one 

develops the covariance or correlation matrix describing the project and interproject risks,  and c) there 

may be logical constraints among the projects, typically of an “either-or” nature or an “if we do project 

A we must do project B” flavor. Consider the following. 

Example 
The BTT communications company has six projects it is considering for the coming year. 

Project Tech1 is a technology development project that requires an initial investment of $1.9M and has 

an expected value of $2.36M after one year.  The standard deviation in the value after one year is 

$.37M 

Project Tech2 is an alternative to Tech1. It requires an initial investment of $2.5M and has an expected 

value of $3.1M after one year.  The standard deviation in the value after one year is $.39M. 

Project Ads is an advertising campaign for a certain metropolitan area for a new kind of call handling 

service.  This service has already been introduced on a trial basis in some regions of the city. It 

requires an initial investment of $1.7M and has an expected value of $1.5M after one year.  The 

standard deviation in the value after one year is $.3M.  Note that its incremental return is negative, so 

that it does not appear worthwhile until we consider projects Regn1, Regn2, and Regn3.   

Project Regn1 is the project to install the new call handling capability into Region 1. It requires an 

initial investment of $1.5M and has an expected value of $1.64M after one year.  The standard 

deviation in the value after one year is $.39M.  Note, this expected return for Regn1 is based on the 

assumption that the major metropolitan advertising campaign, project Ads above, for the call handling 

service will be undertaken,  else project Regn1 will not be worthwhile. 

Project Regn2 is similar to Regn1, except it applies to region 2. Regn2 requires an initial investment of 

$2.1M and has an expected value of $2.35M after one year.  The standard deviation in the value after 

one year is $.5M.  This expected return for Regn2 is based on the assumption that the major 

metropolitan advertising campaign for the call handling service will be undertaken,  else project Regn2 

will not be worthwhile. 
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Project Regn3 is similar to Regn1, except it applies to region 3. Regn3 requires an initial investment of 

$1.9M and has an expected value of $2.42M after one year.  The standard deviation in the value after 

one year is $.4M.  This expected return for Regn3 is based on the assumption that the major 

metropolitan advertising campaign for the call handling service will be undertaken,  else project Regn3 

will not be worthwhile. 

BTT has available a budget of $10M to invest in these projects.  Either because of the lumpiness of the 

project, or perhaps for other reasons, we may not wish to use exactly $10M.  How should we treat any 

left over funds?  If we are borrowing the money,  then we should simply apply the borrowing rate to 

these left over funds because we avoid the interest payment.  Alternatively,  we may have other 

standard investments with fairly reliable returns in which left over funds are invested.  For BTT,  this 

“Cost of Capital” rate is 8%.  It is represented in the model as the investment “CofC”.  Suppose that 

after one year,  BTT would like its investment to have an expected return of 13%.  This means BTT 

would like the $10M budget to grow to a value $11.3 after one year. 

Which projects should be undertaken? The following spreadsheet illustrates the model and the 

suggested solution. 
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The solution suggests that we should invest in projects Tech2, Ads, Regn2, and Regn3 and leave 1.8 

million in the Cost of Capital fund.  This solution has some interesting features.  For example, the rate 

of return for Tech1 is (2.36 – 1.9)/ 1.9 = .2421, whereas the return on Tech2 is (3.1 – 2.5)/2.5 = 1.24.  

So Tech1 has a slightly higher return, and Tech1 has lower risk, .37, than Tech2, .39.  Nevertheless, 

Tech2 was chosen over the alternative Tech1.  Why?  The key is that Tech2 allows us to invest more 

money at a very good rate.  If we invested in Tech1 rather than Tech2, where would we invest the 2.5 

– 1.9 million dollars that would become available?  The obvious place would be in the CofC fund.  But 

there it only earns an incremental return of .08, vs. the .24 return it would earn in Tech2. 

The “ABC’s of Optimization” for this model are: 

    A) The adjustable cells in this model are E5:K5.  Cells E5:J5 are declared to be 0/1 or binary 

         variables,  whereas the investment of surplus funds in CofC is left as a continuous variable. 

 

    B) The “Best” or objective cell, to be minimized, is the variance computed in cell B10  

         by the formula:  =SUMPRODUCT(E9:K9,E9:K9). 

 

    C) The constraints are computed essentially by the formulae in column B,  e.g. 

            B6= SUMPRODUCT(E6:K6,$E$5:$K$5),  

            B7= SUMPRODUCT(E7:K7,$E$5:$K$5), 

            B11= SUMPRODUCT(E11:K11,$E$5:$K$5), 

4.9.1 Implementation Issues 
The above simple model requires the estimation of three data for each project: a) initial investment, b) 

expected value after one period, and c) standard deviation in value after one period.  Typically, each 

project in an organization will have a “champion” or supporter.  This person may be the best informed 

person for estimating the above data.  The “champion” of a project, however, has an incentive to try to 

get his project funded this year and worry later about justifying the project if things do not turn out 

well.  Thus, the “champion” will tend to underestimate the initial investment required, overestimate the 

expected return, and underestimate the expected risk.  Thus, you also need an auditor, referee, or 

arbitrator who can examine the submitted data and try to keep it as unbiased as possible.   

The above model approximates the risk only by a standard deviation for each project.  It does not 

include any covariance risk among projects.  Our reasoning in this regard is that it is difficult enough 

to provide an estimate of the standard deviation of a random variable for which we have no historical 

data.  One way of trying to elicit the an estimate of the standard deviation is to assume returns are 

Normal distributed,  in which case,  the probability that a return is one standard deviation below the 

expected value is about one chance in six.  Thus, one could ask someone who is knowledgeable about 

a project: “How much worse the could the value of the project be, so that there is one chance in six of 

the project doing this poorly?”.  Treat this difference as one standard deviation. 
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4.10 Problems 

1. You are considering three stocks, IBM, GM, and Georgia-Pacific (GP), for your stock portfolio. 

The covariance matrix of the yearly percentage returns on these stocks is estimated to be: 

 IBM GM GP 

IBM 10 3.5 1 

GM 3.5 4 1.5 

GP 1 1.5 9 
 Thus, if equal amounts were invested in each, the variance would be proportional to 10 + 4 + 9 + 2 

(2.5 + 1 + 1.5). The predicted yearly percentage returns for IBM, GM, and GP are 9, 6 and 5, 

respectively. Find a minimum variance portfolio of these three stocks for which the yearly return 

is at least 7, at most 80% of the portfolio is invested in IBM, and at least 10% is invested in GP. 

2. Modify your formulation of problem 1 to incorporate the fact that your current portfolio is 50% 

IBM and 50% GP. Further, transaction costs on a buy/sell transaction are 1% of the amount 

traded. 

3. The manager of an investment fund hypothesizes that three different scenarios might characterize 

the economy one year hence. These scenarios are denoted Green, Yellow and Red and subjective 

probabilities 0.7, 0.1, and 0.2 are associated with them. The manager wishes to decide how a 

model portfolio should be allocated among stocks, bonds, real estate and gold in the face of these 

possible scenarios. His estimated returns in percent per year as a function of asset and scenario are 

given in the table below: 

 Stocks Bonds Real Estate Gold 

Green 9 7 8 -2 

Yellow 1 5 10 12 

Red 10 4 -1 15 
 

 Formulate and solve the asset allocation problem of minimizing the variance in return subject to 

having an expected return of at least 6.5. 

4. Consider the ATT/GMC/USX portfolio problem discussed earlier. The desired or target rate of 

return in the solved model was 15%. 

a) Suppose we desire a 16% rate of return. Using just the solution report, what can you 

predict about the standard deviation in portfolio return of the new portfolio? 

b) We illustrated the situation where the opportunity to invest money risk-free at 5% per 

year becomes available. That is, this fourth option has zero variance and zero covariance. 

Now, suppose the risk-free rate is 4% per year rather than 5%. As before, there is no limit 

on how much can be invested at 4%. Based on only the solution report available for the 

original version of the problem (where the desired rate of return is 15% per year), discuss 

whether this new option is attractive when the desired return for the portfolio is 15%. 

c) You have $100,000 to invest. What modifications would need to be made to the original 

ATT/GMC/USX model, so the answers in the solution report would come in the 

appropriate units (e.g., no multiplying of the numbers in the solution by 100,000)? 
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d) What is the estimated standard deviation in the value of your end-of-period portfolio in 

(c) if invested as the solution recommends 
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Optimization Under 
Uncertainty, Stochastic 

Programming 
5.1 Introduction to Decision Making Under Uncertainty 
We apply the term stochastic program or scenario planning (SP) to any optimization problems (linear, 

nonlinear or mixed-integer) in which some of the model parameters are not known with certainty, and 

the uncertainty can be expressed with known probability distributions.  Applications arise in a variety 

of industries:   

 Financial portfolio planning over multiple periods for insurance and other financial 

companies, in face of uncertain prices, interest rates, and exchange rates 

 Exploration planning for petroleum companies, 

 Fuel purchasing when facing uncertain future fuel demand, 

 Fleet assignment: vehicle type to route assignment in face of uncertain route demand, 

 Electricity generator unit commitment in face of uncertain demand, 

 Hydro management and flood control in face of uncertain rainfall, 

 Optimal time to exercise for options in face of uncertain prices,     

 Capacity and Production planning in face of uncertain future demands and prices, 

 Foundry metal blending in face of uncertain input scrap qualities, 

 Product planning in face of future technology uncertainty, 

 Revenue management in the hospitality and transport industries. 

 

5.2 Formulation and Structure of an SP Problem 
In decisionmaking under uncertainty, the sequence in which information becomes available and we 

make decisions is important. We use the term stage to described the sequence pair [ 1)information 

becomes available, 2) we make a decision].  Usually, one can think of a stage as a ‘time period’, 

however there are situations where a stage may consist of several time periods. A stage: a) begins with 

one or more random events, e.g., some demands occur, and b) ends with our making one or more 

decisions, e.g., sell some excess product or order some more product. 

Multistage decision making under uncertainty involves making optimal decisions for a T-stage horizon 

before uncertain events (random parameters) are revealed while trying to protect against unfavorable 

outcomes that could be observed in the future.  
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In its most general form, a multistage decision process with T+1 stages follows an alternating sequence 

of random events and decisions.  Slightly more explicitly: 

0.1) in stage 0,  we make some initial decision, e.g., how much to order,  taking 

into account that… 

 

1.0) at the beginning of stage 1,  “Nature” takes a set of random decisions, e.g., 

how much customers want to buy, leading to realizations of all random events in 

stage 1, and… 

 

1.1) at the end of stage 1, having seen nature’s decision, as well as our previous 

decision, we make a recourse decision, e.g., sell off excess product or order even 

more, taking into account that … 

 

2.0)  at the beginning of stage 2, “Nature” takes a set of random decisions, leading 

to realizations of all random events in stage-2, and… 

 

2.1) at the end of stage 2, having seen nature’s decision, as well as our previous 

decisions, we make another recourse decision taking into account that … 

  . 

  . 

  . 

T.0) At the beginning of stage T,  “Nature” takes a random decision, leading to 

realizations of all random events in stage T, and… 

 

T.1) at the end of stage T, having seen all of nature’s T previous decisions, as well 

as all our previous decisions, we make the final recourse decision.  

 
The decision taken in stage 0 is called the initial decision, whereas decisions taken 

in succeeding stages are sometimes called recourse decisions. Recourse decisions 

are interpreted as corrective actions that are based on the actual values the random 

parameters realized so far, as well as the past decisions taken thus far. 
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All information about an SP model is stored explicitly/openly on the spreadsheet in What’sBest!. 

There are no hidden menus that need be accessed to see the details of the SP model. The essential steps 

in formulating an SP in What’sBest! are: 

   1) Write a standard deterministic model (the core model) as if  

        the random variables are variables or parameters. You can plug in specific numbers 

        in a random cell to check results. 

   2) Identify the random variables, and decision variables, 

         and their staging.  This is done using the:  

             WBSP_VAR(stage, cell_list) function for decisions variables, and 

             WBSP_RAND(stage, cell_list) function for random variables. 

    3) Provide the distributions describing the random variables. Distribution specification is stored in    

             WBSP_DIST_distn(table, cell_list) function, where distn specifies the distribution,  

        e.g., NORMAL.    

   4) Specify manner of sampling from the distributions,  (mainly the sample size).  

        This information is provided via the  

             WBSP_STSC(table); 

   5) List the variables for which we want a scenario by scenario report or a histogram: 

             WBSP_REP(cell_list)  for scenario list of values, or 

              WBSP_HIST(bins, cell) for histograms. 

 

5.3 Single Stage Decisions Under Uncertainty 
The simplest problems of decision making under uncertainty involve the case where there is but a 

single stage with randomness. 
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5.3.1 The News Vendor Problem 

 

The simplest problem of decision making under uncertainty is the News Vendor problem, i.e., we must 

decide how much to stock in anticipation of demand, before knowing exactly what the demand will be.  

Figure 5.1 illustrates how to set this up in What’sBest!. 

Figure 5.1 The Newsvendor Inventory Problem 

 

 

If you click on What’sBest! | Options… | Stochastic  

then What’sBest! will guide you through the five steps listed above for adding the stochastic features 

to the model via a dialog box such as that below: 
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Figure 5.2 Menu Steps for Setting Up an SP Model 

 

 

 

By typing Ctrl ~ you can see in Figure 5.3 the exact nature of the formulae added to represent 

SP features: 

Figure 5.3 The Formulae Setting Up an SP Model 
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When solved, we see we should stock 57 units, slightly less than the expected demand of 60, with an 

expected profit of  about 258. This is a little less than what you might have thought, e.g., (15 – 10)*60 

= 300, which you would get if demand were always exactly 60 and we stocked 60 units. Uncertainty is 

is fact costing us about $42.  What’sBest! can in fact automatically compute this number for you.  It 

appears in the WB!_Stochastic tab where it is labelled as the “Expected Value of Perfect Information” 

(EVPI). 

An interesting exercise is to think about what the distribution of profit might look like.  You might be 

surprised by the distribution in Figure 5.4. 

Figure 5.4 Histogram of Profit for Newsvendor Inventory Problem 

: 

 

We see that close to 70% of the time, our profit is in fact $285 [=57*(15-10)], corresponding to 

demand being 57 or more, but we sell only what we have on hand, 57. 
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5.3.2 Facility Location Under Uncertainty 

The next example analyzes which facilities ( e.g., plants or distribution center) we should open or keep 

in anticipation of random demands at several different demand points. The staging of events are: 

   Stage 0, we decide which of three locations, Atlanta, St. Louis, or Cincinnati should have a supply 

facility. There is a fixed cost associated with each facility. Each facility has a prescribed capacity. In 

addition to the fixed cost, there is a given profit contribution per unit shipped for each combination of 

facility and demand point. 

   Stage 1, beginning: we observe the demands at Chicago, San Antonio, NYC, and Miami. 

   Stage 1, end: We solve a transportation problem to determine how much should be shipped from 

which open facilities to satisfy demand in the most profitable fashion. 

Figure 5.5 shows the What’sBest! Formulation.The stage 0 decision variables are the 0/1 variables in 

the cells D7:D9.  The stage 1 random demands occur in cells B14:E14.  There are three possible 

demand scenarios, described in cells K15:O17.  The optimal stage 0 decision is displayed in the 

spreadsheet, namely, open only the facility in Cincinnati. 

Figure 5.5 Plant Location with Uncertain Demand 
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If you experiment with this example you will discover the follow perhaps surprising feature: The 

optimal initial decision may not be optimal for any specific scenario.  More specifically: 1) If we know 

that scenario 1 will occur, then the best thing to do is open only the facility in Atlanta.  2) If we know 

that scenario 2 will occur, then the best thing to do is open only the facility in St. Louis. 3) If we know 

that scenario 3 will occur, then the best thing to do is open the two facilities, one in Atlanta and one in 

St. Louis.  You can check the optimal decision for a particular scenario by setting the probability of 

that scenario to 1 in column O, and setting the other probabilities to 0.  We have just seen, however, if 

we do not know for sure which demand scenario will occur, then the best thing to do is open neither 

Atlanta nor St. Louis, but rather, open the facility in  Cincinnati. Loosely speaking, Cincinnati is the 

best hedge against uncertainty. Even though it is not best for any specific scenario, it is a pretty good 

second best for every scenario, and stochastic programming figures out that it is in fact best in terms of 

maximizing expected profit in the face of uncertainty. 

5.4 Multi-Stage Decisions Under Uncertainty 
    Our examples thus far have been at most two stages. In stage 0, we make a decision, and then in 

stage 1 at the beginning there is one occurrence of a random event, and then finally we make one 

recourse decision. A slightly more complicated class of problems is the set of problems in which there 

are two or more separate random stages, with an intervening set of decisions. Perhaps the simplest 

multi-stage problems of decision making under risk are “stopping “ problems, examined next. 

5.4.1 Stopping Rule and Option to Exercise Problems 
    Some sequential decision problems are of the form: a) Each period we have to make an accept or 

reject decision; b) once we accept, the “game is over”. We then have to live with that decision. Our 

next example is the simplest example of a problem known variously as a stopping problem, the college 

acceptance problem, the secretary problem, or the dating game. The general situation is as follows. 

Each period we are offered an object of known quality.  We have a choice of either a) accept the object 

and end the game, or b) reject the object and continue in the hope that a better object will become 

available in a future period. The following illustrates. Each period we will see either a 2, a 7, or a 10, 

where 10 is the best possible, and 2 is the worst. It is clear that once we see a 10, we might as well 

accept.  We can never do better.  If we see a 2, we should never accept unless it is the last period. 

Whether we should accept or reject a 7 in intermediate periods is at the moment a puzzle,  depending 

upon the probabilities of the various outcomes. There are four periods, i.e., we have 4 chances. The 

completely deterministic “core”  model is quite simple, namely: 

      Maximize v1y1 + v2y2 + v3y3+ v4y4; 

          subject to: 

                       y1 + y2 + y3+ y4 ≤ 1; 

                         yj = 0 or 1, for j = 1, 2, 3, 4; 
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The complication is that we do not know the yj in advance. In particular, we must choose the value for 

yj immediately after seeing vj, without knowing the future vj ‘s. If we follow the simple rule of 

accepting the first candidate, i.e., setting = 1, then the expected value of the objective function is 

(2+7+10)/3 = 6.3333.  To check our understanding, we might ask ourselves several questions. How 

much better than 6.3333 can we do by being more thoughtful?  What will the optimal policy look like?  

We can deduce certain features of it, such as: 1) If we see a 10, then accept it immediately. We can do 

no better; 2) If we see a 2, reject it, except if it is the last period, then accept. The big question is what 

to do when we see a 7 in any period before the last. The model formulated in What’sBest! appears be 

Figure 5.6. 

Figure 5.6 A Simple “Choose When to Stop” Problem 

 

When solved, if we look on the WB! Status tab, we see that the expected objective value is 9.012346, 

quit a bit better than the 5.333333 we would get by taking the first offer.  With regard to the policy, in 

particular, what to do when we are offered a “7”, we can look at the WB!_Stochastic tab below.  
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Figure 5.7 Deducing Optimal Policy for Deciding When to Stop 

 

 

 Notice from the highlighted row, for the given probabilities,  if we see a 7 in stage 1 or 2, we do not 

accept (0) it, however, when we see a 7 in stage 3, whe accept (1). 

 

5.4.2. An Option Exercise Stopping Problem  

In financial markets it is frequently possible to buy options to buy or sell some financial instrument at 

an agreed upon “strike” price. This is a type of stopping problem. Once we have exercised the option, 

the game is over. The option exercise problem differs from our previous stopping problem example 

only in the manner in which the random variables, in this case the price of the financial instrument, is 

determined. In this particular example we will have five periods/stages/decision points, so the core 

model is similar to before: 

          Maximize v1y1 + v2y2 + v3y3+ v3y3 +v5y5; 

          subject to: 

                       y1 + y2 + y3+ y4 + y5 ≤ 1; 

                         yj = 0 or 1, for j = 1, 2, 3, 4, 5; 

The difference is the manner in which the vj are determined. In this particular example, we assume that 

with equal probability the financial instrument, say a stock, changes each period by either 1) increasing 

by 6%, or 2) increases, by 1%, or 3) decreases by 4%.  Further, we have to pay for the option up front, 

however, if and when we exercise the option, we get paid ( difference between the strike price minus 

the then current price) only later at the point of exercise.  Therefore, we want to discount the future 

cash inflow back to the point in time that we purchase the option.  Figure 5.8 shows the setup in 

What’sBest!. 

 

 



Chapter 5  Decisionmaking Under Uncertainty, Stochastic Programming   155 
 

 

 

Figure 5.8 Deciding When to Exercise a Put Option 

 

When solved, from the WB! Status tab, we see that the expected value of the objective is 1.669324.  

This means, that we would be we  be willing to pay up to about 1.67 for this option. One of the 

attractive features of using stochastic programming is that you get to see the distribution of the profit. 

If we look on the WB!_Histogram tab, we see the histogram in Figure 5.9. The interesting message 

from this histogram is that even though the expected profit contribution from exercising the option is 

about 1.67, we should expect a profit contribution of zero about 70% of the time.  

With regard the policy of when to sell, recall that the strike price was 99, so we would never sell if the 

price > 99.  From looking at the WB_Stochastic tab in Figure 5.10, we see that the policy is: 

                       Sell at Strike Price  

               Stage    if Market Price ≤ 

                  1        never 

                  2        92.16 

                  3        93.08 

                  4        94.01 

                  5        99. 
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Figure 5.9 Histogram of Value of the Put Option 

                               

 

Figure 5.10 Observing When to Exercise the Option 
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5.5 Multi-stage Portfolio Choice, Meeting a Future Wealth Target 
    Our next example is different from the previous in at least three ways: 1) It is a multistage problem, 

and 2) the distribution involves two jointly distribute variables, rather than one, and 3) the distribution 

is an empirical discrete distribution rather than a standard distribution such as the Normal or Poisson. 

The decision problem is as follows.  We have an initial wealth of 55,000.  Initially we can invest this 

wealth into some combination of stocks and bonds. There will be some random return on these 

investments and we will have two more opportunities to reallocate our investment.  At the end, we 

would like to have 80,000 available to provide for the college education of our child, who will be 

ready for college at that time.  If we have more than 80,000 at the end, that will be fine.  If we have 

less than 80,000, we will feel really bad, in fact we can quantify our disappointment by assessing a 

utility penalty of 4 for every unit by which we fall short of our target of 80,000. The details are 

specified in Figure 5.11 in What’sBest!. 

Figure 5.11 A Multi-period Portfolio Allocation Problem 

 

 

Notice in particular how we specify the staging or sequencing of random variables in column K and 

the decision variables in column M.  The details of the formulae appear in Figure 5.12. 
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Figure 5.12 Multiperiod Portfolio Allocation Formulae 

 

Notice that the formulae in column K specify that the three scenarios on investment returns (columns 

B and C) are observed at the beginning of stages 1, 2, and 3. In contrast, column M specifies that our 

three decisions regarding allocation between stocks and bonds occur at the ends of periods 0, 1, and 2. 

Cell K21 asks for a scenario by scenario on report investent outcomes and our investment policy. This 

information is placed on the WB!_Stochastic tab.  It is interesting to observe the possibly surprising 

recommended investment policy below: 

 

Model!D12  Model!G12     Model!H12    Model!D14  Model!D16  Model!D17  Model!D18 

WEALTH2    STOCKINVEST2  BONDINVEST2  WEALTH3    UNDERGOAL  OVERGOAL   NETUTILITY 

STAGE 2    STAGE 2       STAGE 2      STAGE 3    STAGE 3    STAGE 3    STAGE 3 

             

 71.428571   0            71.428571    81.428571   0          1.428571   1.428571 

 71.428571   0            71.428571    80          0          0          0 

 83.839905  83.839905      0          104.799881   0         24.799881  24.799881 

 83.839905  83.839905      0           88.870299   0          8.870299   8.870299 

 64         64             0           80          0          0          0 

 64         64             0           67.84      12.16       0        -48.64 

 71.428571   0            71.428571    81.428571   0          1.428571   1.428571 

 71.428571   0            71.428571    80          0          0          0 
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Notice the recommended policy, specifically: 

   if our wealth at the end of stage 2 is either quite low, i.e., 64, or quite high, i.e., 83.839905 

        then we should invest everything in stocks, whereas, 

  if our wealth at the end of stage 2 is intermediate, i.e. 71.428571 

        then we should invest everything in bonds. 

Why this schizophrenic behaviour?  It is because of our utility function.  If you look closely at the 

possible returns from stocks and bonds, we see that if our wealth is 64 at the end of stage 2, then 

regardless of which scenario occurs, we will not reach our target, so we might as well maximize 

expected returns by putting everything in stocks.  Similarly, if our wealth is already 83.839905, then 

we have already achieved our goal, so we might as well put everything in the investment with higher 

expected return. Now if our wealth at the end of stage 2 is 71.428571, then we can be sure of reaching 

our goal only if we put everything in the less variable investment, bonds. 

 

Looking at the histogram tab in Figure 5.13, we see that 87% of the time we reach our goal of 80,000. 

Figure 5.13 Histogram of Terminal Wealth 
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5.6 Correlated and Dependent Random Variables 

    In the real world, if we have several random variables, they tend to be correlated, or more generally, 

dependent. If we have good information about this correlation, then we would like to use this 

correlation information in our analysis. What’sBest! allows several ways of describing dependence 

among random variables. One of the easiest ways is with a correlation matrix. Figure 5.14 gives an 

example of a inventory/capacity planning problem in which the demands for products are correlated. 

We want to stock inventory for three styles of ski parkas: Anita, Daphne, and Electra. An interesting 

and useful complicating feature is that we can set aside a limited amount of “quick response” generic 

capacity that can be used to satisfy any of the three products.  The example here is a variation on one 

we studied earlier. The correlation matrix appears in the range J15:L17 of the Figure 5.14. The random 

demands appear in cells B23:D23.  We can connect a correlation matrix to a set of random variables 

by clicking on 

     What’sBest! | Options | Stochastic Solver | Distribution | WBSP_CORR_PEARSON. 

Notice that cell I14 contains the formula WBSP_CORR_PEARSON(J15:L17, B23:D23). This says 

that the correlation matrix is in J15:L17 and it applies to the random variables in cells B23:D23. 

   Before seeing the solution, it is interesting to conjecture how the correlation in demands will affect 

the optimal stocking levels for the three products. Some features to note: 

   The products are identical with respect to cost, profit contribution, and mean and standard deviation 

in demand. The only differences are in the correlation.  

Figure 5.14 Capacity Planning with Correlated Demands 
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Anita and Daphne are highly positively correlated, while Electra is highly negatively correlated with 

both Anita and Daphne, i.e., when Anita and Daphne have high demand, then Electra will tend to have 

low demand. Summarizing the sequence of events: 

    In stage 0, we decide how much dedicated production/inventory to build for each  

           product and how much quick response generic backup production to contract.   

    In stage 1, we see the demands, and then satisfy as much of each product demand  

          from its dedicated inventory.  Any remaining unsatisfied demand is satisfied as 

          much as possible from generic backup available. 

 

For each product, it is more profitable, 160-90 = 70, to serve the product from dedicated production 

rather than from generic production, 60-10 = 50. So if demand were deterministic, Generic backup 

would not be used. Some interesting questions are: 

a) How much of the less profitable but more flexible generic backup capacity should we commit 

to in order to compensate for uncertainty? 

b) How will the correlation in demands affect our stocking policies? Will the positive correlation 

in demands for Anita and Daphne cause us to stock more? 

 

When we optimize the model, we get the solution: 
       Production option   Amount to stock or commit 

          Anita                   338 

          Daphne                  338 

          Electra                 327 

          Generic backup          169 

 

The total expected profit is about  74,062.  Intuitively, we do not stock as much of Electra because 

when Electra demand is high, demand for Anita and Daphne will be low, so the Generic backup 

capability that we purchased can be used to satisfy Electra demand.  We have to protect ourselves with 

more initial inventory for Anita and Daphne because when demand of one of them is high, the demand 

for the other will also be high. An interesting exercise is to look at the value of the generic backup, 

e.g., set the generic backup upper limit to closer to zero, from its given value of 300. 

    What’sBest! provides three different types of correlation, Pearson, Spearman rank, and Kendall 

rank. The most commonly used type of correlation, e.g., as taught in an introductory statistics course, 

is Pearson correlation.  It is appropriate if the random variables of interest have a Normal distribution. 

For non-Normal random variables, the Spearman or Kendall rank correlation measures tend to be more 

appropriate. 
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5.7 Accuracy of Results and Random Number Generation 

    In many of the applications of SP, we sample from a distribution. When sampling is involved, a 

natural question is then how much confidence should we have in the results?  We discuss two things in 

this regard: 1) what can be done to reduce the variability of the results, and 2) How can we compute 

confidence intervals on the results?  We will first give some details about how random numbers are 

generated in What’sBest! when we are sampling from a univariate distribution.  What’sBest! uses the 

inverse transform method for generating random variables from a specific distribution such as the 

normal. This method is best explained graphically. For every distribution, What’sBest! “knows” the 

formula for the cumulative distribution function (cdf), or at least has a highly accurate approximation, 

e.g., 8 to 14 decimal digits.  Graphically the distribution looks qualitatively as in Figure 5.15. 

                                                

Figure 5.15 CDF of a Distribution and Inverse Transform Method 

 

 

 

 

 

 

 

 

 
For any value of x, the cdf, F(x), gives the probability that the random variable is less than or 

equal to x for the associated distribution.  Remember that probability is a number between 0 

and 1. The inverse transform method “inverts” the function F(x), call it F
-1

(u),  so as to “run it 

backwards”.  In the graph, we input a number between 0 and 1 on the vertical axis and get a 

corresponding horizontal axis. We do not prove it here, but it is somewhat intuitive that if the 

number U is chosen randomly from a uniform distribution, then the corresponding  x = F
-1

(u), 

follows the distribution described by F( ). 

    1.0 

 

F(x) 

 

       U 

 

 

    0.0 
                      x 
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5.7.1 Latin Hypercube Sampling for Variance Reduction 
    By default,  What’sBest! uses a form of sampling called Latin Hypercube Sampling (LHS). The 

basic idea is that if we need N samples from a distribution, we partition the distribution into N 

equiprobable intervals and choose one sample randomly from each interval. This is easy to do if  

Inverse Transform Method is used.  To illustrate, we asked What’sBest! to generate 10 random 

demands from a uniform distribution over the continuous interval (0, 10). The ten numbers generated 

were:   

          0.02773 
    7.89123 

    5.54321 

    3.76877 

    4.30992 

    2.79945 

    9.41034  

    8.37275    

    1.33699  

    6.72890 
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Notice there is one lead digit = 0, one lead digit = 1, . . ., and one lead digit  = 9. A key features are 

that every interval is represented, but also every number in the interval (0, 10) has the same probability 

of being chosen/generated. This is sufficient to argue that using LHS does not introduce any bias.  

The effect of using LHS can be illustrated graphically. We generated 100 draws from a normal 

distribution with mean 100 and standard deviation 10. When we used simple random sampling we got 

the top histogram in Figure 5.16. 

 

Figure 5.16 Random Sampling vs. Latin Hypercube Sampling 

                      

  

                       

When we used LHS, in the bottom of Figure 5.16, we get a histogram that looks closer to a normal 

distribution. 
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There is an optimistic “optimization” bias of the order of  (n-1)/n  in the objective function value from 

simple SP.  The bias arises when one uses sampling because the optimization will choose the policy 

that does best for the chosen finite sample. If one chose the policy that is optimal for an infinite 

sample, that globally optimal policy cannot do better for the finite sample than the policy that is 

optimal for the finite sample. Using LHS tends to reduce this bias, as well as the variance of the 

estimate. We give two examples taken from Yang(2004). 

                            Simple random sampling            LHS 

  Problem                       Mean  S.  Error          Mean    S. Error 

  1) One product Newsvendor. 

     Scenarios = 1000,  

     Replications = 100. 

     Minimize cost,              5546.7    28.83          5547.2      9.86            

     

  2) Multi-product inventory
      

 

   and with substitution.  

     Scenarios = 256,  

     Replications = 100. 

           Maximize profit,                    189902     3162           189173       1275              

 

Notice that in both cases, using LHS resulted in substantially lower standard error, that is, the variance 

among the 100 replications was substantially lower. Also, the bias is apparently less with LHS. In case 

1, where we are minimizing cost, simple random sampling has a lower average cost over the 100 

replications, probably because of this bias.  In case 2, where we are maximizing profit, simple random 

sampling has a higher average profit over the 100 replications, probably because of this bias. 

 

5.7.1 Computing Approximate Confidence Intervals for SP 

    How confident should we be statistically, of the results of an SP optimization?  We will give a 

simple method for computing an approximate confidence interval on the expected profit from an SP 

analysis. We will argue that we expect the approximation to be of higher quality if LHS is use. There 

are (at least) two effects to think about:e 1) There is an optimistic bias of the order of  (n-1)/n  in the           

objective function value from an SP optimization, because the optimization chooses the policy best for 

the sample chosen, and  2) If we use Latin Hypercube sampling,  then the samples or scenarios tend to 

be negatively correlated, rather than independent. This is because a random outcome far below the 

median will be compensated by an observation far above. Thus, an estimate of standard deviation 

among the samples based on the assumption of independence is wrong. We illustrate these effects with 

a simple analysis of a Newsvendor inventory problem with the following parameters: 

 1000 = Mean demand for the one period; 

    300 = Standard deviation in demand; 

    140 = Revenue/unit sold; 

      60 =  Cost/unit purchased; 

        0 = Penalty/unit unsatisfied demand; 

      40 = Holding cost/unit left in inventory; 

     15 = Number of scenarios sampled in the SP optimization.  
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              The 15 was chosen for illustrative purposes only, not as  a recommended sample size;     

We repeated or replicated the above  15-sample SP 1000 times.  For each replication we computed   

  a) the observed average profit, xbar; 

  b) the traditional “unbiased” estimate of the population standard deviation by  

          [Σi (xi - xbar)
2
/(n-1)]

0.5
 ,   and,  

  c) a 90%  coverage interval for xbar, estimating the standard deviation of xbar by  

          s
 
= [Σi (xi - xbar)

2
/(n(n-1))]

0.5
.   

For the simple Newsvendor inventory problem, the true expected profit can be computed analytically. 

For each replication we recorded whether the computed confidence interval in fact covered the true 

expected profit of $71,601.  Results for the 1000 replications are shown below. 

      Sampling                 Mean                  Mean sample              Actual 90%  confidence              

        method                   profit              standard deviation           interval coverage            

     Random                   $72,127                   $25,945                                .898                       

      LHS                        $71,595                   $26,761                              1.000                  

     True/Analytical       $71,601 

Some things to note:   

  1) Because of the modest number of scenarios, n = 15, SP with simple random sampling seriously 

overestimates the expected profit by $526.  SP with LHS actually, by chance, slightly underestimates, 

by $6,  the true expected profit.  

  2) The sample standard deviation under LHS is substantially less of an underestimate of the 

(unknown) population standard deviation in profit than is that under simple random sampling.   

 3) The confidence intervals computed under simple random sampling do not quite achieve the desired 

90% coverage,  perhaps because the intervals are not correctly centered because of the optimistic bias 

in xbar.  

 4) The confidence intervals from SP with LHS are extremely conservative, and in fact achieve 100% 

coverage. 

5.8 The Cost of Uncertainty 

    In making the decision to use SP for a particular application, you may want to ask how much 

uncertainty is costing you with regard to this application. We will describe two simple values for 

measuring the cost of uncertainty:  

      1)  EVPI  (Expected Value of Perfect Information) 

                = Expected increase in profit if we had a perfect forecast, and 

      2) EVMU (Expected Value of Modeling Uncertainty) 

                = Expected decrease in profit if we act as if each random variable is a constant,  
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                    typically its mean, instead of taking into account the randomness. 

What’sBest! can provide the above two numbers for any SP problem (Click on:                     

What’sBest! | Options… | Stochastic Solver… | Reports | Expected Value of Perfect Information).      

In order to make clear what is meant by perfect forecasts, let us stress the distinction between 

variability and uncertainty. Suppose the appropriate random variable to think about is rain tomorrow.  

The amount of rain tomorrow is variable. If we do not have perfect forecasts, then the amount of rain 

tomorrow is a random variable. A perfect forecast does not remove the variability. It removes only the 

uncertainty about the variability.  In the stochastic programming literature, EVMU is sometimes also 

known as the Value of Stochastic Solution (VSS). 

We will illustrate with a capacity planning/multi-product inventory problem, customized to a 

simplified model of an apparel retailer. 

Example: Multi-product Inventory with Repositioning 

This is example is a very simplified illustration of an inventory management approach used by some 

apparel retailers. The general sequence of events is: 

    Stage 0) Before the selling season starts 

                 the retailer commits inventory to a number of locations and/or  products. 

    Stage 1, beginning) Demands at the various locations or products is observed. 

    Stage 1, end) Product can be repositioned to some extent, at some additional cost, among the various  

                 locations/products, generally moving inventory to the locations/products with higher than  

                 expected demand. 

   This is a very crude simplified representation of an inventory allocation system with reallocation 

used at the clothing retailers Sport Obermeyer, see Fisher and Raman(1996) and at the Spanish firm 

Zara, see Caro and Gallien (2010). Our example below is closer to that of Sport Obermeyer, where the 

secondary reallocation is over products, whereas at Zara, the reallocation is over locations. In the 

example below, in stage 0 we need to decide what initial quantities should be produced to inventory of 

three types of parkas, the “Anita”, “Daphne”, and “Electra”.  After this initial production run, we 

observe the demands for the three parkas. In our example, there are four possible scenarios with 

associated probabilities. Once we see the demands, we have access to a fast backup production facility 

of limited capacity that can produce any of the three products. Although this backup facility is fast, it is 

also very expensive per unit produced, and it has limited capacity, so if we had perfectly accurate 

forecasts, we would not use the backup facility.  We would produce just the right amount of each 

product from the outset.  In the real world where perfect forecasts are the exception, the main question 

is: How much should we produce of each product initially, taking into account that we can use the 

somewhat expensive backup facility to partially compensate for our forecast errors. 
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Figure 5.17 An Inventory/Production Repositioning Problem 

 

 

 The key features of the spreadsheet are: 

    Cell I6 declares that the capacity/initial inventory decisions in C7:C10 must be made first. 

    Cell I7 tells What’sBest! that next the demands for the three products are observed in B23:B25,  

    Cell I8 declares that finally the allocation of inventory/capacity to product is done in B17:D20. 

    Cell I10 tells What’sBest! that the possible scenarios are described in J13:M16. 

Notice in the profit contribution table: B26:D29, that Anita capacity/inventory can be used profitably 

only to satisfy Anita demand. Similarly for Daphne and Electra.  Generic backup capacity can be used 

to satisy any demand, though not nearly as profitably as specifically committed inventory. 

 The spreadsheet shows the optimal stage 0 decision in cells C7:C10, namely, our initial production 

quantities should be Anita = 320, Daphne = 370, and Electra = 433. These happen to be the demands 

found in scenario 2. Looking at the WB!_Stochastic tab, we see expected values below, in particular, 

the expected profit is 90207.00. 

      Expected Value (EV)                            90207.00 

   Expected Value of Wait-and-See (EVWS)         94371.50 

   Expected Value using Expected Value Policy (EVEVP)   87823.30 

   Expected Value of Perfect Information (=|EVWS-EV|)   4164.50 

   Expected Value of Modeling Uncertainty (=|EV-EVEVP|)  2383.70 
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Now let us explain the other expected values. The Wait-and-See value is based on the situation where 

we know in advance which scenario will occur.  This would occur if we had perfect forecasts. If we 

knew demand in advance, we would simply set initial inventory of each product to demand, and not 

use any generic backup. The computations to arrive at the amount, 94371.00 are shown below.  

                  Profit if demand 

   Scenario       known in advance    Probability 

      1              88,000             0.2 

      2              90,375             0.3 

      3              94,610             0.4 

      4             118,150             0.1 

Expected profit under Wait-and-See   94,371.50 (=88000*0.2 + … +118150*0.1). 

Thus the Expected Value of Perfect Information (EVPI) = 94,371.50 – 90207 = 4164.50.  The EVPI 

gives an upper bound on the value of better forecasts. 

Now let us look at how EVMU is computed. Historically, many firms used single number forecasts, 

without giving any official comment about the uncertainty in this single number. The most obvious 

single number to use is expected demand. That is the default method that What’sBest! uses in 

computing EVMU. So EVMU measures how much worse you would do by acting as if all random 

variables are in fact single numbers equal to the expectation of the random variables. 

The computation of EVMU are tabulated below. For example the expected demand for Anita parkas is 

300*0.2+320*0.3+333*0.4+500*0.1 = 339.2. 

             Cost/unit  Expected    Capacity 

Product to install demand      installed 

Anita            80   339.2   339.2 

Daphne      90   376.2   376.2 

Electra      65   454.9   454.9 

Generic backup 5     0           0 

  

 Contemplated profit under mean demand       = 94,371.50 

 Actual expected profit of mean based policy = 87,823.30 

If you act as if all random variables will always take on their mean value, then for this problem we 

would think we would make a profit of 94,371.50. That number is misleading, however, because under 

the mean based policy when the demands are uncertain, the expected profit is in fact only 87,823.30. 

This can be seen by setting the initial inventories/capacities in cells C3:C6 to 339.2, 376.2, 454.9, and 

0, fixing them at those values and then solving the restricted SP.  Thus, we see that the expected value 

of using SP, rather than acting as if the demands were constants equal to their means, is 90207 – 

87823.30 = 2383.70. It may be useful to think of the EVMU and EVPI in terms of the little line graph 

below. 
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                     Expected Profit   

             EVMU                       EVPI 

    |---------------------|--------------------------------------|    

  87823.30               90207.00                                  94371.50 

  Disregard             Use SP                              Perfect 

  uncertainty                                              forecasts 

 

Details and Complications with EVMU and EVPI 

The default in What’sBest! is to use the mean when computing EVMU. There are some unusual 

distributions, such as the Cauchy, for which the mean does not exist.  Also, for discrete random 

variables, such as the binomial, the mean may be a fraction, even though the random variable always 

takes on an integer value, so there might be some complications in the model as a result.     

Another fine point is that for continuous distributions such as the normal, What’sBest! uses sampling. 

EVPI and EVMU are computed based on this sample, rather than on the true population, which would 

correspond to an infinite number of scenarios. In these cases, the values for EVPI and EVMU reported 

are estimates rather than true values.  
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