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    A popular supply chain design model is the single period, three level,  Plant-to-
Distribution center-to-Retailer model introduced by Geoffrion and Graves(1974) in their 
study of the Hunt-Wesson Foods distribution system.  Early versions of these models 
were mainly concerned with tradeoffs between:  a) increased fixed costs if you have more 
distribution centers(DC’s) and  b) increased outbound(DC to retailer) transportation costs 
if you have fewer DC’s.  
 

Figure 1.  Generic 3-Level Distribution System 
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 Little attention has been given to the effect of system design on the amount of inventory 
in the system.  Here we try to model the effect of distribution system design on inventory 
in the system in a one period supply chain model.  For small supply chains one can use a 
multiperiod model and explicitly track the flow of material through the system and 
compute inventory costs directly each period,  see for example, the model used by 
Arntzen, Brown, Harrison, and Trafton(1995) for a computer manufacturer.  In a one 
period model,  however, one must estimate what the average inventory level is in each 
portion of the system.  For an example of a comprehensive one period supply chain 
model,  see the model LINDO_SCM_PlannerI.lng available in the Applications Library 
at http://www.lindo.com. 
 
 
 



We consider the impact of system design on six types of inventory: 
1) Pipeline inventory in transit from plant to distribution center(DC), 
2) Cycle inventory at a DC, i.e., inventory resulting from the fact that deliveries to the 

DC tend to be in big lumps, like railcar lots, while withdrawals from the DC are in 
smaller lumps spread out over time. 

3) Safety stock at a DC to protect against long lead time from the plant and random 
demand from retailers served by the DC, 

4) Pipeline inventory in transit from DC to retailer, 
5) Cycle inventory at a retailer, 
6) Safety stock at a retailer to protect against long lead time from the DC and random 

demand seen by the retailer. 
 
We will consider a very simple one product version of the 3-level model as follows. 
Decision variables: 
     xij = tons per month shipped from plant i to DC j,  
     yj  = 1 if a DC is located at j, else 0, 
     wjk = tons per month shipped from DC j  to retailer k, 
 
Parameters: 
    tij = transportation cost/unit from location i to location j.  Variable costs at a facility  
            may also be incorporated in this coefficient, 
    Si = supply available at plant i per month, 
    Fj = fixed cost/month of having a DC at location j,  
    Uj = upper limit on throughput/month at DC location j, 
    Dk = demand at retailer k per month, 
    Lij = lead time from facility i to facility j. 
 
 
  The model is: 
                        Min ΣiΣj tij xij + Σj Fj yj  + ΣjΣk tjk wjk 
 
                        Supply constraints at each plant i: 
                             Σj xij ≤ Si; 
 
                        Flow balance at each DC j: 
                             Σi xij = Σk wjk; 
 
                        Force DC k  open: 
                                Σi xij ≤ Uj yj 
 
                        Demand constraints at each customer k: 
                               Σj wjk = Dk ; 
                          
                         For each DC k: 
                                yj = 0 or 1; 
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Common complications to this model are a) multiple products,  b) multiple transportation 
modes, c) single sourcing constraints on retailers, and d) supply chain length constraints 
on the total lead time from plant through DC to retailer.  The inventory approximations 
below are easy to generalize to these complications. 
 
 
Plant-to-DC Pipeline Inventory 
   The total Plant-to-DC pipeline inventory is   
     ΣiΣj Lij xij; 
 
If DC’s are scattered uniformly over the market region, then we might expect the total 
pipeline inventory from plants to DC’s to be relatively independent of the system design.  
See Geoffrion(1976) for some of the arguments.  Thus, as a first approximation, we 
might be justified in disregarding plant-to-DC pipeline inventory.  Given its simple form, 
however, it is not very painful to include it,  and it would steer solutions towards ones 
that have DC’s uniformly distributed over the market region. 
 
Cycle Inventory at a DC 
   As the volume through a DC increases,  we might expect that the average cycle 
inventory should increase less than proportionately with the volume.  If the economic 
order quantity(EOQ) model is applicable,  then the cycle inventory at a DC should be 
proportional to the square root of the volume through the DC.  For example, if the 
volume through a DC is increased by a factor of 4,  the EOQ model says we will meet 
this volume by ordering twice as much per order,  and ordering twice as frequently.  
Thus,  the average cycle inventory doubles. 
 
    Standard supply chain planning models like to use linear approximations to various 
costs.  That is,  we would like to approximate cycle inventory a DC j by a function of the 
form  aj yj + bjΣi xij .   Suppose we know that the cycle inventory at DC j is about 25,000 
at throughput volume of 10,000 units,  and we would like the approximation to also be 
accurate at a throughput of 20,000 units.  According to the EOQ model,  the cycle 
inventory cost at 20,000 units should be about 1.414*25,000 = $35,355.  Thus, we want 
to solve: 
           aj + bj10000  = 25,000,   and 
           aj + bj20000  = 35,355. 
Solving, we get that bj = 1.0355,  and  aj  =  14645. 
Thus, the amount of cycle inventory at DC j would be modeled by 
         14645 yj + 1.0355 Σi xij. 
 
 
Safety Stock at a DC 
   Simple models of safety stock say that the amount of safety stock in a DC should be 
proportional to the standard deviation in the demand faced by the DC and to the square 
root of the lead time.  If demands are independent,  then the standard deviation in demand 
faced by the DC should be proportional to the square root of the volume.  If there is a 
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single supplier for the DC,  then we might expect that the safety stock should be 
proportional to (Lij xij)0.5. 
 
       Suppose that for plant i,  DC j, the lead time is 0.15 months and at a volume of 
10,000 units the safety stock inventory is 4000 units.  We would also like the 
approximation to be accurate at both a volume of 10,000 units and at 20,000 units.  Thus, 
we want to solve: 
           αj + βj*(.15)0.5 *10000  = 4,000,   and 
           αj + βj*(.15)0.5 *20000 =  20.5 *4,000 = 5,657. 
Solving, we get that βj = .4278,  and  αj  = 2343.1.  Thus, safety stock at DC j would be 
modeled by: 
        2343.1*yj  + .4278*Σi Lij

0.5 xij . 
 
Notice that a supplier i with a longer lead time to j will cause j to carry more safety stock. 
 
 
DC-to-Retailer Pipeline Inventory 
   We expect DC-to-Retailer pipeline inventory to increase as the number of DC’s is 
decreased because outbound lead times will tend to increase. The obvious expression for 
total DC-to-Retailer pipeline inventory is: 
       ΣjΣk Ljk wjk; 
 
Cycle Inventory at a Retailer 
   The argument is similar to that for DC’s.  It differs in that in a typical study the demand 
or volume at a retailer is fixed and known in advance.  Which DC supplies the retailer 
may not be known in advance,  and to the extent that the lead time effects the order size, 
the choice of supplier may effect the average cycle stock.  If we again use the EOQ 
model for guidance,  the average cycle stock is proportional to the square root of the 
fixed cost of placing an order.  Suppose the cost of a delivery to a retailer is a fixed cost 
per trip proportional to the distance but not a function of the volume delivered on the trip.  
Then you could argue that the fixed cost of a delivery is proportional to the lead time.  If 
DC j supplies retailer k,  then the cycle stock at k should be proportional to the square 
root of Ljk.  As an example,  suppose that the lead time from DC j to retailer k is 0.1 
months,  and retailer k currently has $2000 in cycle inventory.  Thus, we want to solve: 
 
           γk *(.10.5)  = 2,000    
 
The solution is γk =2000/.31623 = 6325. 
 
For example, suppose the monthly volume at retailer k is 3000 units, then the amount of 
cycle inventory at retailer k would be modeled by: 
         (6325/3000) Σj (Ljk

0.5)*wjk. 
 
 
 
 

 4



Safety Stock at a Retailer 
 
   If demands from day to day at a retailer are independent then the amount of safety stock 
the retailer should carry to achieve a specifed level of service should be approximately 
proportional to the square root of the lead time that the retailer faces.  Considering our 
same retailer as before,  suppose with a lead time of 0.1 months he carries a safety stock 
of $1200. Thus, we want to solve: 
 
            δk *(.10.5)  = 1200.  
 
Solving, we get 
        δk =  1200/.31623 =  3795. 
 
For example, suppose the monthly volume at retailer k is 3000 units, then the amount of 
safety stock at retailer k would be modeled by: 
         (3795/3000) Σj (Ljk

0.5)wjk. 
 
All the above are estimates of the average level or value of inventory.  If one is 
minimizing the average cost per month,  then the appropriate cost of capital should be 
applied to these expressions when including them in the objective. 
 
Approximation Quality 
 
   Where a linear approximation is used above to approximate a nonlinear cost function,  
one should check that the solution obtained is in fact in the region where the linear 
approximation is expected to be accurate.  Even if the solution is in the region where the 
approximation is accurate,  it is not a guarantee that the solution is in fact close to optimal 
for the original nonlinear problem.  Alternatively,  one can improve on the approximation 
quality by using a piecewise linear approximation to the square root of a volume rather 
than a simple fixed plus linear.  This is easy to do in the original formulation by 
introducing a second DC choice for location j.  So for example,  DC j1 might have a cost 
curve that is accurate over the volume range [5000,  10000],  whereas DC j2 might have a 
cost curve that is accurate over the volume range [10000,  15000].  We would have to add 
a mutual exclusivity constraint,  yj1 + yj2 ≤ 1.  The capacity of DC j1 would be set to Uj1 = 
10000. 
 
Yet another alternative is to leave the nonlinear square root terms in the model explicitly.  
Global optimization software has gotten to the point that it can now reliably solve 
nontrivial size models to guaranteed global optimality. 
 
 
Supply Chain Length and Inventory Constraints 
 
   A slightly different way of avoiding the bad effects of long lead times is to prohibit 
long lead times,  long supply lines, or large inventories.  For example,  if you wish to 
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constrain the average lead time into DC j to be no greater than 0.5,  you can do this with 
the constraint 
 
               Σi Lij xij ≤  0.5 Σi xij  

 
For high technology products,  there may be a risk of product obsolescence and so one 
may wish to have a limit on total inventory in the system.  If you wish to put a limit Imax 
on total inventory in the system,  you can have a constraint of the form: 
         ΣiΣj Lij xij  
     + Σj aj yj + Σj bjΣi xij   
     + Σjαj *yj + Σjβj *Σi Lij

0.5 xij 
     + ΣjΣk Ljk wjk 
     + Σk (γk / Dk)Σj (Ljk

0.5)wjk 
     + Σk (δk / Dk)Σj (Ljk

0.5)wjk ≤ Imax ; 
 
If you wish to prohibit a long supply line from a plant, through a DC, and on to a 
customer,  you can use the “path formulation” originally proposed by Geoffrion and 
Graves(1974).  Define the variables: 
        zijk = tons per month shipped from plant i through DC j and on to customer k. 
 If the total lead time along the path ijk is greater than some acceptable lead time,  then 
that variable zijk is set to zero and removed from the problem.  In the original problem 
formulation, replace every occurrence of xij by Σk zijk and every occurrence of wjk by Σi 
zijk.  This may result in a dramatic increase in the number of variables. 
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