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The Sets View of the World 
 

In Normal form, each attribute/field of an entity/record should depend on 
the entity key, the whole key, and nothing but the key, so help me Codd. 

-anonymous 

 
5.1 Introduction 
The most powerful feature of LINGO is its ability to model large systems. The key concept that 
provides this power is the idea of a set of similar objects. When you are modeling situations in real 
life, there will typically be one or more groups of similar objects. Examples of such groups might be 
factories, products, time periods, customers, vehicles, employees, etc. LINGO allows you to group 
similar objects together into sets. Once the objects in your model are grouped into sets, you can make 
single statements in LINGO that apply to all members of a set. 
 A LINGO model of a large system will typically have three sections:  1) a SETS section, 2) a 
DATA section, and 3) a model equations section. The SETS section describes the data structures to be 
used for solving a certain class of problems. The DATA section provides the data to “populate” the 
data structures. The model equations section describes the relationships between the various pieces of 
data and our decisions. 

5.1.1 Why Use Sets?  
In most large models, you will need to express a group of several very similar calculations or 
constraints. LINGO’s ability to handle sets allows you to express such formulae or constraints 
efficiently. 
 For example, preparing a warehouse-shipping model for 100 warehouses would be tedious if you 
had to write each constraint explicitly (e.g., “Warehouse 1 can ship no more than its present inventory, 
Warehouse 2 can ship no more than its present inventory, Warehouse 3 can ship no more than its 
present inventory…” and so on). You would prefer to make a single general statement of the form: 
“Each warehouse can ship no more than its present inventory”. 

5.1.2 What Are Sets?  
A set is a group of similar objects. A set might be a list of products, trucks, employees, etc. Each 
member in the set may have one or more characteristics associated with it (e.g., weight, price/unit, or 
income). We call these characteristics attributes. All members of the same set have the same set of 
attribute types. Attribute values can be known in advance or unknowns for which LINGO solves. For 
example, each product in a set of products might have an attribute listing its price. Each truck in a set 
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of trucks might have a hauling capacity attribute. In addition, each employee in a set of employees 
might have an attribute specifying salary as well as an attribute listing birth date. 

5.1.3 Types of Sets 
LINGO recognizes two kinds of sets: primitive and derived. A primitive set is a set composed only of 
objects that can’t be further reduced.  
 A derived set is defined from one or more other sets using two operations: a) selection (of a 
subset), and/or b) Cartesian product (sometimes called a “cross” or a “join”) of two or more other sets. 
The key concept is that a derived set derives its members from other pre-existing sets. For example, we 
might have the two primitive sets: WAREHOUSE and CUSTOMER. We might have the derived set 
called SHIPLINK, which consists of every possible combination of a warehouse and a customer. 
Although the set SHIPLINK is derived solely from primitive sets, it is also possible to build derived 
sets from other derived sets as well.  

5.2 The SETS Section of a Model 
In a set-based LINGO model, the first section in the model is usually the SETS section. A SETS 
section begins with the keyword SETS: (including the colon) and ends with the keyword ENDSETS. A 
model may have no SETS section, a single SETS section, or multiple SETS sections. A SETS section 
may appear almost anywhere in a model. The major restriction is that you must define a set and its 
attributes before they are referenced in the model's constraints. 

5.2.1 Defining Primitive Sets 
To define a primitive set in a SETS section, you specify: 

♦ the name of the set, and 
♦ any attributes the members of the set may have. 

A primitive set definition has the following syntax1: 

setname:[attribute_list]; 

 The setname is a name you choose. It should be a descriptive name that is easy to remember. The 
set name must conform to standard LINGO naming conventions: begin with an alphabetic character, 
followed by up to 31 alphanumeric characters or the underscore (_). LINGO does not distinguish 
between upper and lowercase characters in names. 
 An example sets declaration is: 

SETS: 
  WAREHOUSE: CAPACITY; 
ENDSETS 

 This means that we will be working with one or more warehouses. Each one of them has an 
attribute called CAPACITY. Set members may have zero or more attributes specified in the 
attribute_list of the set definition. An attribute is some property each member of the set possesses. 
Attribute names must follow standard naming conventions and be separated by commas. 

                                                            
1The use of Square brackets indicates that a particular item is optional. In this particular case, a 
primitive set's member_list and attribute_list are optional. 
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 For illustration, suppose our warehouses had additional attributes related to their location and the 
number of loading docks. These additional attributes could be added to the attribute list of the set 
declaration as: 

WAREHOUSE: CAPACITY, LOCATION, DOCKS; 

5.2.2 Defining Derived Sets 
To define a derived set, you specify: 

♦ the name of the set, 
♦ its parent sets, 
♦ optionally, any attributes the set members may have. 

A derived set definition has the following syntax: 

set_name (parent_set_list) [membership_filter] [: attribute_list]; 

 The set_name is a standard LINGO name you choose to name the set. The optional 
membership_filter may place a general condition on membership in the set. 
 The parent_set_list is a list of previously defined sets, separated by commas. LINGO constructs 
all the combinations of members from each of the parent sets to create the members of the derived set. 
As an example, consider the following SETS section: 

SETS: 
   PRODUCT ; 
   MACHINE ; 
   WEEK; 
   ALLOWED( PRODUCT, MACHINE, WEEK): VOLUME; 
ENDSETS 

 Sets PRODUCT, MACHINE, and WEEK are primitive sets, while ALLOWED is derived from 
parent sets PRODUCT, MACHINE, and WEEK. Unless specified otherwise, the set ALLOWED will 
have one member for every combination of PRODUCT, MACHINE, and WEEK. The attribute 
VOLUME might be used to specify how much of each product is produced on each machine in each 
week. A derived set that contains all possible combinations of members is referred to as being a dense 
set. When a set declaration includes a membership_filter or if the members of the derived set are given 
explicitly in a DATA section, then we say the set is sparse. 
 Summarizing, a derived set's members may be constructed by either:  

♦ an explicit member list in a DATA section, 
♦ a membership filter, or 
♦ implicitly dense by saying nothing about the membership of the derived set.  

Specification of an explicit membership list for a derived set in a DATA section will be illustrated in 
the next section of the text. 
 If you have a large, sparse set, explicitly listing all members can become cumbersome. 
Fortunately, in many sparse sets, the members all satisfy some condition that differentiates them from 
the non-members. If you can specify this condition, you can save yourself a lot of typing. This is 
exactly how the membership filter method works. Using the membership filter method of defining a 
derived set's member_list involves specifying a logical condition that each potential set member must 
satisfy for inclusion in the set. You can look at the logical condition as a filter that filters out potential 
members who don't measure up to some criteria. 
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 As an example of a membership filter, suppose you have already defined a set called TRUCKS and 
each truck has an attribute called CAPACITY. You would like to derive a subset from TRUCKS that 
contains only those trucks capable of hauling big loads. You could use an explicit member list and 
explicitly enter each of the trucks that can carry heavy loads. However, why do all that work when you 
could use a membership filter as follows: 

HEAVY_DUTY( TRUCKS) | CAPACITY( &1) #GT# 50000; 

 We have named the set HEAVY_DUTY and have derived it from the parent set TRUCKS. The 
vertical bar character (|) is used to mark the beginning of a membership filter. The membership filter 
allows only those trucks that have a hauling capacity (CAPACITY( &1)) greater than (#GT#) 50,000 
into the HEAVY_DUTY set. The &1 symbol in the filter is known as a set index placeholder. When 
building a derived set that uses a membership filter, LINGO generates all the combinations of parent 
set members. Each combination is then "plugged" into the membership condition to see if it passes the 
test. The first parent set's value is plugged into &1, the second into &2, and so on. In this example, we 
have only one parent set (TRUCKS), so &2 would not have made sense. The symbol #GT# is a logical 
operator and means "greater than". Other logical operators recognized by LINGO include: 

♦ #EQ# equal 
♦ #NE# not equal 
♦ #GE# greater-than-or-equal-to 
♦ #LT# less than 
♦ #LE# less-than-or-equal-to 

5.2.3 Summary 
LINGO recognizes two types of sets - primitive and derived. Primitive sets are the fundamental objects 
in a model and can't be broken down into smaller components. Derived sets, on the other hand, are 
created from other component sets. These component sets are referred to as the parents of the derived 
set and may be either primitive or derived.  
 A derived set can be either sparse or dense. Dense sets contain all combinations of the parent set 
members (sometimes this is also referred to as the Cartesian product or cross of the parent sets). 
Sparse sets contain only a subset of the cross of the parent sets. These may be defined by two methods 
- explicit listing or membership filter. The explicit listing method involves listing the members of the 
sparse set in a DATA section. The membership filter method allows you to specify the sparse set 
members compactly using a logical condition, which all members must satisfy. The relationships 
amongst the various set types are illustrated in Figure 5.1 below. 
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Figure 5.1 Types of Sets 

 

5.3 The DATA Section 
A SETS section describes the structure of the data for a particular class of problems. A DATA section 
provides the data to create a specific instance of this class of problems. The DATA section allows you 
to isolate things that are likely to change from week to week. This is a useful practice in that it leads to 
easier model maintenance and makes a model easier to scale up or down in dimension. 
 We find it useful to partition a LINGO model of a large system into three distinct sections: a) the 
SETS section, b) the DATA section, and c) the model equations section. The developer of a model has 
to understand all three sections. However, if the developer has done a good job of partitioning the 
model into the aforementioned sections, the day-to-day user may only need to be familiar with the 
DATA section. 
 Similar to the SETS section, the DATA section begins with the keyword DATA: (including the 
colon) and ends with the keyword ENDDATA. In the DATA section, you place statements to initialize 
either the attributes of the member of a set you defined in a SETS section or even the set members. 
These expressions have the syntax: 

attribute_list = value_list; 

or 

              set_name = member_list; 
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 The attribute_list contains the names of the attributes you want to initialize, optionally separated 
by commas. If there is more than one attribute name on the left-hand side of the statement, then all 
attributes must be associated with the same set. The value_list contains the values you want to assign 
to the attributes in the attribute_list, optionally separated by commas. Consider the following example: 

SETS: 
   SET1: X, Y; 
ENDSETS 
DATA: 
  SET1 = M1, M2, M3; 
     X =  1   2   3; 
     Y =  4   5   6; 
ENDDATA 

 We have two attributes, X and Y, defined on the set SET1. The three values of X are set to 1, 2, and 
3, while Y is set to 4, 5, and 6. We could have also used the following compound data statement to the 
same end: 

SETS: 
   SET1: X, Y; 
ENDSETS 
DATA: 
  SET1  X  Y = 
   M1   1  4 
   M2   2  5 
   M3   3  6; 
ENDDATA 

 Looking at this example, you might imagine X would be assigned the values 1, 4, and 2, since they 
are first in the values list, rather than the true values of 1, 2, and 3. When LINGO reads a data 
statement's value list, it assigns the first n values to the first position of each of the n attributes in the 
attribute list, the second n values to the second position of each of the n attributes, and so on. In other 
words, LINGO is expecting the input data in column form rather than row form.  
 The DATA section can also be used for specifying members of a derived set. The following 
illustrates both how to specify set membership in a DATA section and how to specify a sparse derived 
set. This example also specifies values for the VOLUME attribute, although that is not required: 

SETS: 
   PRODUCT ; 
   MACHINE ; 
   WEEK ; 
   ALLOWED( PRODUCT, MACHINE, WEEK): VOLUME; 
ENDSETS 
DATA: 
   PRODUCT = A  B; 
   MACHINE = M  N; 
   WEEK = 1..2; 
   ALLOWED, VOLUME = 
     A M 1   20.5 
     A N 2   31.3 
     B N 1   15.8; 
ENDDATA 
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The ALLOWED set does not have the full complement of eight members. Instead, ALLOWED is just 
the three member sparse set:  

(A,M,1), (A,N,2), and (B,N,1).  

LINGO recognizes a number of standard sets. For example, if you declare in a DATA section: 

  PRODUCT = 1..5; 

then the members of the PRODUCT set will in fact be 1, 2, 3, 4, and 5. If you declare: 

    PERIOD = Feb..May; 

then the members of the PERIOD set will in fact be Feb, Mar, Apr, and May. Other examples of 
inferred sets include mon..sun and thing1..thing12. 
 If an attribute is not referenced in a DATA section, then it is by default a decision variable. 
LINGO may set such an attribute to whatever value is consistent with the statements in the model 
equations section. 
 This section gave you a brief introduction to the use of the DATA section. Data do not have to 
actually reside in the DATA section as shown in these examples. In fact, a DATA section can have 
OLE links to Excel, ODBC links to databases, and connections to other spreadsheet and text based 
data files. Examples are given later in this chapter. 
 Note, when LINGO constructs the derived set, it is the right-most parent set that is incremented 
the fastest. 

5.4 Set Looping Functions 
In the model equations section of a model, we state the relationships among various attributes. Any 
statements not in a SETS or DATA section are by default in the model equations section. The power of 
set based modeling comes from the ability to apply an operation to all members of a set using a single 
statement. The functions in LINGO that allow you to do this are called set looping functions. If your 
models do not make use of one or more set looping functions, you are missing out on the power of set 
based modeling and, even worse, you're probably working too hard! 
 Set looping functions allow you to iterate through all the members of a set to perform some 
operation. There are four set looping functions in LINGO. The names of the functions and their uses 
are: 

Function Function's Use 
@FOR Used to generate constraints over members of a set. 
@SUM Computes the sum of an expression over all members 

of a set. 
@MIN Computes the minimum of an expression over all 

members of a set. 
@MAX Computes the maximum of an expression over all 

members of a set. 

The syntax for a set looping function is: 

@loop_function ( setname [ ( set_index_list) 
   [ | conditional_qualifier]] : expression_list); 
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 The @loop_function symbol corresponds to one of the four set looping functions listed in the table 
above. The setname is the name of the set over which you want to loop. The set_index_list is optional 
and is used to create a list of indices each of which correspond to one of the parent, primitive sets that 
form the set specified by setname. As LINGO loops through the members of the set setname, it will set 
the values of the indices in the set_index_list to correspond to the current member of the set setname. 
The conditional_qualifier is an optional filter and may be used to limit the scope of the set looping 
function. When LINGO is looping over each member of setname, it evaluates the 
conditional_qualifier. If the conditional_qualifier evaluates to true, then the expression_list of the 
@loop_function is performed for the set member. Otherwise, it is skipped. The expression_list is a list 
of expressions to be applied to each member of the set setname. When using the @FOR function, the 
expression list may contain multiple expressions that are separated by semicolons. These expressions 
will be added as constraints to the model. When using the remaining three set looping functions 
(@SUM, @MAX, and @MIN), the expression list must contain only one expression. If the 
set_index_list is omitted, all attributes referenced in the expression_list must be defined on the set 
setname.  

5.4.1 @SUM Set Looping Function 
In this example, we will construct several summation expressions using the @SUM function in order 
to illustrate the features of set looping functions in general and the @SUM function in particular.  
 Consider the model: 

SETS: 
   SET_A : X; 
ENDSETS 
DATA: 
   SET_A = A1 A2 A3 A4 A5; 
       X = 5  1  3  4  6; 
ENDDATA 
X_SUM = @SUM( SET_A( J): X( J)); 

 LINGO evaluates the @SUM function by first initializing an internal accumulator to zero. LINGO 
then begins looping over the members in SET_A. You can think of J as a pronoun. The index variable 
J is first set to the first member of SET_A (i.e., A1) and X( A1) is then added to the accumulator. Then, 
J is set to the second element and this process continues until all values of X have been added to the 
accumulator. The value of the sum is then stored into the variable X_SUM. 
 Since all the attributes in our expression list (in this case, only X appears in the expression list) are 
defined on the index set (SET_A), we could have alternatively written our sum as: 

X_SUM = @SUM( SET_A: X); 

 In this case, we have dropped the superfluous index set list and the index on X. When an 
expression uses this shorthand, we say the index list is implied. Implied index lists are not allowed 
when attributes in the expression list have different parent sets.  
 Next, suppose we want to sum the first three elements of the attribute X. We can use a conditional 
qualifier on the set index to accomplish this as follows: 

X3_SUM = @SUM( SET_A( J) | J #LE# 3: X( J)); 

 The #LE# symbol is called a logical operator. This operator compares the operand on the left (J) 
with the one on the right (3) and returns true if the left operand is less-than-or-equal-to the one on the 
right. Otherwise, it returns false. Therefore, this time, when LINGO computes the sum, it plugs the set 
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index variable J into the conditional qualifier J #LE# 3. If the conditional qualifier evaluates to true, 
X( J) will be added to the sum. The end result is that LINGO sums up the first three terms in X, 
omitting the fourth and fifth terms, for a total sum of 9. 
 Before leaving this example, one subtle aspect to note in this last sum expression is the value that 
the set index J is returning. Note, we are comparing the set index variable to the quantity 3 in the 
conditional qualifier J #LE# 3. In order for this to be meaningful, J must represent a numeric value. 
Since a set index is used to loop over set members, one might imagine a set index is merely a 
placeholder for the current set member. In a sense, this is true. However, what set indexes really return 
is the index of the current set member in its parent primitive set. The index returned is one-based. In 
other words, the value 1 is returned when indexing the first set member, 2 when indexing the second, 
and so on. Given that set indices return a numeric value, they may be used in arithmetic expressions 
along with other variables in your model. 

5.4.2 @MIN and @MAX Set Looping Functions 
The @MIN and @MAX functions are used to find the minimum and maximum of an expression over 
members of a set. Again, consider the model: 

SETS: 
   SET_A : X; 
ENDSETS 
DATA: 
  SET_A = A1 A2 A3 A4 A5; 
      X = 5  1  3  4  6; 
ENDDATA 

To find the minimum and maximum values of X, all one need do is add the two expressions: 
THE_MIN_OF_X = @MIN( SET_A( J): X( J)); 
THE_MAX_OF_X = @MAX( SET_A( J): X( J)); 

 As with the @SUM example above, we can use an implied index list since the attributes are 
defined on the index set. Using implied indexing, we can recast our expressions as: 

THE_MIN_OF_X = @MIN( SET_A: X); 
THE_MAX_OF_X = @MAX( SET_A: X); 

 In either case, when we solve this model, LINGO returns the expected minimum and maximum 
values of X: 

    Variable        Value 
THE_MIN_OF_X     1.000000 
THE_MAX_OF_X     6.000000 

 For illustration purposes, suppose we had just wanted to compute the minimum and maximum 
values of the first three elements of X. As with the @SUM example, all we need do is add the 
conditional qualifier J #LE# 3. We then have: 

THE_MIN_OF_X_3 = @MIN( SET_A( J) | J #LE# 3: X( J)); 
THE_MAX_OF_X_3 = @MAX( SET_A( J) | J #LE# 3: X( J)); 
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with solution: 
      Variable       Value 
THE_MIN_OF_X_3    1.000000 
THE_MAX_OF_X_3    5.000000 

5.4.3 @FOR Set Looping Function 
The @FOR function is used to generate constraints across members of a set. Whereas scalar based 
modeling languages require you to explicitly enter each constraint, the @FOR function allows you to 
enter a constraint just once and LINGO does the work of generating an occurrence of the constraint for 
each of the set members. As such, the @FOR statement provides the set based modeler with a very 
powerful tool. 
 To illustrate the use of @FOR, consider the following: 

SETS: 
   TRUCKS : HAUL; 
ENDSETS 
DATA: 
   TRUCKS = MAC, PETERBILT, FORD, DODGE; 
ENDDATA 

 Specifically, we have a primitive set of four trucks with a single attribute titled HAUL. If the 
attribute HAUL is used to denote the amount a truck hauls, then we can use the @FOR function to 
limit the amount hauled by each truck to 2,500 pounds with the following expression: 

@FOR( TRUCKS( T): HAUL( T) <= 2500); 

 In this case, it might be instructive to view the constraints that LINGO generates from our 
expression. You can do this by using the LINGO | Generate command under Windows or by using the 
GENERATE command on other platforms. Running this command, we find that LINGO generates the 
following four constraints: 

      HAUL( MAC) <=   2500; 
HAUL( PETERBILT) <=   2500; 
     HAUL( FORD) <=   2500; 
    HAUL( DODGE) <=   2500; 

 As we anticipated, LINGO generated one constraint for each truck in the set to limit them to a 
load of 2,500 pounds. 
 Here is a model that uses an @FOR statement (listed in bold) to compute the reciprocal of any 
five numbers placed into the GPM attribute: 

SETS: 
   OBJECT: GPM, MPG; 
ENDSETS 
DATA: 
   OBJECT =   A     B      C      D      E; 
      GPM = .0303 .03571 .04545 .07142 .10; 
ENDDATA 
   @FOR( OBJECT( I):  
      MPG( I) = 1 / GPM( I) 
       ); 
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Solving this model gives the following values for the reciprocals: 
Variable           Value 
 MPG( A)        33.00330 
 MPG( B)        28.00336 
 MPG( C)        22.00220 
 MPG( D)        14.00168 
 MPG( E)        10.00000 

 Since the reciprocal of zero is not defined, we could put a conditional qualifier on our @FOR 
statement that causes us to skip the reciprocal computation whenever a zero is encountered. The 
following @FOR statement accomplishes this: 

@FOR( OBJECT( I) | GPM( I) #NE# 0: 
   MPG( I) = 1 / GPM( I) 
); 

 The conditional qualifier (listed in bold) tests to determine if the GPM is not equal (#NE#) to zero. 
If so, the computation proceeds. 
 This was just a brief introduction to the use of the @FOR statement. There will be many 
additional examples in the sections to follow. 

5.4.4 Nested Set Looping Functions 
The simple models shown in the previous section use @FOR to loop over a single set. In larger 
models, you may need to loop over a set within another set looping function. When one set looping 
function is used within the scope of another, we call it nesting. LINGO allows nesting.  
 The following is an example of an @SUM loop nested within an @FOR: 

! The demand constraints; 
   @FOR( VENDORS( J):  
     @SUM( WAREHOUSES( I): VOLUME( I, J)) = DEMAND( J); 
       ); 

 Specifically, for each vendor, we sum up the shipments going from all the warehouses to that 
vendor and set the quantity equal to the vendor's demand.  
 @SUM, @MAX, and @MIN can be nested within any set looping function. @FOR functions, on 
the other hand, may only be nested within other @FOR functions. 

5.5 Set Based Modeling Examples 
Recall, four types of sets can be created in LINGO: 

♦ primitive, 
♦ dense derived, 
♦ sparse derived - explicit list, and 
♦ sparse derived - membership filter. 

 This section will help develop your talents for set based modeling by building and discussing four 
models. Each of these four models will introduce one of the set types listed above. 
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5.5.1 Primitive Set Example  
The following staff scheduling model illustrates the use of a primitive set. This model may be found in 
the SAMPLES subdirectory off the main LINGO directory under the name STAFFDEM.LNG. 

The Problem 
Suppose you run the popular Pluto Dog's hot dog stand that is open seven days a week. You hire 
employees to work a five-day workweek with two consecutive days off. Each employee receives the 
same weekly salary. Some days of the week are busier than others and, based on past experience, you 
know how many workers are required on a given day of the week. In particular, your forecast calls for 
these staffing requirements: 

Day Mon Tue Wed Thu Fri Sat Sun 
Staff Req'd 20 16 13 16 19 14 12 

 You need to determine how many employees to start on each day of the week in order to minimize 
the total number of required employees, while still meeting or exceeding staffing requirements each 
day of the week. 

The Formulation 
The first question to consider when building a set based model is, "What are the relevant sets and their 
attributes?". In this model, we have a single primitive set, the days of the week. We will be concerned 
with two attributes of the DAYS set. The first is the number of staff required on each day. The second 
is the decision variable of the number of staff to start on each day. If we call these attributes 
REQUIRED and START, then we might write the SETS section and DATA sections as: 

SETS: 
  DAYS : REQUIRED, START; 
ENDSETS 
DATA:  
      DAYS = MON TUE WED THU FRI SAT SUN; 
  REQUIRED = 20  16  13  16  19  14  12; 
ENDDATA 

 We are now at the point where we can begin entering the model's mathematical relations (i.e., the 
objective and constraints). Let's begin by writing the objective: minimize the total number of 
employees we start during the week. In standard mathematical notation, we might write: 

Minimize: 
i

∑ START i 

 The equivalent LINGO statement is very similar. Substitute "MIN=" for "Minimize:" and 
"@SUM( DAYS( I):" for ∑i and we have: 

MIN = @SUM( DAYS( I): START( I)); 

 Now, all that's left is to deduce the constraints. There is only one set of constraints in this model. 
Namely, we must have enough staff on duty each day to meet or exceed staffing requirements. In 
words, what we want is: 

for each day: Staff on duty today ≥ Staff required today,  
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 The right-hand side of this expression, Staff required today, is given. It is simply the quantity 
REQUIRED( I). The left-hand side, Staff on duty today takes a little thought. Given that all employees 
are on a five-day on/two day off schedule, the number of employees working today is: 

Number working today = Number starting today +  
Number starting 1 day ago + Number starting 2 days ago + 
Number starting 3 days ago + Number starting 4 days ago. 

 In other words, to compute the number of employees working today, we sum up the number of 
people starting today plus those starting over the previous four days. The employees starting five and 
six days back don't count because they are on their days off. Therefore, using mathematical notation, 
what one might consider doing is adding the constraint: 

i = j - 4, j
∑ STARTi ≥ REQUIREDj, for j ∈DAYS  

Translating into LINGO notation, we can write this as: 
@FOR( DAYS( J):  
   @SUM( DAYS( I) | I #LE# 5: START( J - I + 1)) 
    >= REQUIRED( J) 
); 

 In words, the LINGO statement says, for each day of the week, the sum of the employees starting 
over the five-day period beginning four days ago and ending today must be greater-than-or-equal-to 
the required number of staff for the day. This sounds correct, but there is a slight problem. If we try to 
solve our model with this constraint, we get the error message: 

 
 To see why we get this error message, consider what happens on Thursday. Thursday has an index 
of 4 in our set DAYS. As written, the staffing constraint for Thursday will be: 

START( 4 - 1 + 1) + START( 4 - 2 + 1) +  
START( 4 - 3 + 1) + START( 4 - 4 + 1) +  
START( 4 - 5 + 1) >= REQUIRED( 4); 

Simplifying, we get: 
START( 4) + START( 3) +  
START( 2) + START( 1) +  
START( 0) >= REQUIRED( 4); 

 It is the START(0) term that is at the root of our problem. START is defined for days 1 through 7. 
START(0) does not exist. An index of 0 on START is considered "out of range".  
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 What we would like to do is to have any indices less-than-or-equal-to 0, wrap around to the end of 
the week. Specifically, 0 would correspond to Sunday (7), -1 to Saturday (6), and so on. LINGO has a 
function that does just this, and it is called @WRAP.  
 The @WRAP function takes two arguments - call them INDEX and LIMIT. Formally speaking, 
@WRAP returns J such that J = INDEX - K × LIMIT, where K is an integer such that J is in the interval 
[1,LIMIT]. Informally speaking, @WRAP will subtract or add LIMIT to INDEX until it falls in the 
range 1 to LIMIT, and, therefore, is just what we need to "wrap around" an index in multi-period 
planning models.  
 Incorporating the @WRAP function, we get the corrected, final version of our staffing constraint: 

@FOR( DAYS( J):  
 @SUM( DAYS( I) | I #LE# 5:  
  START( @WRAP( J - I + 1, 7))) >= REQUIRED( J) 
); 

The Solution 
Below is our staffing model in its entirety: 

SETS: 
  DAYS : REQUIRED, START; 
ENDSETS 
DATA: 
      DAYS = MON TUE WED THU FRI SAT SUN; 
  REQUIRED = 20  16  13  16  19  14  12; 
ENDDATA 
MIN = @SUM( DAYS( I): START( I)); 
@FOR( DAYS( J):  
  @SUM( DAYS( I) | I #LE# 5:  
     START( @WRAP( J - I + 1, 7))) >= REQUIRED( J) 
     ); 

Solving this model, we get the solution report: 
Optimal solution found at step:         8 
Objective value:                 22.00000 

      Variable           Value        Reduced Cost 
REQUIRED( MON)        20.00000           0.0000000 
REQUIRED( TUE)        16.00000           0.0000000 
REQUIRED( WED)        13.00000           0.0000000 
REQUIRED( THU)        16.00000           0.0000000 
REQUIRED( FRI)        19.00000           0.0000000 
REQUIRED( SAT)        14.00000           0.0000000 
REQUIRED( SUN)        12.00000           0.0000000 
   START( MON)         8.00000           0.0000000 
   START( TUE)         2.00000           0.0000000 
   START( WED)         0.00000           0.0000000 
   START( THU)         6.00000           0.0000000 
   START( FRI)         3.00000           0.0000000 
   START( SAT)         3.00000           0.0000000 
   START( SUN)         0.00000           0.0000000 
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           Row    Slack or Surplus      Dual Price 
             1        22.00000            1.000000 
             2       0.0000000          -0.2000000 
             3       0.0000000          -0.2000000 
             4       0.0000000          -0.2000000 
             5       0.0000000          -0.2000000 
             6       0.0000000          -0.2000000 
             7       0.0000000          -0.2000000 
             8       0.0000000          -0.2000000 

The objective value of 22 means we need to hire 22 workers.  
 We start our workers according to the schedule: 

 Mon Tue Wed Thu Fri Sat Sun 
Start 8 2 0 6 3 3 0 

 If we look at the surpluses on our staffing requirement rows (rows 2 - 7), we see the slack values 
are 0 on all of the days. This means there are no extra workers on any day.  

5.5.2 Dense Derived Set Example  
The following model illustrates the use of a dense derived set in a blending model. This model may be 
found in the SAMPLES subdirectory off the main LINGO directory under the name CHESS.LNG. 

The Problem 
The Chess Snackfoods Co. markets four brands of mixed nuts. The four brands of nuts are called the 
Pawn, Knight, Bishop, and King. Each brand contains a specified ratio of peanuts and cashews. The 
table below lists the number of ounces of the two nuts contained in each pound of each brand and the 
price at which the company can sell a pound of each brand: 

 Pawn Knight Bishop King 
Peanuts (oz.) 15 10   6   2 
Cashews (oz.)   1   6 10 14 
Selling Price ($/lb.)   2   3   4   5 

 Chess has contracts with suppliers to receive per day: 750 pounds of peanuts and 250 pounds of 
cashews. Our problem is to determine the number of pounds of each brand to produce each day to 
maximize total revenue without exceeding the available supply of nuts. 

The Formulation 
 The primitive sets in this model are the nut types and the brands of mixed nuts. The NUTS set has 
the single attribute SUPPLY that is the daily supply of nuts in pounds. The BRANDS set has PRICE 
and PRODUCE attributes, where PRICE stores the selling price of the brands and PRODUCE 
represents the decision variables of how many pounds of each brand to produce each day. 
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 We need one more set, however, in order to input the brand formulas. We need a two dimensional 
table defined on the nut types and the brands. To do this, we will generate a derived set from the cross 
of the NUTS and BRANDS sets. Adding this derived set, we get the complete SETS section: 

SETS: 
   NUTS : SUPPLY; 
   BRANDS : PRICE, PRODUCE; 
   FORMULA( NUTS, BRANDS): OUNCES; 
ENDSETS 

 We have titled the derived set FORMULA, and it has the single attribute OUNCES, which will be 
used to store the ounces of nuts used per pound of each brand. Since we have not specified the 
members of this derived set, LINGO assumes we want the complete, dense set that includes all pairs of 
nuts and brands. 
 Now that our sets are defined, we can move on to building the DATA section. We initialize the 
three attributes SUPPLY, PRICE, and OUNCES in the DATA section as follows: 

DATA: 
    NUTS = PEANUTS, CASHEWS; 
  SUPPLY =   750      250; 
  BRANDS = PAWN, KNIGHT, BISHOP, KING; 
     PRICE =  2      3      4      5; 
    OUNCES = 15     10      6      2  !(Peanuts); 
              1      6     10     14; !(Cashews); 
ENDDATA 

 With the sets and data specified, we can enter our objective function and constraints. The 
objective function of maximizing total revenue is straightforward: 

MAX = @SUM( BRANDS( I): PRICE( I) * PRODUCE( I)); 

 Our model has only one class of constraints. Namely, we can't use more nuts than we are supplied 
with on a daily basis. In words, we would like to ensure that: 

For each nut type i, the number of pounds of nut i used must be less-than-or-equal-to the 
supply of nut i. 

We can express this in LINGO as: 
@FOR( NUTS( I):  
   @SUM( BRANDS( J):  
   OUNCES( I, J) * PRODUCE( J) / 16) <= SUPPLY( I) 
); 

We divide the sum on the left-hand side by 16 to convert from ounces to pounds. 
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The Solution 
Our completed nut-blending model is: 

SETS: 
   NUTS : SUPPLY; 
   BRANDS : PRICE, PRODUCE; 
   FORMULA( NUTS, BRANDS): OUNCES; 
ENDSETS 
DATA: 
    NUTS = PEANUTS, CASHEWS; 
  SUPPLY =   750      250; 
  BRANDS = PAWN, KNIGHT, BISHOP, KING; 
   PRICE =   2      3      4      5; 
   OUNCES = 15     10      6      2  !(Peanuts); 
             1      6     10     14; !(Cashews); 
ENDDATA 
MAX = @SUM( BRANDS( I):  
 PRICE( I) * PRODUCE( I)); 
 @FOR( NUTS( I):  
   @SUM( BRANDS( J):  
     OUNCES( I, J) * PRODUCE(J)/16) <= SUPPLY(I) 
     ); 

An abbreviated solution report to the model follows: 
Optimal solution found at step:         0 
Objective value:                 2692.308 

        Variable         Value   Reduced Cost 
  PRODUCE( PAWN)      769.2308     0.0000000 
PRODUCE( KNIGHT)     0.0000000     0.1538461 
PRODUCE( BISHOP)     0.0000000     0.7692297E-01 
  PRODUCE( KING)      230.7692     0.0000000 

           Row  Slack or Surplus  Dual Price 
             1        2692.308      1.000000 
             2       0.0000000      1.769231 
             3       0.0000000      5.461538 

 This solution tells us Chess should produce 769.2 pounds of the Pawn mix and 230.8 of the King 
for total revenue of $2692.30. The dual prices on the rows indicate Chess should be willing to pay up 
to $1.77 for an extra pound of peanuts and $5.46 for an extra pound of cashews. If, for marketing 
reasons, Chess decides it must produce at least some of the Knight and Bishop mixes, then the reduced 
cost figures tell us revenue will decrease by 15.4 cents with the first pound of Knight produced and 
revenue will decline by 76.9 cents with the first pound of Bishop produced. 

5.5.3 Sparse Derived Set Example - Explicit List 
In this example, we will introduce the use of a sparse derived set with an explicit listing. When using 
this method to define a sparse set, we must explicitly list all members of the set. This will usually be 
some small subset of the dense set resulting from the full Cartesian product of the parent sets. 
 For our example, we will set up a PERT (Program Evaluation and Review Technique) model to 
determine the critical path of tasks in a project involving the roll out of a new product. PERT is a 
simple, but powerful, technique developed in the 1950s to assist managers in tracking the progress of 
large projects. Its first official application was to the fleet submarine ballistic missile project, the 
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so-called Polaris project. In fact, PERT proved so successful the Polaris project was completed 
eighteen months ahead of schedule! PERT is particularly useful at identifying the critical activities 
within a project, which, if delayed, will delay the project as a whole. These time critical activities are 
referred to as the critical path of a project. Having such insight into the dynamics of a project goes a 
long way in guaranteeing it won't get sidetracked and become delayed. PERT, and a closely related 
technique called CPM (Critical Path Method), continues to be used successfully on a wide range of 
projects. The formulation for this model is included in the SAMPLES subdirectory off the main 
LINGO directory under the name PERTD.LNG. 

The Problem 
Wireless Widgets is about to launch a new product — the Solar Widget. In order to guarantee the 
launch will occur on time, WW wants to perform a PERT analysis of the tasks leading up to the 
launch. Doing so will allow them to identify the critical path of tasks that must be completed on time 
in order to guarantee the Solar Widget's timely introduction. The tasks that must be accomplished 
before introduction and their anticipated times for completion are listed in the table below: 

Task Weeks
Finalize Design 10 
Forecast Demand 14 
Survey Competition 3 
Set Prices  3 
Schedule Production Run 7 
Cost Out 4 
Train Salesmen 10 

 Certain tasks must be completed before others can commence. These precedence relations are 
shown in Figure 5.2: 

Figure 5.2 Product Launch Precedence Relations 

Forecast
Demand

Finalize
Design

Schedule
Production Run Cost Out
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Competition

 
 For instance, the two arrows originating from the Forecast Demand node indicate the task must be 
completed before the Schedule Production Run and the Set Prices tasks may be started.  
 Our goal is to construct a PERT model for the Solar Widget's introduction in order to identify the 
tasks on the critical path. 
 
The Formulation 
 We will need a primitive set to represent the tasks of the project.  
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We have associated four attributes with the TASKS set. The definitions of the attributes are: 

TIME Time duration to complete the task, given 
ES Earliest possible start time for the task, to be computed, 
LS Latest possible start time for the task, to be computed 
SLACK Difference between LS and ES for the task, to be computed. 

 If a task has a 0 slack, it means the task must start on time or the whole project will be delayed. 
The collection of tasks with 0 slack time constitutes the critical path for the project. 
 In order to compute the start times for the tasks, we will need to examine the precedence relations. 
Thus, we will need to input the precedence relations into the model. The precedence relations can be 
viewed as a list of ordered pairs of tasks. For instance, the fact the DESIGN task must be completed 
before the FORECAST task could be represented as the ordered pair (DESIGN, FORECAST). Creating 
a two-dimensional derived set on the TASKS set will allow us to input the list of precedence relations. 
Therefore, our DATA section will look as follows: 

DATA: 
 TASKS : TIME, ES, LS, SLACK; 
PRED( TASKS, TASKS); 

 Notice that the PRED set has no attributes. Its purpose is only to provide the information about the 
precedence relationships between tasks.  
 Next, we can input the task times and precedence pairs in the DATA section thus: 

DATA:  
 TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN; 
 TIME =   10,      14,      3,      3,      7,       4,       10; 
 PRED = 
    DESIGN,FORECAST, 
    DESIGN,SURVEY, 
    FORECAST,PRICE, 
    FORECAST,SCHEDULE, 
    SURVEY,PRICE, 
    SCHEDULE,COSTOUT, 
    PRICE,TRAIN, 
    COSTOUT,TRAIN; 
ENDDATA 

 Keep in mind that the first member of the PRED set is the ordered pair (DESIGN, FORECAST) 
and not just the single task DESIGN. Therefore, this set has a total of 8 members. Each of which 
corresponds to an arc in the precedence relations diagram. 
 The feature to note from this example is that the set PRED is a sparse derived set with an explicit 
listing of members. The set is a subset derived from the cross of the TASKS set upon itself. The set is 
sparse because it contains only 8 out of a possible 49 members found in the complete cross of TASKS 
on TASKS. The set has an explicit listing because we have included a listing of the members we want 
included in the set. Explicitly listing the members of a sparse set may not be convenient in cases where 
there are thousands of members to select from, but it does make sense whenever set membership 
conditions are not well-defined and the sparse set size is small relative to the dense alternative.  
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 Now, with our sets and data established, we can turn our attention to building the formulas of the 
model. We have three attributes to compute: earliest start (ES), latest start (LS), and slack time 
(SLACK). The trick is computing ES and LS. Once we have these times, SLACK is merely the 
difference of the two. Let's start by deriving a formula to compute ES. A task cannot begin until all its 
predecessor tasks are completed. Thus, if we find the latest finishing time of all predecessors to a task, 
then we have also found its earliest start time. Therefore, in words, the earliest start time for task t is 
equal to the maximum of the sum of the earliest start time of the predecessor plus its completion time 
over all predecessors of task t. The corresponding LINGO notation is: 

@FOR( TASKS( J)| J #GT# 1: 
   ES( J) = @MAX( PRED( I, J): ES( I) + TIME( I))); 

 Note, we skip the computation for task 1 by adding the conditional qualifier J #GT# 1. We do this 
because task 1 has no predecessors. We will give the first task an arbitrary start time of 0 below. 
 Computing LS is similar to ES, except we must think backwards. In words, the latest time for task 
t to start is the minimum, over all successor tasks j, of j's latest start minus the time to perform task t. If 
task t starts any later than this, it will force at least one successor to start later than its latest start time. 
Converting into LINGO syntax gives: 

@FOR( TASKS( I)| I #LT# LTASK: 
   LS( I) = @MIN( PRED( I, J): LS( J) - TIME( I))); 

Here, we omit the computation for the last task, since it has no successor tasks. 
 Computing slack time is just the difference between LS and ES and may be written as: 

@FOR( TASKS( I): SLACK( I) = LS( I) - ES( I)); 

 We can set the start time of task 1 to some arbitrary value. For our purposes, we will set it to 0 
with the statement: 

ES( 1) = 0; 

 We have now input formulas for computing the values of all the variables with the exception of 
the latest start time for the last task. It turns out, if the last project were started any later than its earliest 
start time, the entire project would be delayed. So, by definition, the latest start time for the last project 
is equal to its earliest start time. We can express this in LINGO using the equation: 

LS( 7) = ES( 7); 

 This would work, but it is not a very general way to express the relation. Suppose you were to add 
some tasks to your model. You'd have to change the 7 in this equation to whatever the new number of 
tasks was. The whole idea behind LINGO's set based modeling language is the equations in the model 
should not need changing each time the data change. Expressing the equation in this form violates data 
independence. Here's a better way to do it: 

LTASK = @SIZE( TASKS); 
LS( LTASK) = ES( LTASK); 

 The @SIZE function returns the size of a set. In this case, it will return the value 7, as desired. 
However, if we changed the number of tasks, @SIZE would also return the new, correct value. Thus, 
we preserve the data independence of our model's structure. 
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The Solution 
The entire PERT formulation and portions of its solution appear below: 

SETS: 
   TASKS : TIME, ES, LS, SLACK; 
   PRED( TASKS, TASKS); 
ENDSETS    
DATA:  
 TASKS= DESIGN, FORECAST, SURVEY, PRICE, SCHEDULE, COSTOUT, TRAIN; 
 TIME =   10,      14,      3,      3,      7,       4,       10; 
 PRED = 
    DESIGN,FORECAST, 
    DESIGN,SURVEY, 
    FORECAST,PRICE, 
    FORECAST,SCHEDULE, 
    SURVEY,PRICE, 
    SCHEDULE,COSTOUT, 
    PRICE,TRAIN, 
    COSTOUT,TRAIN; 
ENDDATA 

@FOR( TASKS( J)| J #GT# 1: 
   ES( J) = @MAX( PRED( I, J): ES( I) + TIME( I)) 
    ); 
@FOR( TASKS( I)| I #LT# LTASK: 
   LS( I) = @MIN( PRED( I, J): LS( J) - TIME( I)); 
    ); 
@FOR( TASKS( I): SLACK( I) = LS( I) - ES( I)); 
ES( 1) = 0; 
LTASK = @SIZE( TASKS); 
LS( LTASK) = ES( LTASK); 
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The interesting part of the solution is: 
        Variable           Value 
           LTASK         7.000000 
     ES( DESIGN)         0.000000 
   ES( FORECAST)        10.000000 
     ES( SURVEY)        10.000000 
      ES( PRICE)        24.000000 
   ES( SCHEDULE)        24.000000 
    ES( COSTOUT)        31.000000 
      ES( TRAIN)        35.000000 
     LS( DESIGN)         0.000000 
   LS( FORECAST)        10.000000 
     LS( SURVEY)        29.000000 
      LS( PRICE)        32.000000 
   LS( SCHEDULE)        24.000000 
    LS( COSTOUT)        31.000000 
      LS( TRAIN)        35.000000 
  SLACK( DESIGN)         0.000000 
SLACK( FORECAST)         0.000000 
  SLACK( SURVEY)        19.000000 
   SLACK( PRICE)         8.000000 
SLACK( SCHEDULE)         0.000000 
 SLACK( COSTOUT)         0.000000 
   SLACK( TRAIN)         0.000000 

 The interesting values are the slacks for the tasks. SURVEY and PRICE have respective slacks of 
19 and 8. The start time of either SURVEY or PRICE (but not both) may be delayed by as much as 
these slack values without delaying the completion time of the entire project. The tasks DESIGN, 
FORECAST, SCHEDULE, COSTOUT, and TRAIN, on the other hand, have 0 slack. These tasks 
constitute the critical path. If any of their start times are delayed, the entire project will be delayed. 
Management will want to pay close attention to these critical path activities to be sure they start on 
time and complete within the allotted time. Finally, the ES( TRAIN) value of 35 tells us the estimated 
time to the start of the roll out of the new Solar Widget will be 45 weeks: 35 weeks to get to the start of 
training, plus 10 weeks to complete training. 

5.5.4 A Sparse Derived Set Using a Membership Filter 
In this example, we introduce the use of a sparse derived set with a membership filter. Using a 
membership filter is the third method for defining a derived set. When you define a set using this 
method, you specify a logical condition each member of the set must satisfy. This condition is used to 
filter out members that don't satisfy the membership condition.  
 For our example, we will formulate a matching problem. In a matching problem, there are N 
objects we want to match into pairs at minimum cost. Sometimes this is known as the roommate 
selection problem. It is a problem faced by a university at the beginning of each school year as 
incoming first year students are assigned to rooms in dormitories. The pair (I,J) is indistinguishable 
from the pair (J,I). Therefore, we arbitrarily require I be less than J in the pair. Formally, we require I 
and J make a set of ordered pairs. In other words, we do not wish to generate redundant ordered pairs 
of I and J, but only those with I less than J. This requirement that I be less than J will form our 
membership filter.  
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 The file containing this model may be found in the SAMPLES subdirectory off the main LINGO 
directory under the name MATCHD.LNG. 

The Problem 
Suppose you manage your company's strategic planning department. There are eight analysts in the 
department. Your department is about to move into a new suite of offices. There are four offices in the 
new suite and you need to match up your analysts into 4 pairs, so each pair can be assigned to one of 
the new offices. Based on past observations, you know some of the analysts work better together than 
they do with others. In the interest of departmental peace, you would like to come up with a pairing of 
analysts that results in minimal potential conflicts. To this goal, you have come up with a rating system 
for pairing your analysts. The scale runs from 1 to 10, with a 1 rating for a pair meaning the two get 
along fantastically, whereas all sharp objects should be removed from the pair's office in anticipation 
of mayhem for a rating of 10. The ratings appear in the following table: 

Analysts 1 2 3 4 5 6 7 8 
1 - 9 3 4 2 1 5 6 

2 - - 1 7 3 5 2 1 

3 - - - 4 4 2 9 2 

4 - - - - 1 5 5 2 

5 - - - - - 8 7 6 

6 - - - - - - 2 3 

7 - - - - - - - 4 

  Analysts' Incompatibility Ratings 
 Since the pairing of analyst I with analyst J is indistinguishable from the pairing of J with I, we 
have only included the above diagonal elements in the table. Our problem is to find the pairings of 
analysts that minimizes the sum of the incompatibility ratings of the paired analysts.  

The Formulation 
The first set of interest in this problem is the set of eight analysts. This primitive set can be written 
simply as:  

ANALYSTS; 

 The final set we want to construct is a set consisting of all the potential pairings. This will be a 
derived set we will build by taking the cross of the ANALYST set. As a first pass, we could build the 
dense derived set: 

PAIRS( ANALYSTS, ANALYSTS); 

 This set, however, would include both PAIRS( I, J) and PAIRS( J, I). Since only one of these pairs 
is required, the second is wasteful. Furthermore, this set will include "pairs" of the same analyst of the 
form PAIRS( I, I). As much as each of the analysts might like an office of their own, such a solution is 
not feasible. The solution is to put a membership filter on our derived set requiring each pair (I,J) in 
the final set to obey the condition J be greater than I. We do this with the set definition: 

PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1; 

 The start of the membership filter is denoted with the vertical bar character (|). The &1 and &2 
symbols in the filter are known as set index placeholders. Set index placeholders are valid only in 
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membership filters. When LINGO constructs the PAIRS set, it generates all combinations in the cross 
of the ANALYSTS set on itself. Each combination is then "plugged" into the membership filter to see if 
it passes the test. Specifically, for each pair (I,J) in the cross of set ANALYSTS on itself, I is substituted 
into the placeholder &1 and J into &2 and the filter is evaluated. If the filter evaluates to true, (I,J) is 
added to the pairs set. Viewed in tabular form, this leaves us with just the above diagonal elements of 
the (I,J) pairing table. 
 We will also be concerned with two attributes of the PAIRS set. First, we will need an attribute 
that corresponds to the incompatibility rating of the pairings. Second, we will need an attribute to 
indicate if analyst I is paired with analyst J. We will call these attributes RATING and MATCH. We 
append them to the PAIRS set definition as follows: 

PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1: RATING, MATCH; 

 We will simply initialize the RATING attribute to the incompatibility ratings listed in the table 
above using the DATA section: 

DATA: 
  ANALYSTS = 1..8; 
   RATING =  
      9  3  4  2  1  5  6 
         1  7  3  5  2  1 
            4  4  2  9  2 
               1  5  5  2 
                  8  7  6 
                     2  3 
                        4; 
ENDDATA 

 We will use the convention of letting MATCH( I, J) be 1 if we pair analyst I with analyst J, 
otherwise 0. As such, the MATCH attribute contains the decision variables for the model. 
 Our objective is to minimize the sum of the incompatibility ratings of all the final pairings. This is 
just the inner product on the RATING and MATCH attributes and is written as: 

MIN = @SUM( PAIRS( I, J):  
   RATING( I, J) * MATCH( I, J)); 

There is just one class of constraints in the model. In words, what we want to do is: 

For each analyst, ensure the analyst is paired with exactly one other analyst. 

Putting the constraint into LINGO syntax, we get: 
@FOR( ANALYSTS( I): 
  @SUM( PAIRS( J, K) | J #EQ# I #OR# K #EQ# I: 
     MATCH( J, K)) = 1  
     ); 

 The feature of interest in this constraint is the conditional qualifier J #EQ# I #OR# K #EQ# I on 
the @SUM function. For each analyst I, we sum up all the MATCH variables that contain I and set 
them equal to 1. In so doing, we guarantee analyst I will be paired up with exactly one other analyst. 
The conditional qualifier guarantees we only sum up the MATCH variables that include I in its pairing. 
 One other feature is required in this model. We are letting MATCH( I, J) be 1 if we are pairing I 
with J. Otherwise, it will be 0. Unless specified otherwise, LINGO variables can assume any value 
from 0 to infinity. Since we want MATCH to be restricted to being only 0 or 1, we need to add one 
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other feature to our model. What we need is to apply the @BIN variable domain function to the 
MATCH attribute. Variable domain functions are used to restrict the values a variable can assume. 
Unlike constraints, variable domain functions do not add equations to a model. The @BIN function 
restricts a variable to being binary (i.e., 0 or 1). When you have a model that contains binary variables, 
it is said to be an integer programming (IP) model. IP models are much more difficult to solve than 
models that contain only continuous variables. Carelessly formulated IPs (with several hundred integer 
variables or more) can literally take forever to solve! Thus, you should limit the use of binary variables 
whenever possible. To apply @BIN to all the variables in the MATCH attribute, add the @FOR 
expression: 

@FOR( PAIRS( I, J): @BIN( MATCH( I, J))); 

The Solution 
The entire formulation for our matching example and parts of its solution appears below: 

SETS: 
   ANALYSTS; 
   PAIRS( ANALYSTS, ANALYSTS) | &2 #GT# &1: 
    RATING, MATCH; 
ENDSETS 
DATA: 
   ANALYSTS = 1..8; 
   RATING =  
      9  3  4  2  1  5  6 
         1  7  3  5  2  1 
            4  4  2  9  2 
               1  5  5  2 
                  8  7  6 
                     2  3 
                        4; 
ENDDATA 
MIN = @SUM( PAIRS( I, J):  
   RATING( I, J) * MATCH( I, J)); 
@FOR( ANALYSTS( I): 
  @SUM( PAIRS( J, K) | J #EQ# I #OR# K #EQ# I: 
                             MATCH( J, K)) = 1  
     ); 
@FOR( PAIRS( I, J): @BIN( MATCH( I, J))); 

A solution is: 
     Variable           Value         
 MATCH( 1, 2)       0.0000000         
 MATCH( 1, 3)       0.0000000            
 MATCH( 1, 4)       0.0000000            
 MATCH( 1, 5)       0.0000000            
 MATCH( 1, 6)        1.000000            
 MATCH( 1, 7)       0.0000000            
 MATCH( 1, 8)       0.0000000            
 MATCH( 2, 3)       0.0000000            
 MATCH( 2, 4)       0.0000000            
 MATCH( 2, 5)       0.0000000            
 MATCH( 2, 6)       0.0000000            
 MATCH( 2, 7)        1.000000            
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 MATCH( 2, 8)       0.0000000            
 MATCH( 3, 4)       0.0000000            
 MATCH( 3, 5)       0.0000000            
 MATCH( 3, 6)       0.0000000            
 MATCH( 3, 7)       0.0000000            
 MATCH( 3, 8)        1.000000            
 MATCH( 4, 5)        1.000000            
 MATCH( 4, 6)       0.0000000            
 MATCH( 4, 7)       0.0000000            
 MATCH( 4, 8)       0.0000000            
 MATCH( 5, 6)       0.0000000            
 MATCH( 5, 7)       0.0000000            
 MATCH( 5, 8)       0.0000000            
 MATCH( 6, 7)       0.0000000            
 MATCH( 6, 8)       0.0000000            
 MATCH( 7, 8)       0.0000000            

 Notice from the objective value, the total sum of incompatibility ratings for the optimal pairings is 
6. Scanning the Value column for 1’s, we find the optimal pairings: (1,6), (2,7), (3,8), and (4,5). 

5.6 Domain Functions for Variables 
Variable domain functions were briefly introduced in this chapter when we used @BIN in the previous 
matching model. Variable domain functions allow one to put restrictions on the values allowed for 
decision variables. Examples of the four domain functions available are: 

 @BIN ( Y); 
 @GIN ( X); 
 @BND ( 100, DELIVER, 250); 
 @FREE ( PROFIT);. 

 The statement @BIN ( Y)  restricts the variable Y to be a binary variable. That is, it can take on 
only the values 0 and 1. 
 The statement @GIN ( X) restricts the variable X to be a general integer variable. That is, it can 
take on only the values 0, 1, 2, … 
 The @BND () specification allows one to specify simple upper and lower bounds. The statement 
@BND ( 100, DELIVER, 250) restricts the variable DELIVER to be in the interval [ 100, 250]. The 
same effect could be achieved by the slightly more verbose: 

DELIVER >= 100; 
DELIVER <= 250; 

 LINGO, by default, gives a lower bound of zero to every decision variable. The statement 
@FREE ( PROFIT)  overrides this default lower bound for the variable PROFIT and says that 
(unfortunately) PROFIT can take on any value between minus infinity and plus infinity. Each of the 
domain functions can appear inside @FOR loops, just like any other constraint. 

5.7 Spreadsheets and LINGO 
In this chapter, we have seen how LINGO can be useful for modeling very large problems. The most 
widely used method for modeling of any sort is undoubtedly spreadsheet models. When is which 
approach more appropriate? 
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 The major advantages of doing a model in a spreadsheet are: 

-  Excellent report formatting features available, 
-  Large audience of people who understand spreadsheets, and 
-  Good interface capability with other systems such as word processors. 

The major advantages of doing a model in LINGO are: 

-  Flexibility of various kinds. 
-  Scalability--It is easy to change the size of any set (e.g., add time periods, products, 

customers, suppliers, transportation modes, etc.) without having to worry about copying or 
editing formulae. There is no upper limit of 255(as in a spreadsheet) on the number of 
columns, or 65536 on the number of rows. 

-  Sparse sets are easily represented. 
-  Auditability and visibility--It is easy to see the formulae of a LINGO model in complete, 

comprehensive form. Truly understanding the model formulae underlying a complex 
spreadsheet is an exercise in detective work. 

-  Multiple dimensions are easily represented. A spreadsheet handles two dimensions very 
well, three dimensions somewhat well, and four or more dimensions not very well. 

 One can get most of the benefits of both by using LINGO in conjunction with spreadsheets. One 
can place "hooks" in a LINGO model, so it automatically retrieves and inserts data from/to 
spreadsheets, databases, and ordinary files. Under Microsoft Windows, the hooks used are the OLE 
(Object Linking and Embedding) and ODBC (Open Database Connectivity) interfaces provided as part 
of Windows. Using the OLE capability to connect an Excel spreadsheet to a LINGO model requires 
two steps: 

a)  In the spreadsheet, each data area that is to be either a supplier to or a receiver of data 
from the LINGO model must be given an appropriate range name. This is done in the 
spreadsheet by highlighting the area of interest with the mouse, and then using the Insert | 
Name | Define command. The most convenient name to give to a range is the same name 
by which the data are referenced in the LINGO model. 

b)  In the LINGO model, each attribute (vector) (e.g., plant capacities) that is to be retrieved 
from a spreadsheet, must appear in a LINGO DATA section in a statement of the form: 

CAPACITY = @OLE('C:\MYDATA.XLS'); 

 Each attribute (e.g., amount to ship) to be sent to a spreadsheet must appear in a LINGO DATA 
section in a statement of the form: 

@OLE('C:\MYDATA.XLS') = AMT_SHIPPED; 

If only one spreadsheet is open in Excel, this connection can be simplified. You need only write: 

CAPACITY = @OLE(); 

LINGO will look in the only open spreadsheet for the range called CAPACITY. This “unspecified 
spreadsheet” feature is very handy if you want to apply the same LINGO model to several different 
spreadsheet data sets. 
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 This spreadsheet connection can be pushed even further by embedding the LINGO model in the 
spreadsheet for which it has a data connection. This is handy because the associated LINGO model 
will always be obviously and immediately available when the spreadsheet is opened. The screen shot 
below shows a transportation model embedded in a spreadsheet. To the casual user, it looks like a 
standard spreadsheet with a special solve button. 
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The data and results are stored on the first tab/sheet of the spreadsheet file. Not so obvious is the 
LINGO model that is stored on another tab in the same spreadsheet (see below). Completely hidden is 
a small VBA program in the spreadsheet that causes the LINGO model on the second tab to be solved 
whenever the Solve button is clicked on the first tab. The complete example can be found in the file 
xlingtran.xls. 
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Just as @OLE() is used to connect a LINGO model to a spreadsheet and @ODBC() is used to connect 
a LINGO model to a database, the @TEXT() statement is available to connect a LINGO model to a 
simple text file. You can send the value(s) of attribute X to a file called "myfile.out" with: 

DATA: 
  @TEXT( 'MYFILE.OUT') = X; 
ENDDATA 

The following will send the value of X to the screen, along with an explanatory message: 
@TEXT() = 'The value of X=',  X; 

Still one more way that LINGO can be incorporated into an application is by way of a subroutine call. 
A regular computer program, say in C/C++ or Visual Basic, can make a regular call to the LINGO 
DLL (Dynamic Link Library). The model is passed as a string variable to the LINGO DLL. See the 
LINGO manual for more details. 

5.8 Summary 
In this chapter, we’ve discussed the concept of sets, defined sets, and demonstrated the power and 
flexibility of set-based modeling. You should now have a foundation of knowledge in the definition 
and use of both primitive and derived sets. 

5.9 Problems 
1. You wish to represent the status of an academic institution during a specific teaching term. The 

major features to be represented are that instructors teach courses and students are registered for 
courses. You want to keep track of who is teaching which course, who is registered for each 
course, and which courses a given student is taking. What sets would you recommend if each 
course is taught by exactly one instructor? 

2. Suppose we take into account the additional complication of team teaching. That is, two or more 
instructors teach some courses. How would you modify your answer to the previous question? 


