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Modeling Uncertainty in General Optimization Problems

Is there a general way of incorporating probabilistic uncertainty 
into optimization problems?

Yes, goes by the name, “Stochastic Programming(SP)”.

Can also perhaps more suggestively think of it as
Scenario Planning(SP).

Basic idea is to use a finite number of scenarios, each with a 
specified probability.

May have a multi-period sequence of random events.



Why Use SP?

If uncertainty is a significant factor:

1) Simple deterministic analysis may suggest a solution far from
 
optimal,

e.g., stocking to exactly meet expected demand may
miss the high profit of occasional really high demand.

2) Simple scenario-by-scenario analysis, may miss the optimal solution,
e.g., the solution that is optimal when all scenarios are taken into account 
may not be optimal for any single scenario.

3) Simple expected value analysis, even if it takes into account uncertainty,
may miss the fact that we really care about the distribution of outcomes,
e.g., the low probability but catastrophic outcome.  
SP optimization supplies you with the distribution of outcomes.
You may have two or more random variables with the same mean 
and standard deviation, but dramatically different distributions…



Perhaps We Should Be Concerned  About the Distribution…

Here are the histograms of three 
random variables, each with
Mean= 64, SD= 8.



Multi-Stage Decision Making Under Uncertainty

Stochastic programming, or Scenario Planning, or SP for short, is an approach 
for solving problems of multi-stage decision making under uncertainty. SP is 
designed to solve problems of the following form:

0) In stage 0 we make some decisions,  taking into account that later, 

1)   At the   beginning of stage 1, “Nature”
 
makes a random decision,

1a) At the end of stage 1, having seen nature’s decision, as well as our 
previous decisions, we make some decisions, taking into account that …

2) Somewhat later at the beginning in stage 2, 
“Nature”

 
makes a random decision,

…
n)    At the beginning of stage n, “Nature”

 
makes a random decision, and

n.a) At the end of stage n, having seen all of nature’s n
 
previous decisions, 

as well as all our previous decisions, we make a decision,

If there are only a finite number of outcomes(which
 
is true computationally) for 

nature at each stage, then it may be helpful to visualize the process by a tree.
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Notation:
x…ijk

 

=
 
decision variables we control,
given history …ijk,

d…ijk

 

= random “decision(s) k
 
by 

nature”, e.g., demand,
given history …ij;

For this tree:
3 possible

outcomes in stage 1. 
Once we see nature’s 
stage 1 decision, then we 
make a unique decision  x1

 

that depends
upon nature’s decision, etc.  

Viewed as a Tree…



+ Financial portfolio planning over multiple periods for insurance

 

and other financial companies,

 
in the face of uncertain prices, interest rates,  exchange rates, and bankruptcies,

+ Capacity and Production planning in the face of uncertain future

 

demands and prices,

+ Fuel purchasing

 

when facing uncertain future fuel demand and prices,

+ Optimal exploration planning for petroleum companies,

+ Foundry metal blending in the face of uncertain input scrap qualities,

+ Fleet assignment: vehicle type to route assignment

 

in the face of uncertain route demand,

+ Electricity generator unit commitment in the face of uncertain demand,

+ Hydro management and flood control in the face of uncertain rainfall,

+ Optimal time to exercise for options in the face of uncertain prices,

+ Product planning in the face of future technology uncertainty,

+ Revenue management in the hospitality and transport industries.

Applications of SP, Some Examples



Simple Generic Examples of Optimization under Uncertainty

Some generic but common two stage (0 and 1), examples:

Example 1: Capacity Planning   (Multi-dimensional Newsvendor)
Stage 0, decisions:

xi

 

= capacity installed of type i; made before seeing demand,
Stage 1 beginning, random events observed:

dsj

 

= demand for product type j
 
in scenario s, for s

 
= 1, 2,…, ns, 

Stage 1 end:
ysij

 

= amount shipped from i
 
to j

 
if scenario is s;

Model:
Max = -Σi

 

ci

 

*xi

 

+ Σs

 

Σi

 

Σj

 

rij

 

*ysij

 

/ns;       ! Assumes all scenarios equally likely;

For each scenario s
 
and source i:              ! Capacity constraints; 

Σj

 

ysij

 

≤
 
xi

 

;

For each scenario s
 
and demand type  j:   ! Demand  constraints; 

Σi

 

ysij

 

≤
 
dsj

 

;                    



Simple, Generic Examples of Optimization under Uncertainty, II

2) Portfolio planning.
Stage 0, decisions:

xi

 

= amount invested in instrument  i; 
Stage 1 beginning, observe random outcomes:

rsi

 

= return on investment in instrument i
 
in scenario s, 

for s
 
= 1, 2,…, ns, 

Stage 1 end:
ys

 

= return of portfolio if scenario is s,
us

 

, ds

 

= deviation up, down of return from target;

Model:
Σi

 

xi ≤
 
1;                      ! Compute Budget constraint;

For each scenario s
 
:

ys

 

= Σi

 

rsi

 

*
 
xi

 

;             ! Compute scenario return; 
us

 

–
 
ds

 

= ys

 

–
 
target;  ! Compute deviations from target;

Σs ys

 

/ns
 
≥= target;            ! Expected return achieves target, all scenarios equally likely;

Min = Σs

 

ds

 

/ns;       !  Min downside risk; 



SP Applications More Specifically

Plant configuration decisions, e.g., General Motors
Had too much capacity.
Needed to close or refocus an unknown number of plants.

Investment Portfolios at Insurance Companies,
e.g., Yasuda-Kasai in Japan.

Had been using  Markowitz “mean-variance”
 

portfolio optimization.
Markowitz assumes risks have a Normal distribution(symmetric)
Actual risks were too non-symmetric  (This is insurance)



Multi-Stage Tree Structures in Practice…

General Motors  used a 5 period, (but 2 stage) model:
Periods 1-4:  The next 4 years,
Period 5:  Year 5 and out to infinity modeled using

present values.

Plant reconfiguration decisions
 
were made only at beginning of 

year 1. No reconfiguration decisions thereafter.

General Motors historically made three forecasts, with 
associated probabilities, for each year,  into the future.

Stage Branches  Represents
1               3^5 = 243     Next 4 years + infinity

Total number of full scenarios = 243.



GM SP Model, Special Features

+ Downside risk

+ Unsatisfied demand for a product transfers to other products 
according to a substitution matrix. One dozen products. 

+ Infinite final period.

Key parameters:
cpv

 

= cost per unit to produce vehicle v in plant p
 
(only 

possible if  plant is open),
τvw

 

= fraction of unsatisfied demand for vehicle v
 
that 

transfers to vehicle w,  (from surveys),
CAPpσ

 

= capacity of plant p
 
in configuration σ,

Key variables:
xspv

 

= number of units of 
vehicle v

 
produced in plant p

 
in scenario s.    



GM Model:  Inventory Balance Constraint

The key constraints in words are:

For each scenario s 
For each vehicle v:

Productionvs

 

+ Unsatsv

 

= Demandsv

 

+ Transfer_insv

 

;

For each vehicle v and w:
Transfer_from_tosvw

 

≤ τvw

 

*Unsatsv

 

;

For each plant p and configuration σ:
Total_productionsp

 

≤
 

CAPpσ

 

* ypσ



Downside Risk in GM Model

penaltys

 

≥
 
threshold -

 
profits

 

;

Expected downside risk constraint:

∑s   Probs

 

penaltys

 

≤
 
tolerance;

Both threshold and  tolerance are parameters.



Gas Purchasing at Peoples Gas as an SP Problem

General Features:

Two stages,  
Stage 0, make purchase and storage decisions,

Stage 1: Ten scenarios, corresponding to 
ten previous representative weather patterns, scaled up to today.
Each scenario has 365 periods.

Storage costs are nonlinear,  first units are easy to pump in, last
units require much energy to  pump in.

First units withdrawn can be withdrawn rapidly, last units can
be withdrawn only slowly.

Contracts have daily min and max and total over all days.



Doing SP in either What’sBest! or LINGO

Essential Steps:
1) Write a standard deterministic model (the core model) as if 

the random variables were variables or parameters.

2) Identify the random variables, and decision variables,
and their staging.

3) Provide the distributions describing the random variables,
[Why separate (2) and (3) ? ]

4) Specify manner of sampling from the distributions,
(mainly the sample size), and 

5) List the variables for which we want a  (What’sBest! only)
scenario by scenario report or a histogram. 



How is SP Information Stored in the SpreadSheet?
All information about the SP features is stored explicitly/openly on the 

spreadsheet.

1) Core model is a regular deterministic
What’sBest! or LINGO model.  You can plug in regular numbers
in a random cell to check results.

2) Staging information is stored in 
Decisions: WBSP_VAR(stage, cell_list) and
Random variables: WBSP_RAND(stage, cell_list);

3) Distribution specification is stored in   
WBSP_DIST_distn(table, cell_list);  

where distn
 
specifies the distribution, e.g., NORMAL cell.

4) Sample size for each stage is stored in
WBSP_STSC(table);

5) Cells to be reported are listed in
WBSP_REP(cell_list)  or  WBSP_HIST(bins, cell);



Core Comments

The “Core Model”
 
is a completely valid Excel model.

If you are doing neither simple optimization nor SP, 
you can do complete “What-If”

 
analysis with it 

as a valid deterministic model.

If you have not turned on SP, you can do simple optimization 
with it like any deterministic What’sBest

 
model.



Input via a Dialog Box, Newsvendor, Steps 1, 2, Staging



Input via a Dialog Box, Newsvendor, Step 3, Distribution



Input via a Dialog Box, Newsvendor, Step 4, Sample Size



Input via a Dialog Box, Newsvendor, Step 5 
Reporting



Input via a Dialog Box, Setting Various Options



Input via a Dialog Box, Setting Various Options

Setting Retention:
Any settings made with a dialog box are retained when the 

workbook is saved.  The same settings will be there when the 
workbook is next re-opened.

Settings such as Adjustable cells, constraints can be found by 
clicking on:

Add-Ins | WB! | Locate



Standard Scenario Report, One Line/Scenario

What does the distribution
of   Total Profit look like?



Newsvendor with Normal Demand

Even though the driving random variable, Demand, has a 
symmetric distribution, why is the output, Profit, so skewed?



The Generic Capacity Planning Under Uncertainty Model



Capacity Planning Under Uncertainty, Scenario Profit



Capacity Planning, Scenario by Scenario Report



Plant Location with Random Demand



Plant Location with Random Demand, Output

The output tab, 
WB!_Stochastic, contains two types of information:

1) Various expected values that measure the cost of uncertainty,
2) A scenario by scenario listing of selected variables so

 
we can

explicitly verify what happens in each possible scenario.

We may optionally also 
generate histograms in a WB!_Histogram tab.

Later, we will discuss the various expected values and the
various costs of uncertainty.



Plant Location, Scenario Report



Multi-Stage Portfolio Model with Downside Risk



Multi-Stage Portfolio Model with Downside Risk



Multi-stage Portfolio:  Solution and Policy

Notice when we put all our money in stocks in stage 2….



Terminal Wealth Distribution: College/Retirement Planning



Yield Management: Bird in Hand vs.  Future Bird in Bush



Yield Management: Report and Policy



Stopping Problem Example



Stopping Problem Solution and Policy



Put-Option Formulated as an SP



Put-Option,   60% of Time Does Not Pay Off



Put Option,  Scenario Detail



DEA:  An SP Application with No Randomness



Report: DEA Efficiency



Random Number Generation and Sampling

Ideas and Steps:

Uniform Random Number Generation

Arbitrary Distribution from Uniform

Variance Reduction, Quasi-random Numbers, Super Uniforms
Latin Hypercube Sampling,  Antithetic Variates.

Correlated Random Numbers



LINDO API and What’sBest
 
10 provide:

1) Linear congruential,  31 bit,

2) Composite of linear congruentials
 
with a long period,(default)

3) Mersenne
 
Twister with long period.

Uniform Random Number Generators



IX = 742938285 * IX MOD 2147483647
LSrand

 
= IX/2147483647.0

The starting seed for the random number generator, regardless of
 
which generator 

is used, can be selected by clicking on:

Add-Ins | WB! | Options |  Stochastic Solver | Seed for Random Number Generator

Simple Linear Congruential, 31 bit Uniform Generator



Random Numbers from Arbitrary Distributions

Generating a random number from an arbitrary 
distribution, e.g., Normal, Poisson, Negative binomial…

1) Generate a uniform random number in (0, 1).
2) Convert the uniform to the desired distribution via the 

inverse transform of the cdf(cumulative
 
distribution function.

1.0
F(x)

u

0.0
x

Need to be able to invert  
u = F(x)

 
to

x = F-1(u).

There are lots of methods for generating r.v.’s
 
from a given distribution.

Why use the inverse transform method?



Additional Distributional Details

Distributions supported:
DISCRETE, DISCRETE_W  (Emprical

 
Multi-variate)

BETA        LOGARITHMIC
BINOMIAL

 
LOGISTIC

CAUCHY
 

LOGNORMAL
CHISQUARE

 
NEGATIVEBINOMIAL

EXPONENTIAL
 

NORMAL
F_DISTRIBUTION

 
PARETO

GAMMA
 

POISSON
GEOMETRIC

 
STUDENTS_T

GUMBEL     TRIANGULAR
HYPERGEOMETRIC

 
UNIFORM

LAPLACE WEIBULL  

Correlations supported:
Pearson, Spearman, Kendall



Sampling:  Latin Hypercube

If we need more than one observation from a univariate
 distribution, use Latin Hypercube sampling.

Basic idea:  If taking a sample of size N, choose one draw 
randomly from each Nth percentile.
This is easy to do if  Inverse Transform Method is used.

Key feature:  A given possible outcome has a probability of 
being chosen equal to its population probability.
So the sample is an unbiased sample.



Latin Hypercube Sampling



LHS Illustrated, Notice “Super uniformity”



Latin HyperCube vs. Simple Random Sampling

Generated a sample of
100 Normal demands with
Mean = 100,  SD = 10;

Mean = 100.31, SD = 10.14;

Mean = 99.98, SD =  9.98;



LHS Benefits, Optimistic Bias of Estimates from SP

If
 
n = sample size,  there is an optimistic “optimization”

 
bias of the 

order of  (n-1)/n
 

in the objective function value from simple
 
SP.

Using LHS tends to reduce this bias, as well as the variance of the 
estimate.  Some examples:

Simple random sampling        LHS
Problem                             Mean         S.  Error    Mean          S. Error
Newsvendor(1)

Min cost, n =1000,          5546.7           28.83          5547.2         9.86           
r = 100; 

Multi-product inv.
 

(1)

 
189902          3162            189173       1275        

with random yield
and partial substitution,
Max profit,  n =256, r

 
= 100

(1)Yang, 2004.



Correlated Random Variables in SP

Three ways of measuring correlation:

Pearson
Define:  

Spearman Rank 
Same as Pearson, except  xi

 

and yi

 

replaced by ranks,
Minor adjustments when there are ties.

Kendall Tau Rank

1
/ ;

n

i
i

x x n
=

=∑ 2

1
( ) / ( 1);

n

x i
i

s x x n
=

= − −∑

1
( )( ) / ( );

n

s i i x y
i

x x y y ns sρ
=

= − −∑

1 1

2* [( )( )] / [ ( 1)]
n n

i k i k
i k i

sign x x y y n nτρ
= = +

= − − −∑∑



Advantages of Rank, and Copulas

If two random variables are Normal distributed, then it is relatively 
straightforward to generate them so they have a specified 
correlation (Pearson).

Challenge:
If two random variables have an arbitrary distribution, it is

 
not so 

easy to give them a specified correlation.
Things are easy if we use rank correlation.

The rank correlation of two random variables is 
unchanged by a monotonic increasing transformation, e.g., 
Generating   

Normal random variables from  Uniform random variables 
by the inverse cdf

 
transformation method

does not change the rank correlation of the random variables.
The transformed Normals

 
have the same rank correlation as the

original uniforms.



Rank Correlation and Copulas

The Gaussian Copula is a way of 
generating  set of d random variables,
each with arbitrary

 
marginal distribution, 

but having a specified  d
 
by d rank correlation matrix.

Procedure:
1) Generate a sample of  size n

 
of d Normal

 
random variables having

a specified rank correlation matrix.  This is relatively easy.
2) Convert each of the d Normal random variables to uniforms with

the transformation:             uij

 

= Fnormal

 

(xij

 

).
3) Convert each uniform to the desired target marginal distribution

with the inverse transform: (Steps 2 & 3 preserve rank correlation.)
yij

 

= Fj
-1(uij

 

).

The Gaussian Copula has been named as a culprit in the mortgage securities 
meltdown because of false confidence in a math model…..



+The Kendall correlation has a simple probabilistic interpretation.
If  (x1

 

, y1

 

) and (x2

 

, y2

 

) are two observations on two random variables that have a
Kendall correlation of ρk

 

, then the probability that the two random variables move 
in the same direction is (1+ ρk

 

)/2.  That is:
Prob{(

 
x2

 

-
 
x1

 

)*( y2- y1

 

) > 0} = (1+ ρk

 

)/2.
For example, if the weekly change in the DJI and the SP500 have a Kendall 
correlation of 0.8, then the probability that these two indices will change in the same 
direction next week is (1+0.8)/2 = 0.9.

+The Spearman coefficient seems to be finer grained. 
E.g.,  the possible values for various sample sizes are:

Sample         Kendall        Spearman        _

size #Outcomes

 

Possible values                  #Outcomes

 

Possible values
2                 2                  -1,  +1                                 2                        -1, +1
3                 4            -1, -1/3, +1/3, +1                      4                   -1, -1/2, +1/2  1
4                 7           -1, -2/3, …, +2/3, 1                  11                    -1, -4/5,    …,+4/5, +1
5               11           -1, -4/5, …, +4/5, +1                21                 -1, -9/10, …, +9/10, +1
6               16           -1, -91/105, -77/105,…,+1       36                 -1, -99/105, -93/105,…,+1

. . .
Also, Spearman matrix is always positive definite.

Kendall vs. Spearman Rank Correlation



Correlation Specification in What’sBest



Correlation Specification, cont.



How much is Uncertainty Costing us? EVPI and EVMU

EVPI
 
(Expected Value of Perfect Information)

= Expected increase in profit if we know the future in advance.

EVMU
 
(Expected Value of Modeling Uncertainty)

= Expected decrease in profit if we replaced each random 
variable by a single estimate and act as if this value is

 
certain.

Typical single estimate is the estimated mean.
Why might you rather use the median?*

Profit  →

EVMU                               EVPI
Disregard                               Use SP            Perfect

uncertainty                                             forecast

*We estimate that country X

 

will have 1.823 aircraft carriers in 2012…



EVMU and EVPI are provided in What’sBest! 10 for the Newsvendor model considered previously.  
The solution summary section is:

Objective (EV):                               2109.684
Wait-and-see model's objective (WS):          2799.685
Perfect information (EVPI = |EV -

 

WS|):        690.0007
Policy based on mean outcome (EM):            2081.542
Modeling uncertainty (EVMU = |EM -

 

EV|):        28.14211

Profit  →

EVMU                   EVPI
Disregard                                Use SP    Have

 

perfect
uncertainty                                        forecast 
[ 2081.542 ]                           [ 2109.684 ]

 

[2799.685]

Expected Value of Better Modeling and/or Forecasting



EVPI and EVMU: A Capacity Planning Example



EVPI and EVMU: Capacity Planning Example Output



If we know future only probabilistically..
Expected total profit =   82.40

Plants to open:
ATL          

“Wait and See”

 

Analysis, Perfect Information:
If we know scenario is 1,     then Profit=  142.00  (Probability=0.3)
Plants to open:

STL     

If we know scenario is 2,     then Profit=   78.00  (Probability=0.3)
Plants to open:

CIN

If we know scenario is 3,     then Profit=   57.00  (Probability=0.4)
Plants to open:

CIN
------

Expected Profit with Perfect Information    88.80  (=.3*142 + .3*78 + .4* 57)
Simple Expected Profit                      82.40
Expected Value of Perfect Information(EVPI)= 6.40

Notice Atlanta not optimal for any scenario!

EVPI Computations: Capacity Planning Example



If we act as if mean demand is certain...
The demand vector is: 

4.1    4.1

 
3     3  

Plants to open:
CIN

Actual expected profit with this configuration= 71.7

Expected Profit Modeling uncertainty=   82.40
Expected Profit using expected values=  71.70
Expected Value of Modeling Uncertainty= 10.70

EVMU Computations: Capacity Planning Example



EVPI Continued

If EVPI = 0  does this mean the value of doing SP = 0?

….we can buy this flexible facility for just a little more…



EVMU,  When is it zero?

Can we predict when EVMU  = 0?

E.g.,
Situation 1:

The price we get for our products are random variables.

Situation 2:
The demands for our products are random variables.



EVMU,  Using Median vs. Mean

The default is to use the Mean.

+ Mean is intuitive for most people.

-Mean is undefined for some distributions, e.g., Cauchy. 
Median is always defined for univariate

 
distributions.

-Mean may not make sense for some situations, 
e.g., discrete  distribution. The average result of roll of a die is 3.5.
A fractional mean may not make sense. Median can always be 
chosen to be an actual possible outcome.



EVMU and EVPI, True vs. Estimated

A fine point:  If the true number of scenarios is large, or infinite, 
and we use sampling,  then the values for EVPI and EVMU 
reported are estimates rather than true values. 



Computing Approximate Confidence Intervals

How confident should we be statistically, 
of the results of an SP optimization?

Issue 1) There is an optimistic bias of the order of  (n-1)/n
 
in the

objective function value from an SP optimization.  The 
optimization chooses the policy best for the sample observed.

Issue 2) If we use Latin Hypercube sampling,  then the samples are
correlated*, so an estimate of standard deviation among the
samples based on the assumption of independence is wrong.

For modest size sample sizes, these two effects can be notable.
See the next slide for example.

*Generally negatively correlated.  An observation or result far below the median will be
compensated by an observation far above. 



! Newsvendor model; 
MU = 1000; ! Mean demand for the one period;
SD =  300; ! Standard deviation in demand;
V =  140; ! Revenue/unit sold;
C =   60; ! Cost/unit purchased;
P =    0; ! Penalty/unit unsatisfied demand;
H =  -40; ! Holding cost/unit left in inventory;
N = 15;   ! Number of scenarios sampled in the SP optimization. 

The 15 is chosen for illustrative purposes only, not necessarily
a recommended sample size;    

We repeated or replicated the above  15-sample SP 1000 times.  For each replication we computed  
a) the observed average profit, xbar;
b) the traditional “unbiased”

 

estimate of the population standard deviation by 
[Σi

 

(xi

 

-

 

xbar)2/(n-1)]0.5

 

,   and, 
c) a 90%  coverage interval for xbar, estimating the standard deviation of xbar

 

by 
s

 

= [Σi

 

(xi

 

-

 

xbar)2/(n(n-1))]0.5.  
For each replication we recorded whether the computed confidence interval in fact covered the true 

expected profit of $71,601.  Results for the 1000 replications are shown below.

Sampling                 Mean                Mean

 

sample           Actual 90%  confidence             
method   profit  standard deviation

 

interval coverage
Random                $72,127                   $25,945         .898                      
LHS                      $71,595                   $26,761      1.000                 
True/Analytical    $71,601

Approximate Confidence Intervals, an Example



Some things to note:  
1) Because of the modest* number of scenarios, n

 
= 15, SP with 

simple random sampling seriously overestimates the expected 
profit by $526.  SP with LHS actually, by chance, slightly 
underestimates, by $6,  the true expected profit. 
2) The sample standard deviation under LHS is substantially less 

of an underestimate of the (unknown) population standard 
deviation in profit than is that under simple random sampling.  
3) The confidence intervals computed under simple random 

sampling do not quite achieve the desired 90% coverage,  perhaps
 because the intervals are not correctly centered because of the 

optimistic bias in xbar. 
4) The confidence intervals from SP with LHS are extremely 

conservative, and in fact achieve 100% coverage, 

* Roughly,  a bias of n/(n-1).

Approximate Confidence Intervals, Comments



(A)

(B)

(C)

(D)

Growth Factor

P
r
o
b
a
b
i
l
i
t
y

1.0 1.1 1.5

1.1

1.1

1.11.0

.9 1.3

.7 1.2

Measures of Uncertainty: Variance, Risk, Utility,…

Which  alternative
 
investment :  A, B, C, or D  do you prefer?

Probabilities:  A) .8, .2;  B) .5, .5;  C) .2, .8;  D)  1.0.  What are mean and s.d.? 



Utility Function Approach to Measuring Risk

U(w) = utility or value of having wealth w,

When w
 
is a random variable,  we want to 

maximize  E[U(w)].
Qualitatively, if

E[w1

 

]   =   E[w2

 

]  
but w1

 

is “riskier”
 
than w2

 

, what would we expect about 
E[U(w1

 

)]  vs. E[U(w2

 

)]?

Reasonable features of U( ):
F1) Monotonic (strictly?) increasing.

“More is better”,  
Implies: a  dominated random variable cannot be preferred.        

F2) Concave(strictly?)
“Next  $

 
not as useful as the previous $”



Utility Functions,  Popular Examples

May also specify a threshold  t, and parameter b.

1)  Downside:   U(w) = w –
 
b*max(0,t-w);    0 ≤

 
b
 
≤

 
1;

U(w)

t      w

2)  Quadratic:    U(w) = w –
 
b*(t-w)2;            0 ≤

 
b
 
;

3)  Power:          U(w) = (wb

 
– 1)/b;                      b

 
≤

 
1;

4)   Log:             U(w) = log(w)
 
, (Limit of Power utility as b →0);

so-called “Kelly criterion”.



Plant configuration decisions,
GM had too much capacity.
Needed to close or refocus an unknown number of plants.

Essential Structure:
Maximize expected profit contribution –

 
cost of reconfiguration;

Cannot produce more in a plant than installed capacity;

Cannot sell more of a product than is demanded in a scenario.

GM Model:  Capacity Planning Under Uncertainty



GM SP Model, Special Features & Computations

+ Unsatisfied demand for a product transfers to other products
according to a substitution matrix. One dozen products. 

Key parameters:
cpv

 

= cost per unit to produce vehicle v in plant p (only 
possible if  plant is open),

τvw

 

= fraction of unsatisfied demand for vehicle v that 
transfers to vehicle

 
w,  (data from surveys),

CAPpσ

 

= capacity of plant p in configuration σ,

Key variables:
xspv

 

= number of units of 
vehicle v produced in plant p in scenario s.  

Other features:
+ Infinite final period.
+ Downside risk



GM Model:  Inventory Balance Constraint

The key constraints in words are:

For each scenario s 
For each product (or vehicle) v:

Productionvs

 

+ Unsatsv

 

= Demandsv

 

+ Transfer_insv

 

;

For each vehicle v and
 
w in scenario s:

Transfer_from_tosvw

 

≤ τvw

 

*Unsatsv

 

;

For each plant p and configuration σ:
Total_productionsp

 

≤
 

CAPpσ

 

* ypσ



Downside Risk

penaltys

 

≥
 
threshold -

 
profits

 

;

Expected downside risk constraint:

∑s   Probs

 

penaltys

 

≤
 
tolerance;

Both
 
threshold and

 
tolerance are parameters.



General Motors

Effect of  putting a constraint on Downside Risk
∑s   Probs

 

penaltys

 

≤
 
tolerance;



Airline Crew Scheduling, Deterministic Case

Approach used by many(most?) major airlines:  Enumerate  all 
interesting work patterns for a crew for a work period, e.g., day, week.

Variables:
yp

 

= 1 if  crew work pattern  p
 
is used.  

A work pattern is a sequence of flight legs.
Parameters:

aip

 

= 1 if work pattern  p
 
includes flight leg i,

The deterministic,  core model:
Min Σp

 

cp

 

yp

 

;

For each flight segment i, it must be covered by some pattern p:
Σp

 

aip

 

yp

 

= 1; Stage 1b constraints, for each scenario s:



Airline Crew Scheduling Under Uncertainty

A triggering delay
 
may occur on a flight leg because of  bad weather, 

equipment failure, etc.
A cascade delay can occur  on a flight leg because of an earlier delay 

of one of the three entities* needed to execute a flight leg.

The SP approach  (Air New Zealand, Yen & Birge)

Stage 0: Select a set of work patterns to use, the yp

 

.

Stage 1a: Random triggering delays occur.

Stage 1b: Compute the implied cascade delays and their costs.

*Plane, crew, passengers



Airline Crew Scheduling Under Uncertainty

How can the crew schedule chosen affect (cascade) delays?

If a flight leg is delayed(triggering
 
or cascade), it could directly delay 

up to three immediately following flight legs:
1) A  flight leg that needs the same plane,
2) A flight leg that needs the same crew,
3) A flight leg that needs a significant number of the same passengers.

If a work pattern keeps the crew on the same plane between two 
successive flight legs,  then type 2 delay does not cause additional 
delay.  So good work patterns from an uncertainty point of view keep 
the crew on the same plane.



Airline Crew Scheduling Under Uncertainty, details

Parameters:
R = set of leg pairs (i,j) for which i

 
must arrive before j

 
departs,

because of  plane or passengers,
wijp

 

= 1 if leg i
 

provides the crew for leg  j
 
under pattern p,

Stage 1a random parameters:
tis

 

= total flight time of leg i
 
under scenario s,

Stage 1b decision variables:
dis

 

=  departure time of leg i
 
under scenario s,

ris

 

=  arrival time or “ready for next leg”
 
time of leg i, scenario s,

Stage 1b constraints, for each scenario s:
ris

 

≥
 
dis

 

+ tis

 

,               ! Flight time;
djs

 

≥
 
ris

 

for i,j
 
in R;  ! Plane connection;

djs

 

≥ Σi

 

Σp

 

wijp

 

yp

 

ris

 

;     ! Crew  connection (can be linearized);



Airline Crew Scheduling Under Uncertainty, Full Formulation

! Minimize weighted combination of explicit cost + delay, where 
θ
 
specifies the tradeoff between explicit costs and delays;

Min Σp

 

cp

 

yp

 

+ θ
 
Σi

 

Σs dis

 

;

! Stage 0 decisions and constraints,
For each flight segment i, it must be covered by some pattern p:

Σp

 

aip

 

yp

 

= 1; 

yp

 

= 0 or 1;

! Stage 1b constraints, to compute departure times,
 
dis

 

, 
as a result of random leg times,

 
tis

 

,  for each scenario s…;
ris

 

≥
 
dis

 

+ tis

 

,               ! Ready time = departure + flight time;
djs

 

≥
 
ris

 

for i,j
 
in R;  ! Plane connection;

djs

 

≥ Σi

 

Σp

 

wijp

 

yp

 

ris

 

;     ! Crew  connection (can be linearized);



Metal Blending, The Problem

Stochastic Complication:  
The composition (% C, %Si, %Cr, % Mn, etc. ) of input materials, 

typically scrap, is a random parameter, i.e., known only approximately.

Stage 0:
Choose amounts xj

 

of various input materials, each containing a random 
fraction aij

 

of target component i so as to approximately  get mixture into 
target interval for component i. 

Stage 1, beginning:
Melt mixture and observe actual composition for each i;

Stage 1, end:
Add additional, more pure and more expensive materials to move

any wayward quality measures to within tolerance.

Recourse decision must be quick, < 1 min.
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