The Staffing Problem

Suppose you run the popular Pluto Dogs hot dog stand that is open seven days a week. You hire employees to work a five day work week with to consecutive days off. Each employee receives the same weekly salary. Some days of the week are busier than others and, based on past experience, you know how many workers are required on a given day of the week. You need to determine how many employees to start on each day of the week in order to minimize the total number of required employees, while still meeting (or exceeding) staffing requirements.

Formulation

Let W1,..,W7 be the number of people who start their work week on Mon,..,Fri.

Let RHS1…RHS7 be the number of workers required on Mon,…,Fri.

Then, we wish to

MIN W1 + .. + W7

S.T.

W1 + W4 + W5 + W6 + W7 >= RHS1

W1 + W2 + W5 + W6 + W7 >= RHS2

W1 + W2 + W3 + W6 + W7 >= RHS3

W1 + W2 + W3 + W4 + W7 >= RHS4

W1 + W2 + W3 + W4 + W5 >= RHS5

 W2 + W3 + W4 + W5 + W6 >= RHS6

 W3 + W4 + W5 + W6 + W7 >= RHS7

Solving our problem with the LINDO callable library

The basic steps for solving an integer program in LINDO are:

1. Instantiate a LINDO environment.

2. Instantiate a model in the environment.

3. Specify the model.

4. Perform the optimization.

5. Retrieve the primal values.

The most involved step is 3, specifying the model.

1. Instantiate a LINDO environment

 Dim errorcode As Long

 Dim env As Long

 env = LSinstantiateEnv(errorcode)

2. Instantiate a model in the environment.

 Dim prob As Long

 prob = LSinstantiateModel(env, errorcode)

3. Specify the model.

To specify our model, we make a call to LSloadLPData and LSloadMIPData. We pass LSloadLPData:

· A pointer to the model which we are specifying

· The number of constraints in the model

· The number of variables in the model

· The direction of the optimization (i.e. minimize or maximize)

· The value of the constant term in the objective (which may be zero)

· The coefficients of the objective function

· The right hand sides of the constraints

· The types of the constraints (
[image: image1.wmf]³

=

£

,

,

)

· A sparse representation of the constraint matrix:

· The number of nonzeros in the constraint matrix

· The index of the first nonzero in each column

· The length of each column

· The nonzero coefficients

· The row indices of the nonzero coefficients

· Simple upper and lower bounds on the variables

We pass LSloadMIPData:

· A pointer to the model which we are specifying

· The integer restrictions on the variables

Calling LSloadLPData
· A pointer to the model which we are specifying

This is simply the variable prob which was returned by LSinstantiateModel.

· The number of constraints in the model

 Dim m As Long

 m = 7

· The number of variables in the model

 Dim n As Long

 n = 7

· The direction of the optimization (i.e. minimize or maximize)

Our problem is a minimization, so we pass the constant LS_MIN.

· The value of the constant term in the objective

There is no constant term in our objective, so we pass zero.

· The coefficients of the objective function

 Dim c() As Double

 ReDim c(n)

 For i = 0 To n - 1

 c(i) = 1

 Next i

· The right hand sides of the constraints

We get these from the Needs textboxes.

 Dim b() As Double

 ReDim b(n)

 For i = 0 To n - 1

 b(i) = Needs(i).Text

 Next

· The types of the constraints (
[image: image2.wmf]³

=

£

,

,

)

 Dim con_type As String

 For i = 0 To m - 1

 con_type = con_type & "G"

 next

· A sparse representation of the constraint matrix:

· The number of nonzeros in the constraint matrix

 Dim nz As Long

 nz = 35

· The index of the first nonzero in each column

 ReDim Abegcol(n + 1)

 For i = 0 To n

 Abegcol(i) = 5 * i

 Next

· The length of each column

Since we are not going to leave any blanks in our array, the array Abegcol implicitly tells us the length of each column. Thus, we do not need to provide this information and pass a NULL pointer.

· The nonzero coefficients

 ReDim Acoef(nz)

 For i = 0 To nz

 Acoef(i) = 1

 Next

· The row indices of the nonzero coefficients

 Dim Arowndx() As Long

 ReDim Arowndx(nz)

 k = 0

 For i = 0 To n - 1

 For j = 0 To 4

 Arowndx(k) = (j + i) Mod 7

 k = k + 1

 Next j

 Next I

· Simple upper and lower bounds on the variables

By default, all variables have a lower bound of zero and an upper bound of infinity. We pass NULL pointers to use the defaults.

Calling LSloadMIPData

· A pointer to the model which we are specifying

Again, this is the variable prob which was returned by LSinstantiateModel.

· The integer restrictions on the variables

By default, all variables are continuous. By calling LSloadMIPData, we may specify variables as binary integers or general integers. We pass a character array with one element for every variable. The characters ‘C,’ ‘B,’ and ‘I’ stand for continuous, binary, and general integer, respectively.

Since we can only employ whole people, we make all our variables general integers:

 Dim var_type As String

 For i = 0 To n - 1

 var_type = var_type & "I"

 Next I

We have now assembled a full description of the model. We pass this information to LSloadLPData and LSloadMIPData. The calls are as follows. Note that to pass a NULL pointer in Visual Basic, we use ByVal 0. To pass an array, we pass its first element.

 errorcode = LSloadLPData(prob, m, n, LS_MIN, 0, c(0) _

 , b(0), con_type, nz, Abegcol(0), ByVal 0, _

 Acoef(0), Arowndx(0), ByVal 0, ByVal 0)

 errorcode = LSloadMIPData(prob, var_type)

4. Perform the optimization.

 errorcode = LSoptimize(prob, LS_METHOD_SIMPLEX)

5. Retrieve the primal values.

We retrieve the primal values and put them into the Start textboxes. We also compute the total number of workers and the number on duty each day.

 ReDim x(n)

 errorcode = LSgetPrimalSolution(prob, x(0))

 sum = 0

 For i = 0 To n - 1

 Start(i).Text = x(i)

 sum = sum + x(i)

 Next

 Total.Text = sum

 For i = 0 To n - 1

 sum = 0

 For j = 0 To -4 Step -1

 sum = sum + Start((i + j + 7) Mod 7).Text

 Next j

 OnDuty(i).Text = sum

 Next ReDim x(n)

 errorcode = LSgetPrimalSolution(prob, x(0))

 errorcode = LSgetObjective(prob, obj)
_979558005.unknown

