Lindo Systems

MODEL:
! Stratified sampling plan design, taken from 
  Bracken and McCormick. Minimize the cost of 
  sampling from 4 strata, subject to constraints on
  the variances of the sample based estimates of two
  categories;
 SETS:
  STRATUM/1..4/: SIZE, POP, COST, WEIGHT;
  CATEGORY/1..2/: VARMAX, K2;
  SXC( STRATUM, CATEGORY): VAR, K1;
 ENDSETS
! POP = population of each stratum.
  COST = cost of sampling in each.
  VARMAX = variance limits.
  VAR = variance for each category in each stratum.
  CFIX = a fixed cost;
 DATA:
  POP = 400000, 300000, 200000, 100000;
  COST =     1,      1,      1,      1;
  VARMAX = .043, .014;
  VAR  =    25    1
            25    4
            25    16
            25    64;
  CFIX = 1;
 ENDDATA
 [OBJ] MIN = CFIX + @SUM( STRATUM: SIZE * COST);
! Compute some parameters;
 TOTP =  @SUM( STRATUM( I): POP( I));
 @FOR( STRATUM( I):
! Weight given each stratum;
  WEIGHT( I) = POP( I)/TOTP;
  @GIN( SIZE( I));
 );
 @FOR( CATEGORY( J):
  K2( J) =
   @SUM( STRATUM(I): VAR( I, J)^2 * 
    WEIGHT( I)/ POP( I));
 );
 @FOR( SXC( I, J):
  K1( I, J) =  VAR( I, J)^2* WEIGHT( I)^2;
 );
 @FOR( CATEGORY( J):
  @SUM( STRATUM( I): K1( I, J) / SIZE( I))
   - K2( J) <= VARMAX( J)
 );
 @FOR( STRATUM( I): 
  @BND( 0.0001, SIZE(I), POP( I) -1);
 );

END