! BestWorst method for Multi-criteria problems.
We want to decide how much weight to give to each of several criteria.
We identify two reference criteria: Best and Worst.
We have pairwise comparisions of the importance of all other criteria
with these two references. ;
! Keywords: BestWorst method, MCDM, Multi-criteria;
! Ref:
Rezaei, J.(2016) "Best-worst multi-criteria decision-making method: Some properties and a linear model"
Omega,Vol 64, pp. 126-130;
SETS:
Criteria: aB, aW, W;
ENDSETS DATA:
IBest = 2; ! index of Best;
IWrst = 5; ! Index of Worst;
aB = 2 1 4 2 8; ! Ranking relative to Best;
aW = 4 8 2 4 1; ! Ranking relative to Worst;
ENDDATA
Min = Xi;
! Compare to Best;
@FOR( Criteria( j):
! We want | W(IBest)/ W( j) - aB( j)| <= Xi, rewrite as;
W( IBest) - aB( j)* W( j) <= Xi * W( j);
aB( j)* W( j) - W( IBest) <= Xi * W( j);
);
! Compare to Worst;
@FOR( Criteria( j):
! We want | W( j) / W( IWorst) - aW( j)| <= Xi, rewrite as;
W( j) - aW( j)* W( IWrst) <= Xi * W( IWrst);
W( j) - aW( j)* W( IWrst) <= Xi * W( IWrst);
);
! Weights must sum to 1;
@SUM( Criteria( j): W( j) ) = 1;
|